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Abstract: In this paper, we examine two strategies for boosting the performance of ensembles of
Siamese networks (SNNs) for image classification using two loss functions (Triplet and Binary Cross
Entropy) and two methods for building the dissimilarity spaces (FULLY and DEEPER). With FULLY,
the distance between a pattern and a prototype is calculated by comparing two images using the fully
connected layer of the Siamese network. With DEEPER, each pattern is described using a deeper
layer combined with dimensionality reduction. The basic design of the SNNs takes advantage of
supervised k-means clustering for building the dissimilarity spaces that train a set of support vector
machines, which are then combined by sum rule for a final decision. The robustness and versatility
of this approach are demonstrated on several cross-domain image data sets, including a portrait data
set, two bioimage and two animal vocalization data sets. Results show that the strategies employed
in this work to increase the performance of dissimilarity image classification using SNN are closing
the gap with standalone CNNs. Moreover, when our best system is combined with an ensemble of
CNNs, the resulting performance is superior to an ensemble of CNNs, demonstrating that our new
strategy is extracting additional information.

Keywords: Siamese networks; ensemble of classifiers; loss function; discrete cosine transform

1. Introduction

Interest in classification systems based on (dis)similarity spaces is resurging. Unlike
the more common technique of classifying samples within a feature space, (dis)similarity
classification estimates the class of an unknown pattern by examining its similarities and
dissimilarities with a set of training samples and pairwise (dis)similarities between each
of the members. This process has come to involve more than the application of standard
distance measures; (dis)similarity classification is also a way to build new spaces.

Though the two terms of similarity and dissimilarity are rarely disambiguated in the
literature, classification based on the notion of dissimilarity is an idea first proposed in [1],
where the focus was on comparing differences between samples belonging to different
classes. Dissimilarity classification can be tackled by using either dissimilarity vectors, as
in [2–6], or dissimilarity spaces, as in [7–14]. In the former case, two samples are considered
positive if they belong to the same class and negative if they belong to separate classes. The
goal of the classifier is to decide which of these two cases a given vector was calculated on.
For a more detailed discussion of this approach, see [15].

In contrast, dissimilarity methods that generate dissimilarity spaces, the approach
taken here, produce classifiers from within feature vector spaces. Unlike traditional feature
vectors representing samples as measured across all features, representation from feature
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vector spaces is the distance between pairs of samples. In [1], which introduced this
approach, the authors applied prototype selection for training classifiers on dissimilarity
spaces. The dissimilarity representations were used as a vector space. This method was
applied to image retrieval by [8] using a prototype-based dissimilarity space. In [10], a
compact representation based on prototype selection methods was derived from deep
convolutional features and learned distance measures.

A loss function commonly used in dissimilarity classification is the Maximum Mean
Discrepancy (MMD). In [11], the application of MMD enabled the source and target data in
the dissimilarity space to harness the intra-class and inter-class distributions to produce
a pairwise matcher. This version of MMD was also shown to work well across several
data sets. A modification of the contrastive loss function for a Siamese Neural Network
(SNN) [16,17] was proposed in [18] for brain image classification. The correlation distance
of this variant of the loss function predicted the output features of image pairs. This
method was expanded for audio classification in [12,13]. The audio samples, represented
as spectrograms, were transformed by clustering methods into a set of centroids that
generated dissimilarity spaces via SNN. The audio samples were then projected into the
dissimilarity spaces to obtain a vector space representation that could be used to train
Support Vector Machines (SVMs). An improved version of this method was developed for
generic image classification in [14], where dissimilarity spaces were produced by a set of
clustering methods and a set of SNNs with different CNN backbones. This approach was
shown to compete well against state-of-the-art classifiers on several image data sets and
obtained the highest classification score on one of them.

This work further expands [14] by proposing additional techniques for improving
the performance of an ensemble of SNNs. As in the earlier work, each Siamese network,
composed of eight different CNN topologies, generates a dissimilarity space whose features
train an SVM, and the SVMs are then combined by sum rule. The strategies investigated
here for improving performance further are the following:

• Two different loss functions are used to train the Siamese networks: the binary cross
entropy loss function and the triplet loss function.

• Two different approaches for building the dissimilarity spaces are proposed for ex-
tracting features: the first is based on the fully connected layer and the latter on
a deeper layer where the size of each channel is reduced by the Discrete Cosine
Transform (DCT).

• SNNs are optimized using different variants of Adam, with a new Adam variant
proposed in this work.

Systems built with these strategies are compared, fused, and evaluated with previous
work on dissimilarity classification. The versatility and robustness of the best ensemble
developed using these techniques are demonstrated on five cross-domain image data
sets representing medical imaging problems, animal vocalizations (spectrograms), and
portrait images.

2. Proposed Approach

The basic system can be described as follows. The inputs into the system, as in [12–14],
are the original images and HASC descriptors [19], extracted to produce a new processed
image. If the original image is in color, Hasc is applied separately on each band; if it is grey
level, the Hasc image is replicated three times to build an image with three bands.

Starting with the vector space representations, step 1 of the training process, as
illustrated in Figure 1, begins by generating a set of clusters that produce a set of prototypes.
The prototypes are centroids generated by k-means on the vector space representations.
In step 2, a dissimilarity space is generated by an SNN that learns a distance measure
from the prototypes that maximizes differences between pairs within class while also
minimizing differences of pairs between other classes, a process that produces a feature
vector that is trained on an SVM. In the testing stage, an unknown pattern is projected onto
the dissimilarity space that was learned by the SNN, which generates the feature vector
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that is then fed into the trained SVM (we have not optimized the SVM hyperparametes,
we have used a generic setting: Radial basis function kernel; C = 1000; gamma = 0.1) for
a decision.
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Figure 1. Schematic of the basic dissimilarity architecture using one SNN with the output fed into
one SVM.

The SNN, as illustrated in Figure 2, combines two identical deep learners whose out-
puts are subtracted, which produces a feature vector (the absolute value of the difference)
that is passed to a sigmoid and a loss function as in [12–14]. In this way, the FC layer and
sigmoid predict the dissimilarity of the two input images (Inputs 1 and 2). The feature
vector (FC) is computed by subtracting the outputs (F1 and F2) as follows:

FC = |F1− F2|
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Unlike [12–14], which used binary cross entropy, two different loss functions are tested
here (binary cross entropy and triplet loss function), and the CNN subnets are optimized
with Adam and some Adam variants.

Though some variations are indicated in Figures 1 and 2, they only show the output
of one SNN fed into one SVM. In [12–14] and this work, many SNNs and SVMs are
trained, tested, and combined. Eight CNN topologies form the backbone of the SNNs.
These are the identical topologies described in [14] (for the reader’s convenience, the table
in [14] that details the topologies is reprinted in the Appendix A). Thus, a large number
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of SNNs are trained using the different topologies, the two loss functions, and the Adam
optimization algorithms. Each of these systems is tested, fused, and evaluated to build the
best-performing system empirically.

The pseudocode for each step in Figure 1 can be found in the following sources: [12–14]
(see as well the companion source code for this paper available at https://github.com/
LorisNanni (accessed on 25 August 2021)).

Below, we focus on the new techniques proposed in this work: the application of two
methods for generating the dissimilarity space (Section 2.1), the two different loss functions
(Section 2.2) and the Adam optimization methods, including a new one proposed here
(Section 2.3).

2.1. Methods for Generating the Dissimilarity Spaces

Both methods for generating the dissimilarity space follow the same basic process
used in [12–14]: first, k-means is applied on a vector space representation of the training
images, with prototypes calculated as the k centroids of the clusters produced. Second,
a feature vector F ∈ Rk is extracted by calculating the distances of image x from each
of the prototypes, where the distance for each Fi between x and prototype pi is given as
Fi = d(x, pi). The resulting feature vector Fi is fed into the SVM.

The two methods for generating the dissimilarity space are labeled FULLY and
DEEPER. With FULLY, the distance between a pattern and a prototype is obtained di-
rectly by comparing the two images using the Siamese network. With DEEPER, each
pattern is described using a deeper layer than the fully connected backbone network of
the Siamese network. To reduce the high dimensionality of this deeper layer, the Discrete
Cosine Transform (DCT) is applied separately to each channel of that layer (see Section 2.2).
Finally, the distance between a pattern and a prototype is given by the cosine distance. In
other words, the backbone of the Siamese network is used as the feature extractor.

For the sake of space, the layers used in DEEPER are reported in the MATLAB toolbox
available at https://github.com/LorisNanni (accessed on 25 August 2021) (for the reader’s
convenience, these layers are also reported in the Appendix A of this paper). This step
is not optimized. We have chosen the layer before the last ReLu or fully connected layer
to prevent overfitting the results rather than selecting layers optimized for each data
set. Optimal layers could have been discovered using a leave-one-out data set, but this
procedure was not feasible given the computational power of our GPUs. In Figure 3 we
report the scheme of DEEPER.
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DCT Dimensionality Reduction

Because DEEPER uses a deeper layer compared to the fully connected backbone to
generate the dissimilarity space, a method is needed to reduce dimensionality on each
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channel (with results combined) of the deeper layer. DCT [20] is the dimensionality
transform selected here because (1) its components are typically small in magnitude (most
information is located in the low-frequency coefficients), and (2) it balances information
packing and computational complexity.

DCT can be expressed as

DCTimage(x, y) =
1√
2N

C(x)C(y)∑N
p,q=1 Image(p, q) cos

(2p + 1)xπ

2N
cos

(2q + 1)yπ

2N
, (1)

C(u) =


√

1
2 , u = 0

1, u > 0

where N is the number of row/columns of the image (input of CNN is a square matrix); p
and q are the pixel indices of the input image; x and y are the indices of the DCT matrix.

Each channel is reduced to a dimension of 9 × 9. All the features extracted from each
channel are concatenated into a single vector that represents a given pattern/prototype.

2.2. Loss Functions
2.2.1. Binary Cross Entropy Loss (Cross)

In the training phase, every pair of images in the training set is fed into the backbone
of the Siamese architecture to obtain a feature vector F. Calculated next is Z = |F1 − F2|,
where F1 and F2 are the feature vectors of the two images in the pair. Z is passed through a
fully connected layer and a sigmoid function that returns the probability Y that the two
images belong to the same class. Cross is then used for the two-class problem.

In the testing phase, for every sample in the training set, we compute F. Then, we
evaluate N centroids using k-means clustering. Every image in the training set is expressed
as the vector of the distances between its features and the centroids. After that, we train an
SVM on those vectors. We then apply this inference algorithm to the images in the test set.

2.2.2. Triplet Loss (Triplet)

With Triplet, we take three images as the inputs, labelled A, P, and N. It is assumed
that A and P have the same label and A and N have different labels.

In the training phase, for every Triplet in the training set, feature vectors FA, FP, FN
are computed and then passed through a sigmoid to obtain YA, YP, YN . At that point, the
loss function is:

L = max(|YA −YP|2 − |YA −YN |2,−ξ), . (2)

where ξ is a positive number, and |x|2 is the Euclidean norm of the vector. In other words,
the loss function encourages the network to create similar representations for samples in
the same class and different representations for samples in different classes. ξ is the margin,
the value used is 1 because in the fixed margin tests carried out it was the one that returned
the best results.

In the testing phase, the process is exactly the same as described for the testing phase
of cross-entropy loss.

2.3. Adam Variants

Introduced in [20,21], the widely used optimization method Adam (referred to as Base
Adam in the experimental section) takes advantage of adaptive gradient and momentum
to compute adaptive learning rates for each parameter. It makes use of the gradient at the
current step, the exponential moving average of the gradient (first order moment), and the
exponential moving average of the square of the gradient (second order moment).

Thus, the first moment mt and the second moment ut are defined as:

mt = ρ1mt−1 + (1− ρ1)gt (3)

ut = ρ2ut−1 + (1− ρ2)g2
t (4)
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where the hyperparameters ρ1 and ρ2 represent the exponential decay rate for the first
and second moment (set respectively to 0.9 and 0.99), gt is the gradient at time t, and the
square on gt is meant to be calculated component-wise. The moments are initialized as
m0 = u0 = 0.

To avoid small values of the moving averages due to being initialized to zero, Adam
includes a bias-corrected version of the first and second order moments:

m̂t =
mt(

1− ρt
1
) (5)

ût =
ut(

1− ρt
2
) (6)

The parameter update is computed as follow:

θt = θt−1 − λ
m̂t√

ût + ε
, (7)

where λ is the learning rate and ε is a very small positive number used to avoid any
division by zero (usually set to 10−8). The operations are supposed to be component-wise.

As noted in [22], Adam performs reasonably well in practice compared to other
adaptive learning methods; however, Adam does not utilize the change in immediate past
gradient information, a utilization that is incorporated in [22,23].

2.3.1. DGrad

This variant, proposed in [23], makes use of the absolute difference between the
current gradient gt and the moving average of the element-wise squares of the gradients:

∆agt = |gt − avgt| (8)

where avgt is the moving average of the component-wise squares of the gradient.
The absolute difference ∆agt is then normalized by its maximum component as

follows:
∆âgt =

∆agt

max(∆agt)
(9)

Then, ξt is defined as:
ξt = Sig(4·∆âgt) (10)

where Sig(∆) is the sigmoid function:

Sig(x) =
1

1 + e−x (11)

Each parameter of the network is finally updated following the equation:

θt+1 = θt − λ·ξt
m̂t√

ût + ε
(12)

where m̂t and ût are the first and second order moments seen in Adam.

2.3.2. DecayDGrad (New)

This DGrad variant introduces a learning rate decay, both locally and in the whole
training process. The local decay can be achieved with a periodic impulse, defined
as follows:

impt = e−(
2×mod(t,s)

s )
2

(13)

where s = 10 is the period (number of iterations between each impulse).
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The impulse impt is then multiplied by a global decay factor dt, shown in the equation:

dt = e
− 2×(t−c·niter)

2

n2
iter (14)

where niter is the total number of iterations in the training process. The parameter c = 0.25,
multiplied by niter, determines the iteration whereby dt assumes its maximum value.

The parameter ξt is therefore defined as:

ξt = Sig(4·∆ ˆagt)·impt·dt. (15)

Each parameter of the network is updated as shown in (12).
Notice that impt only has values in range 0 to 1, and its maximum value is assumed

for iterations, which are multiples of s. The purpose of these restraints is to attenuate the
value calculated by DGrad locally, namely progressively in the span of s iterations, to get
a better evaluation of the local minimum, thereby avoiding an eventual overshoot of the
global minimum.

The reason behind the learning rate decay factor dt is to keep the learning rate high
in the initial part of the training, which accelerates training and avoids the memorization
of noisy data while at the same time extending the decay in later iterations. In this way,
DGrad can learn complex patterns, as shown in [24]. The plot of dt and impt·dt is reported
in Figure 4.
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3. Data Sets

The following five image data sets, representing very different classification tasks,
were selected to demonstrate the versatility of the proposed method:

• BIRDz [25]: This balanced data set is a real-world benchmark for bird species vocal-
izations. The testing protocol is ten runs using the data split in [25]. The audio tracks
were extracted from the Xeno-Canto Archive (http://www.xeno-canto.org/ (accessed
on 25 August 2021)). BIRDz contains a total of 2762 acoustic samples from eleven
North American bird species, along with 339 unclassified audio samples (consisting
of noise and unknown bird vocalizations). The bird classes vary in size from 246 to
259. Each observation is represented by five spectrograms: (1) constant frequency,
(2) frequency modulated whistles, (3) broadband pulses, (4) broadband with varying
frequency components, and (5) strong harmonics.

• CAT [26,27]: This data set has ten balanced classes of cat vocalizations, with each one
containing ~300 samples for a total of 2962 samples taken from Kaggle, Youtube, and
Flickr. The testing protocol is 10-fold cross-validation. The average duration of each
sample is 4 s.

http://www.xeno-canto.org/
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• InfLar [28]: This data set contains eighteen Narrow-Band Imaging (NBI) endoscopic
videos of eighteen different patients with laryngeal cancer. The videos were retrospec-
tively analyzed and categorized into four classes (informative, blurred, containing
saliva or specular reflections, and underexposed). The average video length is 39 s.
The videos were acquired with an NBI endoscopic system (Olympus Visera Elite
S190 video processor and an ENF-VH rhino-laryngo videoscope) with a frame rate
of 25 fps and an image size of 1920 × 1072 pixels. A total of 720 video frames, 180 for
each of the four classes, were extracted and labeled. The testing protocol is three-fold
cross-validation with data separated at the patient level to ensure that the frames from
the same class were classified based on the features characteristic of each class and not
due to features linked to the individual patient (e.g., vocal fold anatomy).

• RPE [29]: This is a medical image classification data set that intends to distinguish
the maturation of human stem cell-derived retinal pigmented epithelium. RPE is
based on 195 images that were divided into sixteen subwindows. These subwindows
were then assigned to one of four classes: (1) Fusifors, (2) Epithelioid, (3) Cobblestone,
and (4) Mixed. Subwindows that were out of focus or that contained background
information exclusively were discarded. This division of images into four and the
exclusion process produced a total of 1862 images.

• Port [30]: This data set contains 927 paintings from six different art movements: (1) High
Renaissance, (2) Impressionism, (3) Northern Renaissance, (4) Post-Impressionism,
(5) Rococo, and (6) Ukiyo-e. Ten-fold cross-validation is the testing protocol.

The same testing protocol presented in the papers introducing each data set is used in
the experimental section, with accuracy being the performance indicator.

4. Experimental Results

The default settings in the MATLAB framework for Siamese networks were used
to train the SNNs in all experiments to ensure no overfitting for any given data set. For
Adam optimization and its variants, the number of iterations was set to 3000 with no stop
criterion, the gradient decay factor to 0.9, the squared gradient decay factor to 0.99, and the
learning rate to 0.0001.

The first run of experiments is reported in Table 1. In these tests, we used all the data
sets. Each performance cell in Table 1 contains three rows of values for each data set:

1. Top: The performance obtained using the method named FULLY for SVM input;
2. Middle: The performance obtained using the method named DEEPER for SVM input;
3. Bottom: The fusion by average rule of the SVMs in 1 and 2.

Table 1. Performance of the two tested loss functions (boldface represents the best performance).

Cross CrossDD Triplet Triplet + Cross Triplet + Cross +
CrossDD

CAT
83.05 80 77.29 82.37 83.05
69.15 71.19 72.2 71.53 76.27

80 79.32 76.61 80 80

InfLar
86.94 93.75 90.42 91.25 93.47
87.78 88.33 88.89 89.17 91.39
89.44 92.36 90.56 91.39 92.64

BIRDz
94.49 93.35 94.08 94.9 94.56
92.92 92.53 94.02 94.36 94.16
94.52 93.91 94.84 95.21 94.88

RPE
84.52 84.58 85.43 85.75 84.97
84.15 84.49 85.1 85 85.16
84.73 85.08 85.17 85.92 85.48

Port
70.99 74.44 68.72 72.82 74.33
69.57 70.54 70.96 71.83 73.22
70.55 74.53 72.59 74.11 74.65

Average 82.85 83.89 83.12 84.37 85.21

The last row in Table 1 reports average performance of each approach of that column.
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The clustering method is k-means for all methods, and the number of prototypes
is in the set (15, 30, 45, 60). Thus, four networks are trained using the four numbers of
prototypes in the set; the four SVMs trained in this way are combined by average rule.

For the sake of computation time, we used a single network topology in this test, which
is the first topology tested in [14] and the Siamese topology recommended by Mathworks
(see the Appendix A).

• The columns of Table 1 report the following approaches:
• Cross: Binary Cross Entropy loss function coupled with base Adam (this is the best

approach proposed [14]);
• CrossDD: Binary Cross Entropy loss function coupled with our new Adam variant

DecayDGrad;
• Triplet: Triplet loss function coupled with base Adam.
• X + Y (columns 5 and 6): the fusion between X and Y.

From the results reported in Table 1, the following conclusions can be drawn:

• Triplet produces a result that is similar to Cross on three data sets but performs better
than Cross in InfLar and worst in CAT;

• The fusion between Cross and Triplet boosts the performance of the base loss functions,
except in the case of CAT;

• The fusion among all the different approaches (see bottom cells in the column Triplet+Cross
and Triplet+Cross+CrossDD) produces the best average performance.

Table 2 reports results using combinations of the two loss functions on all eight
topologies. Because running experiments on all five data sets was computationally too
expensive, we chose to run them only on InfLar and Port because they are very different
application problems.

In each cell of Table 2, the following four results are reported:

1. Top: Cross function coupled with FULLY for SVM input (the best approach proposed
in [14]);

2. Upper: Triplet loss function coupled with FULLY for SVM input;
3. Lower: Fusion by average rule among Cross coupled with FULLY, Cross coupled

with DEEPER, Triplet coupled with FULLY, and Triplet coupled with DEEPER;
4. Bottom: This is the fusion by average rule of SVMs 1 and 2 described for the method

reported at the bottom of Table 1 but with the addition of CrossDD coupled with both
FULLY and DEEPER.

The last row of Table 2 reports the fusions of #4 above for the numbered topologies.
In [13], we showed that combining more than four networks using the same topol-

ogy (but varying the clustering algorithm) failed to improve performance. Examining
Table 2, we discovered that changing the loss function and the method for building the
dissimilarity space is beneficial when making an ensemble. We also observed that for all
topologies except #6 in the Portrait data set (Port), the best performance is not obtained
by contrastive loss coupled with FULLY (as was the case in [14]); instead, on average,
the new method DEEPER succeeds in boosting performance. Finally, we learned that
adding CrossDD, our new Adam variant, to the ensemble for InfLar generally does not
increase performance; CrossDD works very well with the first topology but performs worst
with the other topologies. On Port, however, the addition of CrossDD generally does
improve performance.

In Table 3, we compare our best results on InfLar and Port with the best ensembles
reported in [12–14] that tested ensembles of SNNs and CNN subnets using all eight
topologies. In addition, the performance of four well-known CNNs is reported for baseline
comparison, along with their fusion (eCNN) by average rule. The fine-tuning of the CNNs
pretrained on ImageNet was performed with the following training options: batch size: 30;
max epoch: 20 (for all the networks with no freezing). The row “Fusion x-y + eCNN” is
the sum rule between Fusion x-y (see Table 2) and eCNN. Before the fusion, the score of
Fusion x-y and eCNN are normalized to mean 0 and standard deviation 1.
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Table 2. Performance varying the network topologies (topologies are described in [14] and reprinted
in the Appendix A; boldface represents the best performance).

Topology InfLar Port

Topology 1

86.94 70.99
90.42 68.72
91.39 74.11
92.64 74.65

Topology 2

85.56 68.73
92.78 70.02
92.08 72.49
91.67 72.92

Topology 3

79.44 60.23
83.75 68.17
85.42 68.41
84.03 69.17

Topology 4

87.50 69.69
91.25 68.29
92.22 73.58
90.97 74.65

Topology 5

84.03 60.00
89.44 65.03
87.64 64.95
85.14 69.69

Topology 6

87.64 73.48
88.61 68.07
91.25 73.25
90.56 73.24

Topology 7

79.44 66.03
91.39 70.85
85.00 70.85
84.72 71.85

Topology 8

86.39 65.58
87.22 66.55
91.11 66.55
90.56 72.16

Fusion 1–4 92.78 75.09
Fusion 1–6 91.53 74.45
Fusion 1–8 91.81 74.98

Table 3. Performance accuracy obtained considering different standard CNNs and other Siamese
approaches (xxx * means that it does not converge, and boldface represents best performance).

Method InfLar Port

[12] 74.86 xxx *
[13] 89.86 71.42
[14] 91.10 73.05

Fusion 1–4 92.78 75.09
Fusion 1–6 91.53 74.45
Fusion 1–8 91.81 74.98
GoogleNet 90.42 80.38

VGG16 91.53 86.51
VGG19 92.22 82.42

GoogleNetP365 93.61 80.91
eCNN 94.03 86.41

Fusion 1–4 + eCNN 94.44 86.84
Fusion 1–6 + eCNN 94.44 86.84
Fusion 1–8 + eCNN 94.31 86.84
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As can be observed in Table 3, the proposed ensembles outperform previous methods
based on Siamese networks and boosts the performance of the ensemble of CNNs. On
the data set InfLar, the performance of the best standalone topology (see Table 2) is 92.78,
which is comparable with the performance obtained by a CNN; however, on the Port data
set, where our new Adam variant increased performance, the performance gap between
the CNNs and Siamese networks is still significant. The approach proposed in this work
also greatly improves previous Siamese methods applied to this data set.

Finally, in Table 4 we report the training time (seconds) of Siamese networks, in the
InfLar data sets, considering the different topologies. The training time is computed using
a GTX1080. Both the loss functions here used are considered in Table 4.

Table 4. Computation time for training a single Siamese network, each column reports the computa-
tion time of a given topology network, numbered 1–8 (topologies are described in [14] and reprinted
in the Appendix A).

InfLar 1 2 3 4 5 6 7 8

Cross 1029 2009 317 1179 512 580 679 559
Triplet 1500 2721 400 1620 678 752 885 725

5. Conclusions

This paper proposes an image classification system that, like several recent studies,
generates dissimilarity spaces from which features are extracted and trained on a set of
SVMs. The objective of this study was to produce a high performing ensemble of Siamese
networks based on combining different topologies, loss functions, and optimization meth-
ods (with one new Adam variant proposed here) from which features could be extracted
for training the SVMs.

Results on five cross-domain image data sets demonstrate the superior power of the
proposed approach compared with previous works using ensembles of Siamese networks.
Comparison with the state-of-the-art confirms that the fusion of the different topologies,
loss functions, and optimization approach methods is a feasible way for generating a robust
and highly generalizable image classification system.

In the future, we intend to validate our approach on additional cross-domain image
data sets and investigate more techniques for building an ensemble of Siamese networks.
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Appendix A

For ease of reference, a description of the eight SN networks in [14] are reprinted below.
CNN Siamese Networks (1–8) layers. The bold layers are those used for feeding DCT.

Siamese Network 1

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224
2D Convolution 215 × 215 × 64 6464 10 × 10 64

ReLU 215 × 215 × 64 0
Max Pooling 107 × 107 × 64 0 2 × 2

2D Convolution 101 × 101 × 128 401,536 7 × 7 128
ReLU 101 × 101 × 128 0

Max Pooling 50 × 50 × 128 0 2 × 2
2D Convolution 47 × 47 × 128 262,272 4 × 4 128

ReLU 47 × 47 × 128 0
Max Pooling 23 × 23 × 128 0 2 × 2

2D Convolution 19 × 19 × 64 204,864 5 × 5 64
ReLU 19 × 19 × 64 0

Fully Connected 4096 94,638,080

Siamese Network 2

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224 0
2D Convolution 220 × 220 × 64 1664 5 × 5 64

LeakyReLU 220 × 220 × 64 0
2D Convolution 216 × 216 × 64 102,464 5 × 5 64

LeakyReLU 216 × 216 × 64 0
Max Pooling 108 × 108 × 64 0 2 × 2

2D Convolution 106 × 106 × 128 73,856 3 × 3 128
LeakyReLU 106 × 106 × 128 0

2D Convolution 104 × 104 × 128 147,584 3 × 3 128
LeakyReLU 104 × 104 × 128 0
Max Pooling 52 × 52 × 128 0 2 × 2

2D Convolution 49 × 49 × 128 262,272 4 × 4 128
LeakyReLU 49 × 49 × 128 0
Max Pooling 24 × 24 × 128 0 2 × 2

2D Convolution 20 × 20 × 64 204,864 5 × 5 64
LeakyReLU 20 × 20 × 64 0 5 × 5

Fully Connected 2048 52,430,848

Siamese Network 3

Layers Activations Learnable Filter Size Num. Filters

Input Layer 224 × 224
2D Convolution 55 × 55 × 128 6400 7 × 7 128

Max Pooling 27 × 27 × 128 0 2 × 2
2D Convolution 23 × 23 × 256 819,456 5 × 5 256

ReLU 23 × 23 × 256 0
2D Convolution 19 × 19 × 128 819,328 5 × 5 128

Max Pooling 9 × 9 × 128 0 2 × 2
2D Convolution 7 × 7 × 64 73,792 3 × 3 64

ReLU 7 × 7 × 64 0
Max Pooling 3 × 3 × 64 0 2 × 2

Fully Connected 4096 2,363,392
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Siamese Network 4

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224
2D Convolution 218 × 218 × 128 6400 7 × 7 128

Max Pooling 54 × 54 × 128 0 4 × 4
ReLU 54 × 54 × 128 0

2D Convolution 50 × 50 × 256 819,456 5 × 5 256
ReLU 50 × 50 × 256 0

2D Convolution 48 × 48 × 64 147,520 3 × 3 64
Max Pooling 24 × 24 × 64 0 2 × 2

2D Convolution 22 × 22 × 128 73,856 3 × 3 128
ReLU 22 × 22 × 128 0

2D Convolution 18 × 18 × 64 204,864 5 × 5 64
Fully Connected 4096 84,938,752

Siamese Network 5

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224
2D Convolution 215 × 215 × 64 6464 10 × 10 64

Max Pooling 107 × 107 × 64 0 2 × 2
ReLU 107 × 107 × 64 0

2D Convolution 26 × 26 × 128 401,536 7 × 7 128
ReLU 26 × 26 × 128 0

2D Convolution 9 × 9 × 128 409,728 5 × 5 128
ReLU 9 × 9 × 128 0

2D Convolution 6 × 6 × 64 131,136 4 × 4 64
ReLU 6 × 6 × 64 0

Fully Connected 4096 9,441,280

Siamese Network 6

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224
2D Convolution 218 × 218 × 64 3200 7 × 7 64

Max Pooling 109 × 109 × 64 0 2 × 2
ReLU 109 × 109 × 64 0

2D Convolution 107 × 107 × 128 73,856 3 × 3 128
Max Pooling 53 × 53 × 128 0 2 × 2

ReLU 53 × 53 × 128 0
2D Convolution 53 × 53 × 64 8256 1 × 1 64

ReLU 53 × 53 × 64 0
2D Convolution 51 × 51 × 128 73,856 3 × 3 128

ReLU 51 × 51 × 128 0
Max Pooling 25 × 25 × 128 0 2 × 2

2D Convolution 25 × 25 × 128 16,512 1 × 1 128
ReLU 25 × 25 × 128 0

2D Convolution 22 × 22 × 64 131,136 4 × 4 64
Max Pooling 11 × 11 × 64 0 2 × 2

ReLU 11 × 11 × 64 0
Fully Connected 4096 31,723,520
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Siamese Network 7

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224
Dropout Layer 224 × 224 0

2D Convolution 218 × 218 × 64 3200 7 × 7 64
Max Pooling 109 × 109 × 64 0 2 × 2

2D Convolution 105 × 105 × 128 204,928 5 × 5 128
Max Pooling 52 × 52 × 128 0 2 × 2

2D Convolution 48 × 48 × 64 204,864 5 × 5 64
Max Pooling 24 × 24 × 64 0 2 × 2

2D Convolution 22 × 22 × 256 147,712 3 × 3 256
Max Pooling 11 × 11 × 256 0 2 × 2

Fully Connected 4096 16,781,312

Siamese Network 8

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224
2D Convolution 215 × 215 × 32 3232 10 × 10 32

Max Pooling 107 × 107 × 32 0 2 × 2
ReLU 107 × 107 × 32 0

2D Grouped
Convolution

101 × 101 × 64 50,240 7 × 7 64

2D Convolution 97 × 97 × 128 204,928 5 × 5 128
Max Pooling 48 × 48 × 128 0 2 × 2

ReLU 48 × 48 × 128 0
2D Grouped
Convolution

46 × 46 × 256 147,712 3 × 3 256

Fully Connected 4096 2,218,790,912
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