169 research outputs found

    Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs

    Get PDF
    The VertexCover problem is proven to be computationally hard in different ways: It is NP-complete to find an optimal solution and even NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VertexCover is way smaller than even the best known FPT-approaches can explain. Similarly, greedy algorithms deliver very good approximations to the optimal solution in practice. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice. When utilizing the same structural properties in an adaptive greedy algorithm, further experiments suggest that, on real instances, this leads to better approximations than the standard greedy approach within reasonable time

    Localization game on geometric and planar graphs

    Get PDF
    The main topic of this paper is motivated by a localization problem in cellular networks. Given a graph GG we want to localize a walking agent by checking his distance to as few vertices as possible. The model we introduce is based on a pursuit graph game that resembles the famous Cops and Robbers game. It can be considered as a game theoretic variant of the \emph{metric dimension} of a graph. We provide upper bounds on the related graph invariant ζ(G)\zeta (G), defined as the least number of cops needed to localize the robber on a graph GG, for several classes of graphs (trees, bipartite graphs, etc). Our main result is that, surprisingly, there exists planar graphs of treewidth 22 and unbounded ζ(G)\zeta (G). On a positive side, we prove that ζ(G)\zeta (G) is bounded by the pathwidth of GG. We then show that the algorithmic problem of determining ζ(G)\zeta (G) is NP-hard in graphs with diameter at most 22. Finally, we show that at most one cop can approximate (arbitrary close) the location of the robber in the Euclidean plane

    Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs

    Get PDF
    The computational complexity of the VERTEXCOVER problem has been studied extensively. Most notably, it is NP-complete to find an optimal solution and typically NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VERTEXCOVER is way smaller than even the best known FPT-approaches can explain. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VERTEXCOVER problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice

    Treewidth and minimum fill-in on d-trapezoid graphs

    Get PDF

    Upward and Orthogonal Planarity are W[1]-hard Parameterized by Treewidth

    Full text link
    Upward planarity testing and Rectilinear planarity testing are central problems in graph drawing. It is known that they are both NP-complete, but XP when parameterized by treewidth. In this paper we show that these two problems are W[1]-hard parameterized by treewidth, which answers open problems posed in two earlier papers. The key step in our proof is an analysis of the All-or-Nothing Flow problem, a generalization of which was used as an intermediate step in the NP-completeness proof for both planarity testing problems. We prove that the flow problem is W[1]-hard parameterized by treewidth on planar graphs, and that the existing chain of reductions to the planarity testing problems can be adapted without blowing up the treewidth. Our reductions also show that the known nO(tw)n^{O(tw)}-time algorithms cannot be improved to run in time no(tw)n^{o(tw)} unless ETH fails.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Full Complexity Classification of the List Homomorphism Problem for Bounded-Treewidth Graphs

    Get PDF
    A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). Let H be a fixed graph with possible loops. In the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every vertex v is assigned with a list L(v) of vertices of H. We ask whether there exists a homomorphism h from G to H, which respects lists L, i.e., for every v ? V(G) it holds that h(v) ? L(v). The complexity dichotomy for LHom(H) was proven by Feder, Hell, and Huang [JGT 2003]. The authors showed that the problem is polynomial-time solvable if H belongs to the class called bi-arc graphs, and for all other graphs H it is NP-complete. We are interested in the complexity of the LHom(H) problem, parameterized by the treewidth of the input graph. This problem was investigated by Egri, Marx, and Rz??ewski [STACS 2018], who obtained tight complexity bounds for the special case of reflexive graphs H, i.e., if every vertex has a loop. In this paper we extend and generalize their results for all relevant graphs H, i.e., those, for which the LHom(H) problem is NP-hard. For every such H we find a constant k = k(H), such that the LHom(H) problem on instances G with n vertices and treewidth t - can be solved in time k^t ? n^?(1), provided that G is given along with a tree decomposition of width t, - cannot be solved in time (k-?)^t ? n^?(1), for any ? > 0, unless the SETH fails. For some graphs H the value of k(H) is much smaller than the trivial upper bound, i.e., |V(H)|. Obtaining matching upper and lower bounds shows that the set of algorithmic tools that we have discovered cannot be extended in order to obtain faster algorithms for LHom(H) in bounded-treewidth graphs. Furthermore, neither the algorithm, nor the proof of the lower bound, is very specific to treewidth. We believe that they can be used for other variants of the LHom(H) problem, e.g. with different parameterizations
    corecore