
Theory of Computing Systems
https://doi.org/10.1007/s00224-021-10062-9

Solving Vertex Cover in Polynomial Time
on Hyperbolic Random Graphs

Thomas Bläsius1 ·Philipp Fischbeck2 ·Tobias Friedrich2 ·
Maximilian Katzmann3

Accepted: 13 September 2021
© The Author(s) 2021

Abstract
The computational complexity of the VERTEXCOVER problem has been studied
extensively. Most notably, it is NP-complete to find an optimal solution and typi-
cally NP-hard to find an approximation with reasonable factors. In contrast, recent
experiments suggest that on many real-world networks the run time to solve VER-
TEXCOVER is way smaller than even the best known FPT-approaches can explain. We
link these observations to two properties that are observed in many real-world net-
works, namely a heterogeneous degree distribution and high clustering. To formalize
these properties and explain the observed behavior, we analyze how a branch-
and-reduce algorithm performs on hyperbolic random graphs, which have become
increasingly popular for modeling real-world networks. In fact, we are able to show
that the VERTEXCOVER problem on hyperbolic random graphs can be solved in
polynomial time, with high probability. The proof relies on interesting structural
properties of hyperbolic random graphs. Since these predictions of the model are
interesting in their own right, we conducted experiments on real-world networks
showing that these properties are also observed in practice.

Keywords Vertex cover · Random graphs · Hyperbolic geometry ·
Efficient algorithm

This article belongs to the Topical Collection: Special Issue on Theoretical Aspects of Computer
Science (STACS 2020)
Guest Editors: Christophe Paul and Markus Bläser

A preliminary version of this paper appeared in [6]

� Maximilian Katzmann
maximilian.katzmann@hpi.de

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10062-9&domain=pdf
http://orcid.org/0000-0003-0076-6308
http://orcid.org/0000-0002-9302-5527
mailto: maximilian.katzmann@hpi.de

Theory of Computing Systems

1 Introduction

The VERTEXCOVER problem is one of the most fundamental NP-complete graph
problems. Given an undirected graph G on n vertices the goal is to find the smallest
vertex subset S, such that each edge in G is incident to at least one vertex in S. Since,
by definition, there can be no edge between two vertices outside of S, these remain-
ing vertices form an independent set. Therefore, one can easily derive a maximal
independent set from a minimal vertex cover and vice versa.

Due to its NP-completeness there is probably no polynomial time algorithm for
solving VERTEXCOVER. The best known algorithm for INDEPENDENTSET runs in
1.1996npoly(n) [26]. To analyze the complexity of VERTEXCOVER on a finer scale,
several parameterized solutions have been proposed. One can determine whether a
graph G has a vertex cover of size k by applying a branch-and-reduce algorithm.
The idea is to build a search tree by recursively considering two possible extensions
of the current vertex cover (branching), until a vertex cover is found or the size of
the current cover exceeds k. Each branching step is followed by a reduce step in
which reduction rules are applied to make the considered graph smaller. This branch-
and-reduce technique yields a simple O(2kpoly(n)) algorithm, where the exponential
portion comes from the branching. The best known FPT (fixed-parameter tractable)
algorithm runs in O(1.2738k + kn) time [12], and unless ETH (exponential time
hypothesis) fails, there can be no 2o(k)poly(n) algorithm [11].

While these FPT approaches promise relatively small running times if the con-
sidered network has a small vertex cover, the optimal solution is large for many
real-world networks. Nevertheless, it was recently observed that applying a branch-
and-reduce technique on real instances is very efficient [1]. Some of the considered
networks had millions of vertices, yet an optimal solution (also containing millions
of vertices) was computed within seconds. Most instances were solved so quickly
since the expensive branching was not necessary at all. In fact, the application of the
reduction rules alone already yielded an optimal solution. Most notably, applying the
dominance reduction rule, which eliminates vertices whose neighborhood contains a
vertex together with its neighborhood, reduces the graph to a very small remainder
on which the branching, if necessary, can be done quickly. We trace the effectiveness
of the dominance rule back to two properties that are often observed in real-world
networks: a heterogeneous degree distribution (the network contains many vertices
of small degree and few vertices of high degree) and high clustering (the neighbors
of a vertex are likely to be neighbors themselves).

We formalize these key properties using hyperbolic random graphs to analyze the
performance of the dominance rule. Introduced by Krioukov et al. [20], hyperbolic
random graphs are obtained by randomly distributing vertices in the hyperbolic plane
and connecting any two that are geometrically close. The resulting graphs feature a
power-law degree distribution and high clustering [18, 20] (the two desired proper-
ties), which can be tuned using parameters of the model. Additionally, the generated
networks have a small diameter [17, 19]. All of these properties have been observed
in many real-world networks such as the internet, social networks, as well as bio-
logical networks like protein-protein interaction networks [2, 3, 14]. Furthermore,
Boguná, Papadopoulos, and Krioukov showed that the internet can be embedded into

Theory of Computing Systems

the hyperbolic plane such that routing packages between network participants, greed-
ily with respect to the hyperbolic distance, leads to routes that are very close to the
shortest paths in the graph [10]. This correlation between hyperbolic distances and
path lengths gives reason to believe that the network fits naturally into the hyperbolic
plane.

Recently it has been shown that on hyperbolic random graphs VERTEXCOVER

can be approximated in quasi-linear time within a factor of 1 + o(1), asymptotically
almost surely [8]. Here, we extend this work by showing that VERTEXCOVER can be
solved exactly in polynomial time on hyperbolic random graphs, with high probabil-
ity. This is done by proving that even a single application of the dominance reduction
rule reduces a hyperbolic random graph to a remainder with small pathwidth on
which VERTEXCOVER can then be solved efficiently. Our analysis provides an expla-
nation for why VERTEXCOVER can be solved efficiently on practical instances. We
note that, while our analysis makes use of the underlying hyperbolic geometry, the
algorithm itself is oblivious to it. Since our proof relies on certain structural proper-
ties of hyperbolic random graphs, we conducted experiments to test whether these are
also found in real-world networks. Our results indicate that these predictions actually
match the real world for a significant fraction of networks.

2 Preliminaries

Let G = (V , E) be an undirected graph. We denote the number of vertices in G with
n. The neighborhood of a vertex v is defined as N(v) = {w ∈ V | {v, w} ∈ E}
and the size of the neighborhood, called the degree of v, is denoted by deg(v). For
a subset S ⊆ V , we use G[S] to denote the induced subgraph of G obtained by
removing all vertices in V \ S.

TheHyperbolic Plane The hyperbolic plane H2 is an infinite two-dimensional surface
of constant negative curvature. For a detailed introduction to hyperbolic geometry, we
refer the reader to the book by Ramsay and Richtmyer [23]. There are several models
that can be used to represent H2 (see [23, Chapter 7.8]). In this paper, we use the
native representation (also called polar-coordinate model) of the hyperbolic plane,
which is defined as follows. After choosing a designated pole O ∈ H

2, together
with a polar axis, i.e., a reference ray starting at O, a point p is uniquely identified
by its radius r(p), denoting the hyperbolic distance to O, and its angle (or angular
coordinate) ϕ(p), denoting the angular distance between the polar axis and the line
through p and O. The hyperbolic distance between two points p and q is given by

dist(p, q) = acosh(cosh(r(p)) cosh(r(q)) − sinh(r(p)) sinh(r(q)) cos(Δϕ(p, q))),

where cosh(x) = (ex + e−x)/2, sinh(x) = (ex − e−x)/2 (both growing as
ex/2 ± o(1)), and Δϕ(p, q) = π − |π − |ϕ(p) − ϕ(q)|| denotes the angular distance
between p and q. If not stated otherwise, we assume that computations on angles are
performed modulo 2π .

We use Bp(r) to denote a disk of radius r centered at p, i.e., the set of points
with hyperbolic distance at most r to p. Such a disk has an area of 2π(cosh(r) −

Theory of Computing Systems

1) and circumference 2π sinh(r). Thus, the area and the circumference of a disk
in the hyperbolic plane grow exponentially with its radius. In contrast, this growth
is polynomial in Euclidean space. Therefore, representing hyperbolic shapes in the
Euclidean geometry results in a distortion. In the native representation, used in our
figures, circles can appear teardrop-shaped (see Fig. 2).

Hyperbolic Random Graphs Hyperbolic random graphs are obtained by distributing
n points uniformly at random within the disk BO(R), as explained below, and con-
necting any two of them if and only if their hyperbolic distance is at most R; see
Fig. 1. The disk radius R (which matches the connection threshold) depends on n,
as well as the power-law exponent β = 2α + 1 (for α ∈ (1/2, 1)) and the average
degree κ of the generated network, both of which are assumed to be constant. More
precisely, R is given by

R = 2 log

(
2n

πκ

(
α

α − 1/2

)2

(1 + o(1))

)
. ([18, Theorem 23])

The coordinates for the vertices are drawn as follows. For vertex v the angular coor-
dinate, denoted by ϕ(v), is drawn uniformly at random from [0, 2π). The radius of
v, denoted by r(v), is sampled according to the probability density function

f (r) = α sinh(αr)

cosh(αR) − 1
= αe−α(R−r)(1 + Θ(e−αR − e−2αr))

for r ∈ [0, R]. For r > R, f (r) = 0. This function grows exponentially as r

approaches R. The joint distribution function of angles and radii is then given by

f (r, ϕ) = 1

2π
f (r). (1)

Note that we obtain power-law exponents β ∈ (2, 3). Exponents outside of this
range are atypical for hyperbolic random graphs. On the one hand, for β < 2 the
average degree of the generated networks is divergent. On the other hand, for β > 3
hyperbolic random graphs degenerate: They decompose into smaller components,
none having a size linear in n. The obtained graphs have logarithmic tree width [9],
meaning the VERTEXCOVER problem can be solved efficiently in that case.

The probability for a given vertex to lie in a certain area A of the disk is given by
its probability measure μ(A) = ∫∫

A
f (r, ϕ)dϕdr . The hyperbolic distance between

two vertices u and v increases with increasing angular distance between them. The
maximum angular distance such that they are still connected by an edge is bounded
by [18, Lemma 6]

θ(r(u), r(v)) = arccos

(
cosh(r(u)) cosh(r(v)) − cosh(R)

sinh(r(u)) sinh(r(v))

)
= 2e(R−r(u)−r(v))/2(1 + Θ(eR−r(u)−r(v))). (2)

Interval Graphs and Circular Arc Graphs In an interval graph each vertex v is identi-
fied with an interval on the real line and two vertices are adjacent if and only if their
intervals intersect. The interval width of an interval graph G, denoted by iw(G), is
its maximum clique size, i.e., the maximum number of intervals that intersect in one

Theory of Computing Systems

point. For any graph the interval width is defined as the minimum interval width over
all of its interval supergraphs. Circular arc graphs are a superclass of interval graphs,
where each vertex is identified with a subinterval of the circle called circular arc or
simply arc. The interval width of a circular arc graph G is at most twice the size of
its maximum clique, since one obtains an interval supergraph of G by mapping the
circular arcs into the interval [0, 2π] on the real line and replacing all intervals that
were split by this mapping with the whole interval [0, 2π]. Consequently, for any
graph G, if k denotes the minimum over the maximum clique number of all circular
arc supergraphs G′ of G, then the interval width of G is at most 2k.

Treewidth and Pathwidth A tree decomposition of a graph G is a tree T where each
tree node represents a subset of the vertices of G called a bag, and the following
requirements have to be satisfied: Each vertex in G is contained in at least one bag, all
bags containing a given vertex in G form a connected subtree of T , and for each edge
in G, there exists a bag containing both endpoints. The width of a tree decomposition
is the size of its largest bag minus one. The treewidth of G is the minimum width
over all tree decompositions of G. The path decomposition of a graph is defined anal-
ogously to the tree decomposition, with the constraint that the tree has to be a path.
Additionally, as for the treewidth, the pathwidth of a graph G, denoted by pw(G), is
the minimum width over all path decompositions of G. Clearly the pathwidth is an
upper bound on the treewidth. It is known that for any graph G and any k ≥ 0, the
interval width of G is at most k+1 if and only if its pathwidth is at most k [13, Theo-
rem 7.14]. Consequently, if k′ is the maximum clique size of a circular arc supergraph
of G, then 2k′ − 1 is an upper bound on the pathwidth of G.

Probabilities Since we are analyzing a random graph model, our results are of prob-
abilistic nature. To obtain meaningful statements, we show that they hold with high
probability, i.e., with probability 1 − O(n−1). The following Chernoff bounds con-
sider the probability for a random variable to deviate too much from its expected
value. This is a useful tool for showing that certain events occur with high probability.

Theorem 1 (Chernoff Bound [15, Theorem 1.1]) Let X1, . . . , Xn be independent
random variables with Xi ∈ {0, 1} and let X be their sum. Then, for ε ∈ (0, 1)

Pr[X > (1 + ε)E[X]] ≤ e−ε2/3 ·E[X],
Pr[X < (1 − ε)E[X]] ≤ e−ε2/2 ·E[X].

Usually, it is sufficient to show that a random variable does not exceed a certain
upper bound, with high probability. The following corollary shows that an upper
bound on the expected value suffices to obtain concentration.

Corollary 1 Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}, let
X be their sum, and let f (n) be an upper bound on E[X]. Then, for all ε ∈ (0, 1) it
holds that

Pr[X > (1 + ε)f (n)] ≤ e−ε2/3 · f (n).

Theory of Computing Systems

Proof Consider a random variable X′ with f (n) = E[X′] such that X ≤ X′ for every
outcome. Note that X′ exists as f (n) ≥ E[X]. Since X ≤ X′, it holds that

Pr[X > (1 + ε)f (n)] ≤ Pr[X′ > (1 + ε)f (n)] = Pr[X′ > (1 + ε)E(X′)].
Using Theorem 1 we can derive that

Pr[X′ > (1 + ε)E[X′]] ≤ e−ε2/3 ·E[X′] = e−ε2/3 · f (n).

3 Vertex Cover on Hyperbolic RandomGraphs

Reduction rules are often applied as a preprocessing step, before using a brute force
search or branching in a search tree. They simplify the input by removing parts that
are easy to solve. For example, an isolated vertex does not cover any edges and can
thus never be part of a minimum vertex cover. Consequently, in a preprocessing step
all isolated vertices can be removed, which leads to a reduced input size without
impeding the search for a minimum.

The dominance reduction rule was previously defined for the INDEPENDENTSET

problem [16], and later used for VERTEXCOVER in the experiments by Akiba and
Iwata [1]. Formally, vertex u dominates a neighbor v ∈ N(u) if (N(v) \ {u}) ⊆
N(u), i.e., all neighbors of v are also neighbors of u. We say u is dominant if it
dominates at least one vertex. The dominance rule states that u can be added to the
vertex cover (and afterwards removed from the graph), without impeding the search
for a minimum vertex cover. To see that this is correct, assume that u dominates v

and let S be a minimum vertex cover that does not contain u. Since S has to cover
all edges, it contains all neighbors of u. These neighbors include v and all of v’s
neighbors, since u dominates v. Therefore, removing v from S leaves only the edge
{u, v} uncovered which can be fixed by adding u instead. The resulting vertex cover
has the same size as S. When searching for a minimum vertex cover of G, it is thus
safe to assume that u is part of the solution and to reduce the search to G[V \ {u}].

In the remainder of this section, we study the effectiveness of the dominance
reduction rule on hyperbolic random graphs and conclude that VERTEXCOVER can
be solved efficiently on these graphs. Our results are summarized in the following
main theorem.

Theorem 2 Let G be a hyperbolic random graph on n vertices. Then the VERTEX-
COVER problem on G can be solved in poly(n) time, with high probability.

The proof of Theorem 2 consists of two parts that make use of the underlying
hyperbolic geometry. In the first part, we show that applying the dominance reduction
rule once removes all vertices in the inner part of the hyperbolic disk with high prob-
ability, as depicted in Fig. 1. We note that this is independent of the order in which
the reduction rule is applied, as dominant vertices remain dominant after removing
other dominant vertices. In the second part, we consider the induced subgraph con-
taining the remaining vertices near the boundary of the disk (blue vertices in Fig. 1).
We prove that this subgraph has a small pathwidth, by showing that there is a circular

Theory of Computing Systems

Fig. 1 A hyperbolic random graph with 979 vertices, average degree 8.3, and a power-law exponent of
2.5. In such a graph the red vertices and edges are removed by the dominance reduction rule, with high
probability. Additionally, the remaining subgraph in the outer band (consisting of the blue vertices and
edges) has a small path width, with high probability

arc supergraph with a small interval width. Consequently, a tree decomposition of
this subgraph can be computed efficiently. Finally, we obtain a polynomial time algo-
rithm for VERTEXCOVER by first applying the reduction rules and afterwards solving
VERTEXCOVER on the remaining subgraph using dynamic programming on the tree
decomposition of small width.

3.1 Dominance on Hyperbolic RandomGraphs

Recall that a hyperbolic random graph is obtained by distributing n vertices in a
hyperbolic disk BO(R) and that any two are connected if their distance is at most
R. Consequently, one can imagine the neighborhood of a vertex u as another disk
Bu(R). Vertex u dominates another vertex v if its neighborhood disk completely
contains that of v (both constrained to BO(R)), as depicted in Fig. 2 (left). We define
the dominance area D(u) of u to be the area containing all such vertices v. That
is, D(u) = {p ∈ BO(R) | Bp(R) ∩ BO(R) ⊆ Bu(R)}. The result is illustrated in
Fig. 2 (right). We note that it is sufficient for a vertex v to lie in D(u) in order to be
dominated by u, however, it is not necessary.

Theory of Computing Systems

Fig. 2 Left: Vertex u dominates vertex v, as Bv(R) ∩ BO(R) (red) is completely contained in Bu(R) ∩
BO(R) (red and blue). Right: All vertices that lie in D(u) (red) are dominated by u

Given the radius r(u) of vertex u we can now compute a lower bound on the
probability that u dominates another vertex, i.e., the probability that at least one ver-
tex lies in D(u), by determining the measure μ(D(u)). To this end, we first define
δ(r(u), r(v)) to be the maximum angular distance between two vertices u and v such
that v lies in D(u).

Lemma 1 Let u, v ∈ BO(R) be two points. Then, v ∈ D(u) if and only if r(v) ≥
r(u) and Δϕ(u, v) ≤ δ(r(u), r(v)), where

δ(r(u), r(v)) = 2(e−r(u)/2 − e−r(v)/2) + Θ(e−3/2 · r(u)) − Θ(e−3/2 · r(v)).

Proof To prove the claim, we consider the possible positions that v can have relative
to u and identify the ones for which v ∈ D(u) holds.

Assume without loss of generality that ϕ(u) = 0, as depicted in Fig. 3. By def-
inition, v ∈ D(u) if and only if Bv(R) ∩ BO(R) ⊆ Bu(R). First note that this is

Fig. 3 Left: Vertex v is in the dominance area of u, since Bv(R)∩BO(R) (red area) is contained in Bu(R).
The intersections iu,v, i

′
u,v mark the separation between Bv(R)\Bu(R) (green area) and the rest of Bv(R).

If v is rotated in counterclockwise direction, iv,O and iu,v move along the red lines towards iu,O . Right:
Vertex v is rotated such that iu,v = iu,O

Theory of Computing Systems

not the case if r(v) < r(u), as then for the point p = (R − r(v), π) it holds that
p ∈ Bv(R) ∩ BO(R) but p /∈ Bu(R) for all ϕ(v) ∈ [0, 2π). For the case when
r(v) ≥ r(u), it was shown that Bv(R) ∩ BO(R) ⊆ Bu(R) holds when u and v

have the same angular coordinate [7, Lemma 1]. This shows that the first condition
(r(v) ≥ r(u)) is necessary for v to be in the dominance area of u, and it remains to
determine the maximum angular deviation between the two points, such that this is
still the case.

To this end, we argue about intersections of Bu(R), Bv(R), and BO(R), which
we use as indicators whether v ∈ D(u) holds. For now assume that ϕ(v) = ϕ(u)

and consider the two intersections iu,v, i
′
u,v of Bu(R) with Bv(R), as depicted in

Fig. 3 (left). Since Bv(R) ∩ BO(R) ⊆ Bu(R) holds by [7, Lemma 1] and since
circles are convex, we know that Bv(R) \ Bu(R) (the green area in Fig. 3 (left)) lies
outside of BO(R) and so do the two intersections iu,v, i

′
u,v . For the same reason,

we know that iv,O , the intersection of Bv(R) with BO(R) with ϕ(iv,O) ∈ [0, π],
lies in Bu(R). It follows that, for the analogously defined intersection iu,O we have
ϕ(iv,O) ≤ ϕ(iu,O).

We now relax the assumption that ϕ(v) = ϕ(u) and instead imagine that we
increase the angle between u and v by some δ > 0, which denotes a counterclock-
wise rotation of v around the origin. (For symmetry reasons the argumentation about
a clockwise rotation is analogous.) Then, iu,v and i′u,v move along the boundary of
Bu(R) and, in particular, iu,v moves towards iu,O . Note that at the same time iv,O

moves towards iu,O as well. Both movements are depicted using red lines in Fig. 3
(left). As long as iu,v has not surpassed iu,O , neither of the two intersections of Bv(R)

with Bu(R) lies inside of BO(R), which means that Bv(R) \ Bu(R) remains outside
of BO(R) and we maintain the property that Bv(R) ∩ BO(R) ⊆ Bu(R). As we keep
increasing δ, we eventually get to the point where iu,v reaches iu,O , as depicted in
Fig. 3 (right). Note that at this point we also have iv,O = iu,v . Consequently, if we
were to rotate v any further, we would have iv,O /∈ Bu(R), meaning Bv(R) ∩ BO(R)

would no longer be a subset of Bu(R). It follows that Bv(R) ∩ BO(R) ⊆ Bu(R) if
and only if ϕ(iv,O) ≤ ϕ(iu,O).

To compute the maximum angular distance between u and v such that this is the
case, we again start with the assumption that ϕ(v) = ϕ(u) = 0, and determine the
maximum angle δ(r(u), r(v)) such that ϕ(iv,O) + δ(r(u), r(v)) ≤ ϕ(iu,O). Since
iu,O and iv,O have radius R and hyperbolic distance R from u and v, respectively,
we can apply (2) to compute their angular coordinates as ϕ(iu,O) = θ(r(u), R) and
ϕ(iv,O) = θ(r(v), R), respectively. Substituting these angles in the above inequality
yields θ(r(v), R) + δ(r(u), r(v)) ≤ θ(r(u), R). We can now solve for δ(r(u), r(v))

and apply (2) to obtain

δ(r(u), r(v)) = θ(r(u), R) − θ(r(v), R)

= 2(e−r(u)/2 − e−r(v)/2) + Θ(e−3/2 · r(u)) − Θ(e−3/2 · r(v)).

Using Lemma 1 we can now compute the probability for a given vertex to lie in the
dominance area of u. We note that this probability grows roughly like 2/π · e−r(u)/2,

Theory of Computing Systems

which is a constant fraction of the measure of the neighborhood disk of u which
grows as α/(α − 1/2) · 2/π · e−r(u)/2 [18, Lemma 3.2]. Consequently, the expected
number of vertices that u dominates at least is a constant fraction of the expected
number of its neighbors.

Lemma 2 Let u be a vertex with radius r(u) ≥ R/2. The probability for a given
vertex to lie in D(u) is given by

μ(D(u)) = 2

π
e−r(u)/2(1 − O(e−α(R−r(u)))) ± O(1/n).

Proof The probability for a given vertex v to lie in D(u) is obtained by integrating
the probability density (given by (1)) over D(u).

μ(D(u)) = 2
∫ R

r(u)

∫ δ(r(u),r)

0
f (r, ϕ) dϕ dr

= 2
∫ R

r(u)

(
2(e−r(u)/2 − e−r/2) + Θ(e−3/2 · r(u)) − Θ(e−3/2 · r)

)
· α

2π
e−α(R−r)(1 + Θ(e−αR − e−2αr)) dr

Since r(u) ≥ R/2 and r ∈ [r(u), R] we have Θ(e−3/2 · r(u)) − Θ(e−3/2 · r) =
±O(e−3/4 ·R) and (1 + Θ(e−αR − e−2αr)) = (1 + O(e−αR)). Due to the linearity
of integration, constant factors within the integrand can be moved out of the integral,
which yields

μ(D(u)) = α

π
e−αR(1 + O(e−αR))

·
∫ R

r(u)

(
2(e−r(u)/2 − e−r/2) ± O(e−3/4 ·R)

)
· eαr dr

= 2α

π
e−r(u)/2e−αR(1 + O(e−αR))

∫ R

r(u)

eαrdr

−2α

π
e−αR(1 + O(e−αR))

∫ R

r(u)

e(α−1/2)rdr

±O
(

e−(3/4+α)R

∫ R

r(u)

eαrdr

)
.

The remaining integrals can be computed easily and we obtain

μ(D(u)) = 2

π
e−r(u)/2(1 + O(e−αR))(1 − e−α(R−r(u)))

− 2α

(α − 1/2)π
e−R/2(1 + O(e−αR))(1 − e−(α−1/2)(R−r(u)))

±O
(
e−3/4 · R(1 − e−α(R−r(u)))

)
. (3)

Theory of Computing Systems

It remains to simplify the remaining error terms. To do this, we consider the three
summands in the above expression separately, starting with the first. There, the error
term can be expanded to obtain

(1 + O(e−αR)) (1 − e−α(R−r(u)))

= 1 + O(e−αR) − e−α(R−r(u)) − O(e−αR · e−α(R−r(u)))

= 1 + e−αR
(
O(1) − eαr(u) − O(e−α(R−r(u)))

)
Now recall that R is defined as R = 2 log

(
2n/(πκ) · (α/(α − 1/2))2(1 + o(1))

)
,

which is equivalent to R = 2 log(n) + C for some constant C ∈ R, since α and κ are
assumed to be constants. Moreover, since r(u) ≥ R/2 holds by assumption, we have
eαr(u) = ω(1) and thus O(1) − eαr(u) = −O(eαr(u)). We obtain

(1 + O(e−αR))(1 − e−α(R−r(u))) = 1 + e−αR
(−O(eαr(u)) − O(e−α(R−r(u)))

)
.

Again, since R = 2 log(n) + C for a constant C, we have e−αR = o(1) and thus
O(e−α(R−r(u))) = O(eαr(u)). Therefore, the error term further simplifies to (1 −
O(e−α(R−r(u)))) and (3) becomes

μ(D(u)) = 2

π
e−r(u)/2(1 − O(e−α(R−r(u))))

− 2α

(α − 1/2)π
e−R/2(1 + O(e−αR))(1 − e−(α−1/2)(R−r(u)))

±O
(
e−3/4 · R(1 − e−α(R−r(u)))

)
.

Now consider the second summand. Since α is constant, so is the first fraction. More-
over, as R = 2 log(n) + C for a constant C, we have (1 +O(e−αR)) = (1 + o(1)) =
O(1). And since r(u) ≤ R, the exponent in the last factor is non-positive, from
which we can conclude that this factor is also O(1). The second summand there-
fore simplifies to O(e−R/2) = O(n−1). Finally, the last summand can be reduced to
O(e−3/4·R) = O(n−3/2), which yields

μ(D(u)) = 2
π
e−r(u)/2(1 − O(e−α(R−r(u)))) − O(n−1) ± O(n−3/2).

Combining the last two summands then yields the claim.

The following lemma shows that, with high probability, all vertices that are not
too close to the boundary of the disk dominate at least one vertex.

Lemma 3 Let G be a hyperbolic random graph on n vertices, with power-law expo-
nent 2α +1 and average degree κ . Then, there is a constant c > 2/(κ(1−1/(2α))2),
such that all vertices u with r(u) ≤ ρ = R − 2 log log(nc) are dominant, with high
probability.

Proof Vertex u is dominant if at least one vertex lies in D(u). To show this for any
u with r(u) ≤ ρ, it suffices to show it for r(u) = ρ, since μ(D(u)) increases with

Theory of Computing Systems

decreasing radius. To determine the probability that at least one vertex lies in D(u),
we use Lemma 2 and obtain

μ(D(u)) = 2

π
e−ρ/2(1 − O(e−α(R−ρ))) ± O(1/n)

= 2

π
e−R/2+log log(nc)(1 − O(e−2α log log(nc))) ± O(1/n).

By substituting R = 2 log
(
2n/(πκ) · (α/(α − 1/2))2(1 + o(1))

)
, we obtain

μ(D(u)) = κ

n

(
α − 1/2

α

)2 1

1 + o(1)
c log(n)(1 − O(log(n)−2α)) ± O(1/n).

Moreover, since 1/(1 + x) = 1 − Θ(x) for x ∈ R with x = ±o(1), we can conclude
that

μ(D(u)) = cκ (1 − 1/(2α))2 log(n)

n
(1 − o(1)) ± O(1/n).

The probability of at least one vertex falling into D(u) is now given by

Pr[{v ∈ D(u)} �= ∅] = 1 − (1 − μ(D(u)))n

≥ 1 − e−nμ(D(u))

= 1 − Θ(n−cκ(1−1/(2α))2(1−o(1))).

Consequently, for large enough n we can choose c > 2/(κ(1 − 1/(2α))2), such that
the probability of a vertex at radius ρ being dominant is at least 1−Θ(n−2), allowing
us to apply the union bound.

Corollary 2 Let G be a hyperbolic random graph on n vertices, with power-law
exponent 2α + 1 and average degree κ . Then, there exists a constant c > 2/(κ(1 −
1/(2α))2), such that all vertices with radius at most ρ = R − 2 log log(nc) are
removed by the dominance rule, with high probability.

By Corollary 2 the dominance rule removes all vertices of radius at most ρ. Con-
sequently, all remaining vertices have radius at least ρ. We refer to this part of the
disk as outer band. More precisely, the outer band is defined as BO(R) \ BO(ρ). It
remains to show that the pathwidth of the subgraph induced by the vertices in the
outer band is small.

3.2 Pathwidth in the Outer Band

In the following, we use G|r(v)≥r = G[{v ∈ V } | r(v) ≥ r] to denote the induced
subgraph of G that contains all vertices with radius at least r . To show that the path-
width of G|r(v)≥ρ (the induced subgraph in the outer band) is small, we first show
that there is a circular arc supergraph Ĝ|r(v)≥ρ of G|r(v)≥ρ with a small maximum
clique. We use Ĝ to denote a circular arc supergraph of a hyperbolic random graph
G, which is obtained by assigning each vertex v an angular interval Iv on the cir-
cle, such that the intervals of two adjacent vertices intersect. More precisely, for a
vertex v, we set Iv = [ϕ(v) − θ(r(v), r(v)), ϕ(v) + θ(r(v), r(v))]. Intuitively, this

Theory of Computing Systems

Fig. 4 The angular intervals representing the circular arc supergraph Ĝ of a hyperbolic random graph G.
The arc Iv of a vertex v extends to the boundary of its neighborhood disk Bv(R) at the radius of v

means that the interval of a vertex contains a superset of all its neighbors that have a
larger radius, as can be seen in Fig. 4. The following lemma shows that Ĝ is actually
a supergraph of G.

Lemma 4 Let G = (V , E) be a hyperbolic random graph. Then Ĝ is a supergraph
of G.

Proof Let {u, v} ∈ E be any edge in G. To show that Ĝ is a supergraph of G we
need to show that u and v are also adjacent in Ĝ, i.e., Iu ∩ Iv �= ∅. Without loss
of generality assume r(u) ≤ r(v). Since u and v are adjacent in G, the hyperbolic
distance between them is at most R. It follows, that their angular distance Δϕ(u, v)

is bounded by θ(r(u), r(v)). Since θ(r(u), r(v)) ≤ θ(r(u), r(u)) for r(u) ≤ r(v),
we have Δϕ(u, v) ≤ θ(r(u), r(u)). As Iu extends by θ(r(u), r(u)) from ϕ(u) in both
directions, it follows that ϕ(v) ∈ Iu.

Note that Ĝ is still a supergraph of G, after removing a vertex from both G and Ĝ.
Consequently, Ĝ|r(v)≥ρ is a supergraph of G|r(v)≥ρ . It remains to show that Ĝ|r(v)≥ρ

has a small maximum clique number, which is given by the maximum number of
arcs that intersect at any angle. To this end, we first compute this number at a given
angle, which we set to 0 without loss of generality. Let Ar denote the area of the
disk containing all vertices v with radius r(v) ≥ r whose interval Iv intersects 0, as
illustrated in Fig. 5. The following lemma describes the probability for a given vertex
to lie in Ar .

Theory of Computing Systems

Lemma 5 Let G be a hyperbolic random graph and let r ≥ R/2. The probability
for a given vertex to lie in Ar is bounded by

μ(Ar) ≤ 2α

(1 − α)π
e−(α−1/2)R−(1−α)r

·
(

1 + O(e−αR + e−(2r−R)) − O(e−(1−α)(R−r))
)

.

Proof We obtain the measure of Ar by integrating the probability density function
over Ar . Due to the definition of Iv we can conclude that Ar includes all vertices v

with radius r(v) ≥ r whose angular distance to 0 is at most θ(r(v), r(v)), defined in
(2). We obtain,

μ(Ar) =
∫ R

r

2
∫ θ(x,x)

0
f (x, ϕ) dϕ dx

= 2
∫ R

r

(
2e(R−2x)/2(1 ± Θ(eR−2x))

· α

2π
e−α(R−x)(1 + Θ(e−αR − e−2αx))

)
dx.

As before, we can conclude that (1 + Θ(e−αR − e−2αr)) = (1 + O(e−αR)), since
r ≥ R/2. By moving constant factors out of the integral, the expression can be
simplified to

μ(Ar) ≤ 2α

π
e−(α−1/2)R(1 + O(e−αR))

∫ R

r

e−(1−α)x(1 + Θ(eR−2x)) dx.

Fig. 5 The area that contains the vertices whose arcs intersect angle 0. Area Ar (red) contains all such
vertices with radius at least r . Vertex v lies on the boundary of Ar and its interval Iv extends to 0

Theory of Computing Systems

We split the sum in the integral and deal with the resulting integrals separately.

μ(Ar) ≤ 2α

π
e−(α−1/2)R(1 + O(e−αR))

·
(∫ R

r

e−(1−α)x dx + Θ

(∫ R

r

e−(1−α)x+R−2x dx

))

= 2α

π
e−(α−1/2)R(1 + O(e−αR))

·
(

1

1 − α
e−(1−α)r (1 − e−(1−α)(R−r))

+ Θ
(
eRe−(3−α)r (1 − e−(3−α)(R−r))

))
.

By placing 1/(1 − α) · e−(1−α)r outside of the parentheses we obtain

μ(Ar) ≤ 2α

(1 − α)π
e−(α−1/2)R−(1−α)r (1 + O(e−αR))

·((1 − e−(1−α)(R−r)) + Θ
(
eR−2r (1 − e−(3−α)(R−r))

))
.

Simplifying the remaining error terms then yields the claim.

We can now bound the maximum clique number in Ĝ|r(v)≥ρ and with that its
interval width iw(Ĝ|r(v)≥ρ).

Theorem 3 LetG be a hyperbolic random graph on n vertices and let r ≥R/2. Then
there exists a constant c such that, with high probability, it holds that iw(Ĝ|r(v)≥r) =
O(log(n)), if r ≥ R − 1/(1 − α) · log log(nc), and otherwise

iw(Ĝ|r(v)≥r) ≤ 5α

(1 − α)π
ne−(α−1/2)R−(1−α)r

·(1 + O(e−αR + e−(2r−R)) − O(e−(1−α)(R−r))
)
.

Proof We start by determining the expected number of arcs that intersect at a given
angle, which can be done by computing the expected number of vertices in Ar , using
Lemma 5:

E[|{v ∈ Ar}|] ≤ 2α

(1 − α)π
ne−(α−1/2)R−(1−α)r

·(1 + O(e−αR + e−(2r−R)) − O(e−(1−α)(R−r))
)

=: g(r).

It remains to show that this bound holds with high probability at every angle. To this
end, we apply a Chernoff bound (Corollary 1) to conclude that for any ε ∈ (0, 1) it
holds that

Pr[|{v ∈ Ar}| > (1 + ε)g(r)] ≤ e−ε2/3 · g(r).

Theory of Computing Systems

In order to see that this probability is sufficiently small, we first take a closer look at
g(r ′) with r ′ = R − 1/(1 − α) · log log(nc) and afterwards argue about the different
values that r can take relative to r ′.

g(r ′) = 2α

(1 − α)π
ne−(α−1/2)R−(1−α)(R−1/(1−α) · log log(nc))

·(1 + O(e−αR + e−(2(R−1/(1−α) · log log(nc))−R))

− O(e−(1−α)(R−(R−1/(1−α) log log(nc))))
)

= 2α

(1 − α)π
ne−R/2+log log(nc)

·(1 + Θ(e−αR + e−(R−2/(1−α) · log log(nc))) − O(e− log log(nc))
)

Substituting R = 2 log
(
2n/(πκ) · (α/(α − 1/2))2(1 + o(1))

)
we obtain

g(r ′) = cκ
(α − 1/2)2

(1 − α)α
log(n)(1 ± o(1)).

Now consider the case where r < r ′. Then, g(r) > g(r ′) and applying Corollary 1
with ε = 1/4 yields

Pr[|{v ∈ Ar}| > 5/4 · g(r)] ≤ e− ε2
3 g(r) ≤ e− 1

48 g(r ′) ≤ n
−cκ

(α−1/2)2

48(1−α)α
(1±o(1)).

For the case, where r ≥ r ′, note that E[|{v ∈ Ar }|] decreases with increasing r .
Therefore, g(r ′) ∈ O(log(n)) is a pessimistic but valid upper bound on g(r) and we
obtain the same bound on Pr[|{v ∈ Ar }| > 5/4 · g(r ′)].

In both cases, we can choose c such that |{v ∈ Ar}| ≤ 5/4 · g(r) holds with
probability 1 − O(n−c′

) for any c′ at a given angle. In order to see that it holds at
every angle, note that it suffices to show that it holds at all arc endings as the number
of intersecting arcs does not change in between arc endings. Since there are exactly
2n arc endings, we can apply the union bound and obtain that the bound holds with
probability 1 −O(n−c′+1) for any c′ at every angle. Since g(r) is an upper bound on
the maximum clique size of Ĝ|r(v)≥r , the interval width of Ĝ|r(v)≥r is at most twice
as large, as argued in Section 2.

Since the interval width of a circular arc supergraph of G is an upper bound on the
pathwidth of G [13, Theorem 7.14] and since ρ ≥ R − 1/(1 − α) · log log(nc) for
α ∈ (1/2, 1), we immediately obtain the following corollary.

Corollary 3 Let G be a hyperbolic random graph on n vertices and let G|r(v)≥ρ

be the subgraph obtained by removing all vertices with radius at most ρ = R −
2 log log(nc). Then, with high probability it holds that

pw(G|r(v)≥ρ) = O(log(n)).

We are now ready to prove our main theorem, which we restate for the sake of
readability.

Theory of Computing Systems

Theorem 4 Let G be a hyperbolic random graph on n vertices. Then the VERTEX-
COVER problem in G can be solved in poly(n) time, with high probability.

Proof Consider the following algorithm that finds a minimum vertex cover of G. We
start with an empty vertex cover S. Initially, all dominant vertices are added to S,
which is correct due to the dominance rule. By Lemma 3, this includes all vertices
of radius at most ρ = R − 2 log log(nc), for some constant c, with high probabil-
ity. Obviously, finding all vertices that are dominant can be done in poly(n) time.
It remains to determine a vertex cover of G|r(v)≥ρ . By Corollary 3, the pathwidth
of G|r(v)≥ρ is O(log(n)), with high probability. Since the pathwidth is an upper
bound on the treewidth, we can find a tree decomposition of G|r(v)≥ρ and solve
the VERTEXCOVER problem in G|r(v)≥ρ in poly(n) time [13, Theorems 7.18 and
7.9].

Moreover, linking the radius of a vertex in Theorem 3 with its expected degree
leads to the following corollary, which is interesting in its own right. It links the
pathwidth to the degree d in the graph G|deg(v)≤d = G[{v ∈ V | deg(v) ≤ d}], i.e.,
the subgraph of G induced by vertices of degree at most d .

Corollary 4 Let G be a hyperbolic random graph and let d ≤ √
n. Then, with high

probability, pw(G|deg(v)≤d) = O(d2−2α + log(n)).

Proof Consider the radius r = R − 2 log(ξd) for some constant ξ > 0, and the
graph G|r(v)≥r that is obtained by removing all vertices of radius at most r . In the
following, we show that G|r(v)≥r is a supergraph of G|deg(v)≤d for large enough ξ .
Afterwards, we bound the pathwidth of G|r(v)≥r .

The expected degree of a vertex with radius r is given by

E[deg(v) | r(v)=r]= 2α

(α − 1/2)π
ne−r/2(1±O(e−(α−1/2)r)). ([18, Theorem 3.2])

By substituting r = R −2 log(ξd) together with the expression for R, which is given
by R = 2 log(2n/(πκ) · (α/(α − 1/2))2(1 + o(1))), we obtain

E[deg(v) | r(v) = r] = 2α

(α − 1/2)π
ne−R/2+log(ξd)

·(1 ± O(e−(α−1/2)(R−2 log(ξd)))
)

= 2ακ

2(α − 1/2)

(
α − 1/2

α

)2 1

1 + o(1)
ξ · d

·(1 ± O
(
(d/n)(2α−1)

))
= ξκ(1 − 1/(2α)) · d(1 ± o(1)).

Note that for large enough n we can choose ξ sufficiently large, such that

Pr[deg(v) ≤ d | r(v) = r] ≤ Pr
[
deg(v) < (1 − ε)E[deg(v) | r(v) = r]] ,

Theory of Computing Systems

for any ε ∈ (0, 1). This allows us to apply the second inequality in the Chernoff
bound in Theorem 1 to conclude that

Pr[deg(v) ≤ d | r(v) = r] ≤ exp
(− ε2/2 · ξk(1 − 1/(2α)) · d(1 ± o(1))

)
.

First assume that d ≥ log(n)1/(2−2α). We handle the other case later. Note that 1/(2−
2α) > 1 for α ∈ (1/2, 1) and, thus, d ≥ log(n). Therefore, we can choose n and ξ

sufficiently large, such that

Pr[deg(v) ≤ d | r(v) = r] ≤ n− ε2
2 ξk(1−1/(2α))(1±o(1)) ≤ n−2.

Since smaller radius implies larger expected degree, we can derive the same bound
for a given vertex of radius at most r . By applying the union bound we obtain that,
with high probability, no vertex with radius at most r has degree less than or equal to
d . Conversely, all vertices with degree at most d have radius at least r . Consequently,
Ĝ|r(v)≤r is a supergraph of Ĝ|deg(v)≤d .

To prove the claim, it remains to bound the pathwidth of G|r(v)≥r . If r >

R − 1/(1 − α) · log log(nc), we can apply the first part of Theorem 3 to obtain
iw(Ĝ|r(v)≥r) = O(log(n)). Otherwise, we use part two to conclude that the interval
width of G|r(v)≥r is at most

iw(Ĝ|r(v)≥r) ≤ 5α

(1 − α)π
ne−(α−1/2)R−(1−α)r

·(1 + O(e−αR + e−(2r−R)) − O(e−(1−α)(R−r))
)

= 5καξ2−2α

2(1 − α)

(
α − 1/2

α

)2 1

(1 + o(1))

·(1 + O
(
n−2α + (d2/n)2) − O

(
d−(2−2α)

))
= 5κ(α − 1/2)2ξ2−2α

2(1 − α)α
d2−2α(1 ± O(1))

= O(d2−2α).

As argued in Section 2 the interval width is an upper bound on the pathwidth.
For the case where d < log(n)1/(2−2α) (which we excluded above), consider

G|deg(v)≤d ′ for d ′ = log(n)1/(2−2α) > d . As we already proved the corollary for d ′,
we obtain pw(G|deg(v)≤d ′) = O(d ′2−2α + log(n)) = O(log(n)). As G|deg(v)≤d is a
subgraph of G|deg(v)≤d ′ , the same bound holds for G|deg(v)≤d .

4 Empirical Evaluation

Our results show that a heterogeneous degree distribution as well as high clustering
make the dominance rule very effective. This matches the behavior for real-world net-

Theory of Computing Systems

works, which typically exhibit these two properties. However, our analysis actually
makes more specific predictions: (I) vertices with sufficiently high degree usually
have at least one neighbor they dominate and can thus safely be included in the vertex
cover; and (II) the graph remaining after deleting the high-degree vertices has simple
structure, i.e., small pathwidth.

To see whether this matches the real world, we ran experiments on 59 networks
from several network datasets [4, 5, 21, 22, 24]. Although the focus of this paper
is on the theoretical analysis on hyperbolic random graphs, we briefly report on our
experimental results; see Table 1 in Appendix. Out of the 59 instances, we can solve
VERTEXCOVER for 47 networks in reasonable time. We refer to these as easy, while
the remaining 12 are called hard. Note that our theoretical analysis aims at explaining
why the easy instances are easy.

Recall from Lemma 3 that all vertices with radius at most R − 2 log log(nc), with
c > 2/(κ(1−1/(2α))2), probably dominate. This corresponds to an expected degree
of 2α/(α − 1/2) · log(n). Figure 6 shows the percentage of dominant vertices among
the ones above this degree, for the considered real-world networks. For more than
66% of the 59 networks, more than 75% of these vertices were in fact dominant (red
and blue). For more than 40% of the networks, more than 95% were dominant (blue).
Restricted to the 47 easy instances, these increase to 82% and 51% of networks,
respectively.

Fig. 6 Percentage of dominant vertices among ones with degree above 2α/(α −1/2) log(n). Red and blue
bars denote networks where this value is above 75%. Blue bars denote networks where it is above 95%.
Transparent bars denote hard instances

Theory of Computing Systems

Fig. 7 Upper bounds on the treewidth of the considered graphs, after removing initially dominant vertices.
Dashed and dotted green lines denote a bound of 5 and 50, respectively. Colors represent the percentage
of initially dominant high-degree vertices, analogous to Fig. 6. Transparent dots represent hard instances

Experiments concerning the pathwidth of the resulting graph are much more dif-
ficult, due to the lack of efficient tools. Therefore, we used the tool by Tamaki et
al. [25] to heuristically compute upper bounds on the treewidth instead. As in our
analysis, we only removed vertices that dominate in the original graph instead of
applying the reduction rule exhaustively. On the resulting subgraphs, the treewidth
heuristic ran with a 15min timeout. The resulting treewidth is at most 50 for 44% of
the networks and at most 5 for 25%, see Fig. 7. Restricted to easy instances, the values
increase to 55% and 32%, respectively. Note how on most graphs where almost all
high-degree vertices are dominant (blue), we obtained the smallest treewidths. This
indicates, that on networks where our first prediction was fulfilled, so was the second
one.

While hyperbolic random graphs are clearly an idealized representation of real-
world graphs, these experiments indicate that the predictions derived from the model
match the real world, at least for a significant fraction of networks.

Appendix: Experimental Data

Table 1 (continuing on the next page) shows the raw data of our experiments for
which we reported aggregate values in the discussion in Section 4. The percentage
of dominant vertices among those with high degree (> 2α/(α − 1/2) · log n) is
rounded to whole percentages. Treewidth −1 indicates that the remaining graph after
removing all dominant vertices contained no edge.

Theory of Computing Systems

Table 1 The raw data of our experiments

Theory of Computing Systems

Table 1 (continued)

The columns are: (Network) the network’s name; (Vertices) the number of vertices in the network; (Easy)
whether or not we could compute an optimal solution; (Dominant) the percentage of dominant vertices
among high-degree vertices; (Treewidth) an upper bound for the treewidth of the remaining graph after
deleting dominant vertices

Acknowledgements This research was partially funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) – project number 390859508.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akiba, T., Iwata, Y.: Branch-and-Reduce Exponential/FPT Algorithms in Practice: A Case Study of
Vertex Cover. Theor. Comput. Sci. 609, 211–225 (2016). https://doi.org/10.1016/j.tcs.2015.09.023

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tcs.2015.09.023

Theory of Computing Systems

2. Albert, R.: Scale-Free networks in cell biology. J. Cell Sci. 118(21), 4947–4957 (2005).
https://doi.org/10.1242/jcs.02714

3. Albert, R., Barabási, A.L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–97
(2002). https://doi.org/10.1103/RevModPhys.74.47

4. Arenas, A., Barabási, A.L., Batagelj, V., Mrvar, A., Newman, M., Opsahl, T.: Gephi Datasets. https://
github.com/gephi/gephi/wiki/Datasets

5. Batagelj, V., Mrvar, A.: Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/ (2006)
6. Blȧsius, T., Fischbeck, P., Friedrich, T.: Katzmann, M.: Solving Vertex Cover in Polyno-

mial Time on Hyperbolic Random Graphs. In: 37Th International Symposium on Theo-
retical Aspects of Computer Science, STACS, pp. 25:1–25:14. Montpellier, France (2020).
https://doi.org/10.4230/LIPIcs.STACS.2020.25

7. Bläsius, T., Freiberger, C., Friedrich, T., Katzmann, M., Montenegro-Retana, F.: Thieffry, M.:
Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry. In: 45Th
International Colloquium on Automata, Languages, and Programming (ICALP), pp. 20:1–20:14
(2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.20

8. Bläsius, T., Friedrich, T., Katzmann, M.: Efficiently Approximating Vertex Cover on Scale-Free
Networks with Underlying Hyperbolic Geometry. To appear in the proceedings of the 29th Annual
European Symposium on Algorithms (ESA) (2021)

9. Bläsius, T., Friedrich, T., Krohmer, A.: Hyperbolic Random Graphs: Separators and Treewidth.
In: 24Th Annual European Symposium on Algorithms (ESA), pp. 15:1–15:16 (2016).
https://doi.org/10.4230/LIPIcs.ESA.2016.15

10. Boguná, M., Papadopoulos, F., Krioukov, D.: Sustaining the Internet with Hyperbolic Mapping. Nat.
Commun. 1, 62 (2010). https://doi.org/10.1038/ncomms1063

11. Cai, L., Juedes, D.: On the Existence of Subexponential Parameterized Algorithms. J. Comput. Syst.
Sci. 67, 789–807 (2003). https://doi.org/10.1016/S0022-0000(03)00074-6

12. Chen, J., Kanj, I.A., Xia, G.: Improved Upper Bounds for Vertex Cover. Theor. Comput. Sci. 411(40),
3736–3756 (2010). https://doi.org/10.1016/j.tcs.2010.06.026

13. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer (2015)

14. Dorogovtsev, S.: Lectures on Complex Networks. Oxford University Press, Inc.
https://doi.org/10.1093/acprof:oso/9780199548927.001.0001 (2010)

15. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press (2012)

16. Fomin, F.V., Grandoni, F., Kratsch, D.: A Measure & Conquer Approach for the Analysis of Exact
Algorithms. J. ACM 56(5), 25:1–25:32 (2009). https://doi.org/10.1145/1552285.1552286

17. Friedrich, T., Krohmer, A.: On the Diameter of Hyperbolic Random Graphs. SIAM J. Discret. Math.
32(2), 1314–1334 (2018). https://doi.org/10.1137/17M1123961

18. Gugelmann, L., Panagiotou, K., Peter, U.: Random Hyperbolic Graphs: Degree Sequence and Clus-
tering. In: Automata, Languages, and Programming, pp. 573 – 585. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-31585-5 51 (2012)

19. Kiwi, M.A., Mitsche, D.: A Bound for the Diameter of Random Hyperbolic Graphs. In: Proceedings
of the Twelfth Workshop on Analytic Algorithmics and Combinatorics, ANALCO, pp. 26–39. SIAM
(2015). https://doi.org/10.1137/1.9781611973761.3

20. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic Geometry of
Complex Networks. Phys. Rev. E 82, 036106 (2010). https://doi.org/10.1103/PhysRevE.82.036106

21. Kunegis, J.: KONECT: The Koblenz Network Collection. In: International Conference on World Wide
Web (WWW), Pp. 1343 – 1350. https://doi.org/10.1145/2487788.2488173 (2013)

22. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.
stanford.edu/data (2014)

23. Ramsay, A., Richtmyer, R.D.: Introduction to Hyperbolic Geometry. Springer.
https://doi.org/10.1007/978-1-4757-5585-5 (1995)

24. Rossi, R.A., Ahmed, N.K.: The Network Data Repository with Interactive Graph Analytics and Visu-
alization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. http://
networkrepository.com (2015)

https://doi.org/10.1242/jcs.02714
https://doi.org/10.1103/RevModPhys.74.47
https://github.com/gephi/gephi/wiki/Datasets
https://github.com/gephi/gephi/wiki/Datasets
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://doi.org/10.4230/LIPIcs.STACS.2020.25
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.4230/LIPIcs.ESA.2016.15
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1016/S0022-0000(03)00074-6
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1093/acprof:oso/9780199548927.001.0001
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1137/17M1123961
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1137/1.9781611973761.3
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1145/2487788.2488173
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1007/978-1-4757-5585-5
http://networkrepository.com
http://networkrepository.com

Theory of Computing Systems

25. Tamaki, H., Ohtsuka, H., Sato, T., Makii, K.: TCS-meiji PACE2017-tracka github.com/TCS-
meiji/PACE2017-tracka (2017)

26. Xiao, M., Nagamochi, H.: Exact Algorithms for Maximum Independent Set. Inf. Comput. 255, 126–
146 (2017). https://doi.org/10.1016/j.ic.2017.06.001

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Thomas Bläsius1 ·Philipp Fischbeck2 ·Tobias Friedrich2 ·
Maximilian Katzmann3

Thomas Bläsius
thomas.blaesius@kit.edu

Philipp Fischbeck
philipp.fischbeck@hpi.de

Tobias Friedrich
tobias.friedrich@hpi.de

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
3 Algorithm Engineering, Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3,

14482 Potsdam, Brandenburg, Germany

https://doi.org/10.1016/j.ic.2017.06.001
http://orcid.org/0000-0003-0076-6308
http://orcid.org/0000-0002-9302-5527
mailto: thomas.blaesius@kit.edu
mailto: philipp.fischbeck@hpi.de
mailto: tobias.friedrich@hpi.de

	Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs
	Abstract
	Introduction
	Preliminaries
	The Hyperbolic Plane
	Hyperbolic Random Graphs
	Interval Graphs and Circular Arc Graphs
	Treewidth and Pathwidth
	Probabilities

	Vertex Cover on Hyperbolic Random Graphs
	Dominance on Hyperbolic Random Graphs
	Pathwidth in the Outer Band

	Empirical Evaluation
	Appendix 1 Experimental Data
	References
	Affiliations

