52,011 research outputs found

    Squeeziness: An information theoretic measure for avoiding fault masking

    Get PDF
    Copyright @ 2012 ElsevierFault masking can reduce the effectiveness of a test suite. We propose an information theoretic measure, Squeeziness, as the theoretical basis for avoiding fault masking. We begin by explaining fault masking and the relationship between collisions and fault masking. We then define Squeeziness and demonstrate by experiment that there is a strong correlation between Squeeziness and the likelihood of collisions. We conclude with comments on how Squeeziness could be the foundation for generating test suites that minimise the likelihood of fault masking

    Analysing correlated noise on the surface code using adaptive decoding algorithms

    Get PDF
    Laboratory hardware is rapidly progressing towards a state where quantum error-correcting codes can be realised. As such, we must learn how to deal with the complex nature of the noise that may occur in real physical systems. Single qubit Pauli errors are commonly used to study the behaviour of error-correcting codes, but in general we might expect the environment to introduce correlated errors to a system. Given some knowledge of structures that errors commonly take, it may be possible to adapt the error-correction procedure to compensate for this noise, but performing full state tomography on a physical system to analyse this structure quickly becomes impossible as the size increases beyond a few qubits. Here we develop and test new methods to analyse blue a particular class of spatially correlated errors by making use of parametrised families of decoding algorithms. We demonstrate our method numerically using a diffusive noise model. We show that information can be learnt about the parameters of the noise model, and additionally that the logical error rates can be improved. We conclude by discussing how our method could be utilised in a practical setting blue and propose extensions of our work to study more general error models.Comment: 19 pages, 8 figures, comments welcome; v2 - minor typos corrected some references added; v3 - accepted to Quantu

    A framework for modelling mobile radio access networks for intelligent fault management

    Get PDF
    Postprin

    Resilience to time-correlated noise in quantum computation

    Full text link
    Fault-tolerant quantum computation techniques rely on weakly correlated noise. Here I show that it is enough to assume weak spatial correlations: time correlations can take any form. In particular, single-shot error correction techniques exhibit a noise threshold for quantum memories under spatially local stochastic noise.Comment: 16 pages, v3: as accepted in journa

    Quantum computing and the entanglement frontier - Rapporteur talk at the 25th Solvay Conference

    Get PDF
    Quantum information science explores the frontier of highly complex quantum states, the "entanglement frontier". This study is motivated by the observation (widely believed but unproven) that classical systems cannot simulate highly entangled quantum systems efficiently, and we hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world. One way to achieve such "quantum supremacy" would be to run an algorithm on a quantum computer which solves a problem with a super-polynomial speedup relative to classical computers, but there may be other ways that can be achieved sooner, such as simulating exotic quantum states of strongly correlated matter. To operate a large scale quantum computer reliably we will need to overcome the debilitating effects of decoherence, which might be done using "standard" quantum hardware protected by quantum error-correcting codes, or by exploiting the nonabelian quantum statistics of anyons realized in solid state systems, or by combining both methods. Only by challenging the entanglement frontier will we learn whether Nature provides extravagant resources far beyond what the classical world would allow

    The Role of Correlated Noise in Quantum Computing

    Full text link
    This paper aims to give an overview of the current state of fault-tolerant quantum computing, by surveying a number of results in the field. We show that thresholds can be obtained for a simple noise model as first proved in [AB97, Kit97, KLZ98], by presenting a proof for statistically independent noise, following the presentation of Aliferis, Gottesman and Preskill [AGP06]. We also present a result by Terhal and Burkard [TB05] and later improved upon by Aliferis, Gottesman and Preskill [AGP06] that shows a threshold can still be obtained for local non-Markovian noise, where we allow the noise to be weakly correlated in space and time. We then turn to negative results, presenting work by Ben-Aroya and Ta-Shma [BT11] who showed conditional errors cannot be perfectly corrected. We end our survey by briefly mentioning some more speculative objections, as put forth by Kalai [Kal08, Kal09, Kal11]
    corecore