16,956 research outputs found

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network

    Predictive and Multi-rate Sensor-Based Planning under Uncertainty

    Get PDF
    Email Print Request Permissions In this paper, a general formulation of a predictive and multirate (MR) reactive planning method for intelligent vehicles (IVs) is introduced. The method handles path planning and trajectory planning for IVs in dynamic environments with uncertainty, in which the kinodynamic vehicle constraints are also taken into account. It is based on the potential field projection method (PFP), which combines the classical potential field (PF) method with the MR Kalman filter estimation. PFP takes into account the future object trajectories and their associated uncertainties, which makes it different from other look-ahead approaches. Here, a new PF is included in the Lagrange-Euler formulation in a natural way, accounting for the vehicle dynamics. The resulting accelerations are translated into control inputs that are considered in the estimation process. This leads to the generation of a local trajectory in real time (RT) that fully meets the constraints imposed by the kinematic and dynamic models of the IV. The properties of the method are demonstrated by simulation with MATLAB and C++ applications. Very good performance and execution times are achieved, even in challenging situations. In a scenario with 100 obstacles, a local trajectory is obtained in less than 1 s, which is suitable for RT applications

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    A Survey on Passing-through Control of Multi-Robot Systems in Cluttered Environments

    Full text link
    This survey presents a comprehensive review of various methods and algorithms related to passing-through control of multi-robot systems in cluttered environments. Numerous studies have investigated this area, and we identify several avenues for enhancing existing methods. This survey describes some models of robots and commonly considered control objectives, followed by an in-depth analysis of four types of algorithms that can be employed for passing-through control: leader-follower formation control, multi-robot trajectory planning, control-based methods, and virtual tube planning and control. Furthermore, we conduct a comparative analysis of these techniques and provide some subjective and general evaluations.Comment: 18 pages, 19 figure
    • …
    corecore