3,893 research outputs found

    An information retrieval approach to ontology mapping

    Get PDF
    In this paper, we present a heuristic mapping method and a prototype mapping system that support the process of semi-automatic ontology mapping for the purpose of improving semantic interoperability in heterogeneous systems. The approach is based on the idea of semantic enrichment, i.e., using instance information of the ontology to enrich the original ontology and calculate similarities between concepts in two ontologies. The functional settings for the mapping system are discussed and the evaluation of the prototype implementation of the approach is reported. \ud \u

    Semantic Flooding: Semantic Search across Distributed Lightweight Ontologies

    Get PDF
    Lightweight ontologies are trees where links between nodes codify the fact that a node lower in the hierarchy describes a topic (and contains documents about this topic) which is more specific than the topic of the node one level above. In turn, multiple lightweight ontologies can be connected by semantic links which represent mappings among them and which can be computed, e.g., by ontology matching. In this paper we describe how these two types of links can be used to define a semantic overlay network which can cover any number of peers and which can be flooded to perform a semantic search on documents, i.e., to perform semantic flooding. We have evaluated our approach by simulating a network of 10,000 peers containing classifications which are fragments of the DMoz web directory. The results are promising and show that, in our approach, only a relatively small number of peers needs to be queried in order to achieve high accuracy

    VeeAlign: Multifaceted Context Representation Using Dual Attention for Ontology Alignment

    Get PDF
    Ontology Alignment is an important research problem applied to various fields such as data integration, data transfer, data preparation, etc. State-of-the-art (SOTA) Ontology Alignment systems typically use naive domain-dependent approaches with handcrafted rules or domain-specific architectures, making them unscalable and inefficient. In this work, we propose VeeAlign, a Deep Learning based model that uses a novel dual-attention mechanism to compute the contextualized representation of a concept which, in turn, is used to discover alignments. By doing this, not only is our approach able to exploit both syntactic and semantic information encoded in ontologies, it is also, by design, flexible and scalable to different domains with minimal effort. We evaluate our model on four different datasets from different domains and languages, and establish its superiority through these results as well as detailed ablation studies. The code and datasets used are available at https://github.com/Remorax/VeeAlign.Comment: Duplicate of arXiv:2010.1172

    Semantic modelling of user interests based on cross-folksonomy analysis

    Get PDF
    The continued increase in Web usage, in particular participation in folksonomies, reveals a trend towards a more dynamic and interactive Web where individuals can organise and share resources. Tagging has emerged as the de-facto standard for the organisation of such resources, providing a versatile and reactive knowledge management mechanism that users find easy to use and understand. It is common nowadays for users to have multiple profiles in various folksonomies, thus distributing their tagging activities. In this paper, we present a method for the automatic consolidation of user profiles across two popular social networking sites, and subsequent semantic modelling of their interests utilising Wikipedia as a multi-domain model. We evaluate how much can be learned from such sites, and in which domains the knowledge acquired is focussed. Results show that far richer interest profiles can be generated for users when multiple tag-clouds are combine

    A Framework for Dynamic Web Services Composition

    Get PDF
    Dynamic composition of web services is a promising approach and at the same time a challenging research area for the dissemination of service-oriented applications. It is widely recognised that service semantics is a key element for the dynamic composition of Web services, since it allows the unambiguous descriptions of a service's capabilities and parameters. This paper introduces a framework for performing dynamic service composition by exploiting the semantic matchmaking between service parameters (i.e., outputs and inputs) to enable their interconnection and interaction. The basic assumption of the framework is that matchmaking enables finding semantic compatibilities among independently defined service descriptions. We also developed a composition algorithm that follows a semantic graph-based approach, in which a graph represents service compositions and the nodes of this graph represent semantic connections between services. Moreover, functional and non-functional properties of services are considered, to enable the computation of relevant and most suitable service compositions for some service request. The suggested end-to-end functional level service composition framework is illustrated with a realistic application scenario from the IST SPICE project

    Semantic keyword search for expert witness discovery

    No full text
    In the last few years, there has been an increase in the amount of information stored in semantically enriched knowledge bases, represented in RDF format. These improve the accuracy of search results when the queries are semantically formal. However framing such queries is inappropriate for inexperience users because they require specialist knowledge of ontology and syntax. In this paper, we explore an approach that automates the process of converting a conventional keyword search into a semantically formal query in order to find an expert on a semantically enriched knowledge base. A case study on expert witness discovery for the resolution of a legal dispute is chosen as the domain of interest and a system named SKengine is implemented to illustrate the approach. As well as providing an easy user interface, our experiment shows that SKengine can retrieve expert witness information with higher precision and higher recall, compared with the other system, with the same interface, implemented by a vector model approach

    Semantic keyword search for expert witness discovery

    Get PDF
    In the last few years, there has been an increase in the amount of information stored in semantically enriched knowledge bases, represented in RDF format. These improve the accuracy of search results when the queries are semantically formal. However framing such queries is inappropriate for inexperience users because they require specialist knowledge of ontology and syntax. In this paper, we explore an approach that automates the process of converting a conventional keyword search into a semantically formal query in order to find an expert on a semantically enriched knowledge base. A case study on expert witness discovery for the resolution of a legal dispute is chosen as the domain of interest and a system named SKengine is implemented to illustrate the approach. As well as providing an easy user interface, our experiment shows that SKengine can retrieve expert witness information with higher precision and higher recall, compared with the other system, with the same interface, implemented by a vector model approach
    • ā€¦
    corecore