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Abstract. Lightweight ontologies are trees where links between nodes
codify the fact that a node lower in the hierarchy describes a topic (and
contains documents about this topic) which is more specific than the
topic of the node one level above. In turn, multiple lightweight ontolo-
gies can be connected by semantic links which represent mappings among
them and which can be computed, e.g., by ontology matching. In this
paper we describe how these two types of links can be used to define a se-
mantic overlay network which can cover any number of peers and which
can be flooded to perform a semantic search on documents, i.e., to per-
form semantic flooding. We have evaluated our approach by simulating
a network of 10,000 peers containing classifications which are fragments
of the DMoz web directory. The results are promising and show that, in
our approach, only a relatively small number of peers needs to be queried
in order to achieve high accuracy.

1 Introduction

We can see the Web as a network of peers (a P2P network) where each peer
stores various documents about a set of topics which are of interest to its users.
Most often these documents are organized in classifications, i.e., tree-like topic
hierarchies (e.g. email directories, file systems, web directories, and so on). An
abstract example of user generated classifications of several peers can be seen in
Figure 1. Such classification hierarchies, also called lightweight ontologies [19],
have always been used by humans as the most effective and intuitive way to
organize their knowledge according to their subjective view of a domain of inter-
est [19, 16]. Nodes in the classification specify those (complex) concepts which
the user is interested in. For example, the user of Peer1 is interested in doc-
uments about mice and hippopotamuses. The whole classification specifies the
user interest profile. For example, the user of Peer1 is interested in various kinds
of animals, and the user of Peer3 is interested in cars. Notice, that a user can
be interested in more than one topic. For instance, the user of Peer2 stores
documents about both animals and cars.
? A short version of this article with the title “Semantic Flooding: Search Over Se-

mantic Links” was published at the 1st International Workshop on Data Engineering
meets the Semantic Web (DESWeb2010).
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Fig. 1. P2P Network of User-Generated Classifications

The goal of this paper is to show how multiple classifications can be exploited
to help the user in finding documents about the topics which are of interest to
the user. For example, a user novice in some topic might benefit from finding a
peer, the user of which is an expert in the given topic. Moreover, when searching
for a particular document about the topic, even an expert might be interested
in finding not only those documents which are stored in its local document
collection, but also the documents which are stored on other peers. We propose
an approach, that we call Semantic Flooding, which is based on the following
three key ideas:

1. The first is that the links which connect nodes inside a classification together
with the links which codify ontology mappings among classifications form a
semantic overlay network which can be exploited to perform a semantic
search on nodes.

2. The second is that semantic search on nodes is implemented by flooding the
links of the semantic overlay network. Differently from “normal” flooding as
it happens, for instance, in Gnutella [3], these links carry meaning and more
precisely, codify the semantic relation (i.e., equivalence, more or less general)
holding between any two nodes and allow, therefore, for “more informed”
query propagation.

3. The third and last is that semantic search inside a node is performed by using
Concept Search (C-Search) [15] (a semantics enabled information retrieval
approach) thus exploiting as much as possible the advantages of a syntactic
search and also a semantic search, as a function of the available background
knowledge [17].

The paper is structured as follows. In Section 2, we define the semantic
overlay network built out of the links in (and mappings across) the classifications.
In Section 3, we show how this network can be exploited to perform semantic



flooding. In Section 4, we show how links across classifications can be computed
via semantic matching (as described in [18]) or via semantic search in distributed
hash table (DHT) based on P2P Concept Search [14] approach. Section 5 provides
the evaluation. In Section 6 we discuss the related work. Section 7 concludes the
paper.

2 A Semantic Overlay Network

Formally classification can be defined as a rooted tree C = 〈N ;E;L〉, where N
is a set of nodes, E is a set of edges on N , and L is a set of labels expressed
in a natural language, such that for any node n ∈ N , there is label l ∈ L
associated with n. Labels of nodes are used to describe an intended content of
the node. An example of a user-generated classification is shown in Figure 2a.
In order to allow automatic reasoning about classifications and their content,
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Fig. 2. Classification

each classification is converted into a Normal Formal Classification (NFC) [16]
also called lightweight ontology [19]. A NFC is a rooted tree NFC = 〈N,E,LN 〉
where N is a set of nodes, E is a set of edges on N , and LN is a set of labels
expressed in Propositional Description Logic language LC , such that for any
node n ∈ N , there is label Cn ∈ LN associated with n.

To convert a classification into a NFC, the background knowledge (BK) [17]
of the user is used. BK represents the knowledge of the user about concepts and
their relationships over a specific domain or a limited set of domains. Formally,
BK can be defined as a 4-tuple: BK = 〈W,C,RWC , RCC〉, where W is a set of
words (together with their part-of-speech, glosses, etc); C is a set of word senses
(concepts), RWC is a set of links from words to their senses (concepts); and RCC

is set of subsumption relations on the concepts in set C. An example of BK is
shown in Figure 3. Atomic concepts are represented as lemma-sn, where lemma
is the lemma of the word, and sn is the sense number. For instance, the atomic



concept dog-1 is used in the sense of a domestic dog, which is the first sense of
word dog in the BK.
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Fig. 3. Background Knowledge

The detailed discussion about how a classification can be converted into a
NFC can be found in [16, 35]. In short, the conversion is performed as follows.
Every label of a node in a classification is assigned a complex concept ln expressed
in LC . Single words in the label are assigned atomic concepts from the peer’s BK.
Complex concepts are built by translating syntactic relations between words in
the label into logical connectives of LC . For example, the label “big animal” is
translated into the complex concept big-1 u animal-1. A classification in which
all the labels are converted into expressions in LC is called Formal Classification
(FC). An example of a FC created from the classification in Figure 2a is shown
in Figure 2b. Notice that the meaning of a node in a classification is defined by
a set of concepts on the path to the root and not only by a concept of the node’s
label. In order to encode meaning of nodes in the classification we use the notion
of concept at node [18]. The concept at node Cn is defined as a conjunction of
concepts at labels ln for all the nodes on the path to the root from the given
node:

Cn = ln1 u ln2 u . . . u lni (1)

The resulting classification, in which concepts at node Cn are computed for all
the nodes in the classification, is a NFC.

After a NFC has been created, documents can be automatically classified to
nodes in the classification by using the get-specific principle [20]. Each document
d is assigned an expression in LC , which we call the document concept Cd. To
assign a concept Cd to a document, first, a set of n key-phrases is retrieved from
the document using text mining techniques (see, for example, [32]); the key-
phrases are then converted to formulas in LC , and, finally, Cd is computed as the
conjunction of the formulas. According to the get-specific principle, documents
are classified to nodes, such that complex concepts of these nodes are more



general than complex concepts assigned to documents, and none of child nodes
can describe the content of the document more specifically. Formally, a set of
documents S(n) classified in a sub-tree of node n is defined as follows:

S(n) = {d | Cd v Cn} (2)

If node n has a set of child nodes C(n), then a set of documents D(n) classified
to node n, is defined as follows:

D(n) = S(n)−
⋃

ni∈C(n)

S(ni) (3)

To make the peers in the P2P Network able to reason about the contents of
each other, semantic links, expressed in the C-OWL language [9], can be created
between related nodes in their classifications. C-OWL envisions a wide range
of possible semantic relations that can hold between related nodes in different
classifications. For the goals of this paper we concentrate on the following links:

(i) equivalence links (represented as A
≡−→ B), (ii) more general links (A

w−→ B),

and (iii) more specific links (A
v−→ B). For example, in Figure 4, the link between

nodes with labels “large dog” and “huge dalmatian” is used to specify that the
concept of the former node (large-1 u dog-1) is more general than the concept
of the latter node (huge-1 u dalmatian-2). Note that, according to Equation 2,
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Fig. 4. A Semantic Overlay Network

all the documents which are classified in the subtree of the latter node can be
classified also in the subtree of the former node.

The set of the links which connect nodes inside a classification plus C-OWL
links across classifications constitute a semantic overlay network which can be
built on top of any underlying set of peers and their physical connections.

3 Semantic Flooding

We consider a semantic search in a P2P network as the process of finding docu-
ments, which are semantically related to the user information needs, and which



are parts of a document collection distributed among all the peers in the network.
When a user searches for documents, she, first, selects a node n in the classi-
fication. The root node of the classification serves as a default node for search
if no other node is selected. Second, the user issues the query q. The query is
converted into an expression in LC using the same technique used for creation
of concept at nodes, as described in the previous section. Let Cn be a complex
concept at node n and Cq be a complex concept extracted from query q. The
goal of the Semantic Flooding algorithm is to find documents d stored in the
network, such that, concept of document Cd is more specific than the concept at
node Cn and there exists a concept C described in d which is more specific than
the query concept Cq. Formally a query answer A(Cn, Cq) is defined as follows:

A(Cn, Cq) = {d | Cd v Cn and ∃C ∈ d, s.t., C v Cq} (4)

The problem of a semantic search in the P2P network can be decomposed into
three subproblems:

1. Identifying semantically relevant peers
2. Searching inside relevant peers
3. Aggregation of the search results

Let us consider these three subproblems in detail.

3.1 Identifying semantically relevant peers

We consider a peer to be semantically relevant to a query if there are nodes
in the peer’s classification which are relevant to the node selected by the user.
Moreover, some of the documents classified in these nodes should be relevant
to the user query. In order to store the information about potentially relevant
peers, the initiator peer pI creates a peer information list, defined as follows:

peerinfos(n) = [〈p, nodeinfos(p, n), stat〉],

where p is a relevant peer, stat is a status of p: NQ - peer is not queried, QU -
peer is already queried, or RE - response is returned, and nodeinfos(p, n) is a
list which stores information about nodes n′ from peer p which are semantically
related to node n plus a set {l} of incoming links l for node n′:

nodeinfos(p, n) = [〈n′, {l}〉]

Initially, peerinfos(n) contains information only about the peer pI : peerinfos(n) =
[〈pI , [〈n, ∅〉], NQ〉]. After peerinfos(n) is initialized, pI starts an infinite loop,
where a single iteration is performed as follows:

– Select the first (if any) peer info 〈p, nodeinfos(p, n), stat〉 from peerinfos(n),
such that, stat = NQ.

– If there are no such peer infos, wait until the peerinfos(n) list is modified
and perform the previous step again.



– Form a query request 〈Cn, Cq〉 and submit it to peer p.
– Change the status of peer p to stat = QU .

When peer p receives the query request, it locally computes a set of links L,
such that, each of the target nodes has a complex concept which is more specific
than the complex concept Cn. Note that, at the same time, the concept of the
target node in a link can be equivalent, more specific, or more general than the
concept of the source node. All the links in L are sent back to the initiator peer
pI . Peer pI updates the peerinfos(n) list by using information from links in L.
peerinfos(n) list is then sorted in a decreasing order of the number of incoming
links. We assume that in this way, peers are queried in a decreasing order of
their importance.

Every node n′ in nodeinfos(p, n) has only the documents with complex doc-
ument concepts Cd which are more specific than the complex concept Cn. This
is because, from Cd v Cn′

and Cn′ v Cn, it follows that Cd v Cn. In spite of
this, links between nodes do not describe all complex concepts C, which can be
found in the documents classified to these nodes. Therefore, it can be the case
that node n′ has no documents which are relevant to the query concept Cq. The
portion of such nodes can increase when a concept Cn becomes more and more
general. In the worst case, i.e., when Cn ≡ >, all the nodes which can be reached
by all the links can be added to nodeinfos(p, n) and all the corresponding peers
p can be queried. Semantic flooding in this case is reduced to normal flooding
and, in general, can be very inefficient.

In order to implement a more efficient selection of semantically relevant peers,
we propose to use a measure of semantic similarity SS(Cn′

, Cq) between complex
concepts at node Cn′

and the complex query concept Cq (see, for example, [8]).
As a simple example of a semantic similarity measure SS(Cn′

, Cq), let us con-
sider the following measure:

SS(Cn′
, Cq) =

{
1 if Cn′ v Cq

0 otherwise

Observe that for n′ with SS(Cn′
, Cq) = 1, concepts Cd, for all the documents

classified to n′, are more specific than query concept Cq. It is because, from
Cd v Cn′

and Cn′ v Cq, it follows that Cd v Cq. Given that Cd is built from
concepts C found in the document d, it is likely that d is relevant to query q.
Note that the following measure of semantic similarity is actually used:

SS(Cn′
, Cq) =

∑
Aq∈Cq

1

10
min

An′∈Cn′
(dist(An′ ,Aq))

(5)

Now, instead of just the number of incoming links, peerinfos(n) list is sorted
in a decreasing order of the peer scores computed as a sum of node scores
score(n′, q). A node score score(n′, q) is computed as follows:

score(n′, q) = (Nl + 1) ∗ (SS(Cn′
, Cn) + SS(Cn′

, Cq)), (6)



where, Nl is a number of incoming links for node n′. Note that only links for
those nodes which are relevant for current search request are considered while
sorting peerinfos(n).

3.2 Searching inside a relevant peer

On receiving a search request 〈Cn, Cq〉, peer p performs search for relevant doc-
uments in a local document collection by using the C-Search [15]. C-Search is
an IR approach which is based on retrieval models and data structures of syn-
tactic search, but which searches for complex concepts C rather than words
W . The key idea is that syntactic matching of words is extended to semantic
matching [18] of complex concepts, where semantic matching is implemented by
using positional inverted index. The output of C-Search is a list of documents
ordered by their relevance to the query. A list of top k ranked documents, nodes
to which the documents are classified, and the information about frequencies
of atomic concepts A ∈ Cq in the retrieved documents and in the whole local
document collection are sent back to the initiator peer pI . Peer pI updates the
peerinfos(n), i.e., the status of p is changed to stat = RE. In order to store the
information about the relevant documents, the initiator peer pI uses a document
information list:

docinfos(q) = [〈d, n′, [〈A, tf(A, d)〉]〉],
where d is a document which is classified to node n′, and which is also relevant
to query q, tf(A, d) is a number which represents the importance of document d
to an atomic concept A ∈ Cq. Moreover, in order to store the global information
about the importance of atomic concepts A ∈ Cq, pI uses term information lists
for all A:

terminfos(A) = [〈p, numDocsp, docFreqp(A)〉],
where docFreqp(A) is a number which represents the frequency of atomic con-
cept A in the document collection of peer p which has numDocsp documents
in total. When receiving new results, a peer pI updates the docinfos(q) and
terminfos(A) tables.

The search process terminates when: (i) the required number (e.g., 100) of
documents is retrieved; or (ii) all the relevant documents are retrieved; or (iii)
the search time exceeds some predefined limits; or (iv) the user terminates the
process.

3.3 Aggregation of search results

After the search process is terminated, the peer pI merges query answers from
different peers into a single query answer. First, the cosine similarity cos(d, q)
from the vector space model is computed for every retrieved document d. Terms
are weighted by the tf-idf weight measure used in Lucene [4], where an inverse
document frequency idf(A) is estimated as follows:

idf(A) = 1 + log(
numDocs

docFreq(A) + 1
),



where numDocs is computed as a sum of all the numDocsp, and docFreq(A) is
computed as a sum of all the docFreqp(A). Second, the cosine similarity cos(d, q)
is combined with the score score(n, q) of the node n to which the document is
classified in order to compute the final score of the document score(d, q):

score(d, q) = score(n, q) + cos(d, q)

Finally, documents are ordered according to the relevance score and presented
to the user in the decreasing order of relevance.

4 Semantic Link Discovery

When a new peer joins the network, there are no semantic links connecting the
nodes in the classifications of this peer with the nodes in classifications of other
peers in the network. Another example where links can be missing is when a new
node is created in a classification, e.g., because the user became interested in a
new topic. In the following we discuss how new semantic links can be discovered
in these and other similar situations.

If the two classifications which need to be connected are known in advance,
then semantic links between these classifications can be computed by using se-
mantic matching (S-Match) [18] approach. When the relevant classifications are
not known, one way of computing semantic links is to run S-Match between
the given classification and all the classifications of other peers. The problem
with this approach is that the number of peers in the network can be huge and,
therefore, running S-Match for all the possible combinations of classifications
can become unfeasible.

In order to allow for an efficient discovery of semantic links, we propose to
use P2P Concept Search [14]. P2P Concept Search extends C-Search [15] by
allowing a distributed semantic search over structured P2P network. First, the
reasoning with respect to a single background knowledge T is extended to the
reasoning with respect to the background knowledge TP2P which is distributed
among all the peers in the network. Second, the centralized inverted index (II) is
extended to a distributed inverted index built on top of a DHT [27, 30, 13, 36]. In
this paper, P2P Concept Search is used in order to index and retrieve complex
concepts at nodes Cn′

. In this case, the query answer A(Cn, Tp2p), produced by
P2P Concept Search for complex concept Cn, contains a set of nodes n′, such
that, complex concepts at nodes Cn′

are more specific than Cn:

A(Cn, Tp2p) = {n′ | Tp2p |= Cn′
v Cn}

If the user wants to discover semantic links for a node n, first, the query an-
swer A(Cn, Tp2p) is computed by using P2P Concept Search. The system then
returns the ordered list of possibly relevant nodes to the user. Note that if no
exact matches are found, partial matches are returned, i.e., when not all atomic
concepts A ∈ Cn are used. Finally, semantic links are created for those nodes
which are selected by the user. Links created by users are indexed in the DHT



by id’s of target nodes. Note that these links can be used in the computation of
the node score in Equation 6. After semantic links are discovered for a node (or
a set of nodes), S-Match can be run between the user’s classification and some
of the classifications which are connected by the links.

5 Evaluation

In order to evaluate our approach, we conducted a set of simulation experiments,
where the results of the proposed distributed Semantic Flooding algorithm and
centralized C-Search algorithm were compared1. The key intuition here is to see
how much we lost, in terms of the number of documents which are retrieved
by a centralized search approach and which are missing from the results of a
distributed search approach.

5.1 Evaluation parameters

In the evaluation, we measured the accuracy of search results returned by Se-
mantic Flooding algorithm depending on the number of visited peers, where the
accuracy is defined as follows:

Accuracy =
|RCS ∩RSF |
|RCS |

∗ 100%,

where RCS are results returned by C-Search and RSF are results returned by
Semantic Flooding on the same data-set. Only the first 10 ranked results are used.
The accuracy measure considers the results returned by C-Search, as the desired
results and estimates the ability of semantic flooding algorithm to approximate
these results by querying only a limited number of peers.

The number of queried peers can be used to estimate the number of messages
Mnum generated to answer a query in the best and the worse case scenarios. In
the best case scenario, no link discovery is needed because all the relevant links
are already computed. The number of generated messages in this case can be
estimated as follows:

Mnum = 2 ∗m,

where m is the number of queried peers.
In the worst case scenario, the relevant links need to be computed by the link

discovery mechanism. If P2P Concept Search is used for link discovery, then the
number of messages can be estimated by using the following formula:

Mnum = log p + k + (2 ∗m),

where p is number of peers in the network, m is the number of queried peers
and k is the number of atomic concepts that are used by P2P Concept Search
algorithm (see [14] for details). In the evaluation, k was limited to 10.

1 Note that comparing performance of distributed and centralized information retrieval
systems is a standard way of evaluating in P2P information retrieval (e.g., see [31]).



5.2 Dataset generation

In order to generate data-sets (which reproduce a realistic scenario) for the eval-
uation of the proposed semantic flooding algorithm, we used data from the Open
Directory Project (ODP), also known as DMoz [2], and the public tags of about
950000 users from Delicious [1] obtained from [33]. Two sources were merged to-
gether by matching users from Delicious to nodes in DMoz classification. First,
the intersection of urls from both sources was computed. Second, users which
tagged a url in Delicious were matched to the node n in DMoz which classifies
the document with the same url. As a result, we obtained 491414 users matched
to 45545 nodes.

Four data-sets were generated by randomly selecting a sub-set of 10, 100,
1000, and 10000 users (one use is assigned to one peer). For each user u, the
generation of its classification was performed as follows. Nodes matched to a user
form the classification hierarchy. For each node n in the user’s classification, we
selected a sub-set of documents Dn classified to node n in DMoz. First, we
selected all the documents that were tagged by the user and than we selected
a random sub-set of spare documents (i.e., documents classified to n that were
not tagged by user). Documents in the data-set were created by concatenating
titles and descriptions of web-sites. On average, a classification of each peer had
21 nodes and 385 documents.

For each data-set, a C-Search index ICS was created. All the documents in
the data-set were indexed in ICS . WordNet was used in C-Search as a background
knowledge. Indexes of each single peer were created by filtering ICS . Distributed
Background Knowledge (DBK) [14], that provides access to the BK of each peer
in the P2P network, was used to index concepts and relations from WordNet
in the P2P network. By using DBK, a peer can exploit the knowledge of other
peers in the network when an atomic concept is missing in the local BK of the
peer. We can see the DBK as the sum of the BKs of all the peers in the network.
By using the same BK in both centralized and distributed approaches we ensure
the fairness of comparison of the results produced by these approaches.

A query set was generated by randomly selecting a set of Nq (100) queries
from the AOL query log [26] for each data-set. One word queries; queries which
contained punctuation, special symbols, or boolean operators (e.g., ’+’, and ’
?’); queries which contain the words shorter than 3 letters; and queries which
had less than 10 results in ICS were filtered out. For each query, we randomly
selected a node n in DMoz classification, such that, a query request 〈Cn, Cq〉
have at least 10 relevant documents as computed by C-Search.

Given that our data-sets are generated from the data produced by the real
users, nodes matched to users provide us with knowledge about real user interest
profiles. Note that interests and accordingly classifications of different users can
partially overlap, where the overlap has a higher probability for popular topics
(e.g. Top/Computers and Top/News). In the following we analyze the distribu-
tion of peers’ interests over the set of topics from DMoz. In Figure 5, we show
the distribution of the popularity of topics in our data-set. Topics are ranked
according to the popularity. The most popular topic occupies the first position
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in the ranking, followed by the second most popular, and so on. From Figure 5,
we can observe the rapid decrease in the frequency from 35503 for the most
popular topic to 29690 for the second most popular. Even more, only moving 50
places down in the ranking the frequency decreases to 8066. And there are only
121 topics that have more than 1% of peers interested on them. This behavior
provides evidence of the existence of a “long tail” of unpopular topics.

In order to see how popularity of topics affect the performance of different
approaches, we additionally generated two query sets for the data-set consisting
of 10000 peers. The first query set consists of popular queries (i.e., queries related
to topics that are in the first 200 positions in the popularity ranking, see Figure 5)
and the second query set consists only of unpopular queries (i.e., queries related
to topics in the position 400 or above in the popularity ranking, see Figure 5).

5.3 Evaluation results

The evaluation results for randomly selected queries are reported in Figure 6.
We compared the performance achieved by Semantic Flooding when: (i) the
query request 〈Cn, Cq〉 consists of a starting node n with concept Cn and of a
query q with a concept Cq; (ii) the query request is 〈>, Cq〉, namely the same
as in (i) but with no starting node, i.e., Cn ≡ >; and (iii) the same as (ii)
but the semantic similarity SS(Cn′

, Cq) is not used. Note that in P2P networks
of 10 and 100 peers, the total number of queried peers was set to 10, whereas
in P2P networks of 1000 and 10000 peers, it was set to 50. From Figure 6,
we can see that, when peers are selected without using the similarity function
and also without a starting node specified (see “no semantic similarity” lines
in Figure 6), accuracy decreases very quickly with the total number of peers in
the network. The situation improves when semantic similarity is used and only
starting node is missing (see “no starting node” lines in Figure 6). When the
starting node n is selected, i.e., concept Cn is provided, the accuracy of Semantic
Flooding becomes close to the accuracy of the centralized C-Search approach (see
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Fig. 6. Evaluation Results: Random queries

“semantic flooding” lines in Figure 6). In fact, in the network of 10000 peers,
only 50 peers need to be queried in order to achieve 70% of accuracy. Note that
if we need to retrieve one relevant result (i.e., 10% of accuracy), only one peer
needs to be queried.

The evaluation results for popular/unpopular queries are reported in Fig-
ure 7. From Figure 7, we can see that even a normal flooding approach can
achieve good results for popular queries. This is because there are many peers
which can provide answers to such queries. On the other hand, for unpopular
queries results provided by the normal flooding decrease substantially (i.e., the
accuracy has decreased 4 times), whereas the Semantic Flooding approach still
provide good accuracy (i.e., the accuracy has only decreased by 22%). Overall,
we can see that the Semantic Flooding approach can provide good results for
both popular and unpopular queries.

6 Related work

A number of P2P search approaches have been proposed in the literature (for
an overview see [28]). The algorithm implemented by Gnutella is the classical
example of a query flooding algorithm. In early versions of Gnutella, connections
between peers were made mainly chaotically. A P2P network was completely
unstructured, i.e., it did not have any predefined structure. The query sent by



 

N = 1000

5 10 15 20 25 30 35 40 45 50

Queried peers

semantic flooding no starting node no semantic similarity

N = 10000 (popular queries)

0
0,1
0,2

0,3
0,4
0,5
0,6
0,7

0,8
0,9

1

0 5 10 15 20 25 30 35 40 45 50

Queried peers

A
cc

ur
ac

y

SF SF(w/o topics) Random

 

N = 10000 (unpopular queries)

0
0,1
0,2

0,3
0,4
0,5
0,6
0,7

0,8
0,9

1

0 5 10 15 20 25 30 35 40 45 50

Queried peers

A
cc

ur
ac

y

SF SF(w/o topics) Random

 

Fig. 7. Evaluation Results: Popular vs. Unpopular Queries

a peer was propagated to all the actively connected peers within a predefined
number of hops from the query sender. The search process was blind, i.e., peers
have no information related to the resource location. The lack of scalability was
recognized as the main problem of the Gnutella. Various techniques were adopted
in later versions of the Gnutella protocol in order to make the search process more
scalable. Super-peers were introduced to utilize the heterogeneity between peers
in computer power, bandwidth and availability. Informed search, i.e., when peers
maintain additional information about resource locations which can be useful for
the search, replaced blind search. In Gnutella, informed search is implemented by
using Query Routing Protocol (QRP). Query Routing Tables (QRT) consisting
of hashed keywords are exchanged between peers. During query routing, search
request is propagated only to those peers which have all of the query words in
its QRT. In [11], a peer uses Routing Indices to forward queries to neighbors
that are more likely to have answers. Query topics are compared to neighbor’s
expertise to select relevant peers. In our approach, search for relevant peers is
implemented by using semantic links created between nodes in classifications of
different peers.

The basic idea of [5, 10, 29, 37, 12] is to organize peers into Similar Content
Groups on top of unstructured P2P systems, i.e., a peer clustering approach is
implemented. Peers from the same group tend to be relevant to the same queries.
A query is guided to Similar Content Group that is more likely to have answers
to the given query and then the query is flooded within this group. For instance,
in Semantic Overlay Networks (SONs) [12] peers that have similar documents
are clustered at the same group. A predefined classification hierarchy is used to
classify the peers’ documents. Thus two peers belong to the same SON if some
of their documents classified under the same concept in this global classification.
Peers can belong to more than one SON. In our approach, peers with similar
content are connected to each other by creating semantic links between nodes in
classifications of these peers. Differently from [12], a global classification is not
required and users are free to create their own classification hierarchies.



CAN [27], Chord [30], Pastry [13], and Tapestry [36] use another approach to
the routing and topology organization of P2P networks. This approach employs
the DHT functionality (e.g. mapping keys onto values) on Internet-like scale.
Such systems are highly structured. The topology is tightly controlled and doc-
uments (or information about documents) are placed at the precisely specified
locations defined by their keys. A data clustering approach is implemented, i.e.,
similar data (meta-data) is placed in the same place. Search in these systems
is limited to an exact key search. Mercury [7] supports multi-attribute range
queries, e.g. each query is a conjunction of ranges in one or more attributes.
Examples of how a full text retrieval can be implemented on top of structured
P2P networks are described in [22, 23, 6, 31]. A straightforward way to imple-
ment syntactic search is to use the DHT to distribute peers’ inverted indices in
the P2P network [28]. In order to find a set of documents which contain a term
we just need to contact the peer responsible for this term and retrieve the corre-
sponding posting list. In order to search for more than one term, we, first, need to
retrieve posting lists for every single term, and then to intersect all these posting
lists. The above approach can potentially be very expensive in terms of required
storage and generated traffic (see e.g. [22]). For instance, posting lists need to
be transferred when peers join or leave the network. Searching with multiple
terms requires intersection of posting lists, which also need to be transferred. In
the case of huge posting lists, a bandwidth consumption can exceed the maxi-
mum allowed limits. In [22], it is shown that the efficiency of DHT can be even
worse than the efficiency of a simple flooding algorithm. Some of optimization
techniques (e.g., Bloom Filters), which can improve the performance of posting
lists intersecting, are summarized in [22]. In [23], indexing is performed by terms
and term sets appearing in a limited number of documents. Different filtering
techniques are used in [23] in order to make vocabulary to grow linearly with
respect to the document collection size. In Minerva [6] DHT holds only compact,
aggregated meta-information about the peers’ local indexes which is used to ef-
ficiently select promising peers from across the peer population that can best
locally execute a query. In our approach, a DHT based P2P Concept Search is
used only for indexing and retrieval of nodes from classifications and not doc-
uments. The problem with storage is reduced since inverted indices for nodes
are usually smaller than those for documents which are classified to these nodes.
Moreover, the generated traffic is reduced because, in P2P Concept Search, a
query consisting of a single complex concept do not require the intersection of
inverted indices.

All of the described so far approaches are based on syntactic matching of
words and, therefore, the quality of results produced by these approaches can
be negatively affected by the problems related to the ambiguity of natural lan-
guage. Some P2P search approaches use matching techniques which are based
on the knowledge about term relatedness (and not only syntactic similarity of
terms). For instance, statistical knowledge about term co-occurrence is used in
[31]. Knowledge about synonyms and related terms is used in [24]. In our ap-
proach, the problem of ambiguity of natural language is dealt with by using



semantic matching of complex concepts. Different semantic search approaches
are also used in [38, 34, 25, 21]. A semantic link peer-to-peer network (P2PSLN)
[38] specifies and manages semantic relationships between peers’ data schemas.
A semantic-based peer similarity measurement is used for efficient query routing.
A schema mapping algorithm is used for query reformulation and heterogeneous
data integration. Ontology-based P2P data management system (OPDMS) [34]
is based on ontology mapping and query processing. Edutella [25] and Bibster
[21] are built on JXTA framework and aim to combine meta-data with P2P net-
works. Each peer is described and published using an advertisement, which is an
XML document describing a network resource. For example in the Bibster [21]
system, these expertise descriptions contain a set of topics that the peer is an
expert in. Peers use a shared ontology to advertise their expertise in the Peer-to-
Peer network. In our approach, semantic links are created between semantically
related nodes in classifications of different peers and not between data schemas
of the peers, as in [38]. Moreover, differently from [21], we don’t assume shared
ontology.

In Table 1, we provide a summary of the search methods discussed in this
section.

Table 1. Search Methods in P2P networks.

Network
structure

Clustering
Identifying

semantically
relevant peers

Search
method

Gnutella [28] Unstructured - Blind Keyword
Routing Indices [11] Unstructured - Informed Keyword

SETS [5] Unstructured Peers Informed Keyword
Associative overlay [10] Unstructured Peers Informed Keyword

Interest-based overlay [29] Unstructured Peers Informed Keyword
ESS [37] Unstructured Peers Informed Keyword

SONs [12] Unstructured Peers Informed Keyword
P2PSLN [38] Unstructured Peers Informed Semantic
OPDMS [34] Unstructured Peers Informed Semantic

EDUTELA [25] Hybrid Peers Informed Semantic
Bibster [21] Hybrid Peers Informed Semantic
pSearch [31] Structured Data Informed Semantic

Concept Index in P2P [24] Structured Data Informed Semantic
CAN [27] Structured Data Informed Key

Chord [30] Structured Data Informed Key
Pastry [13] Structured Data Informed Key

Tapestry [36] Structured Data Informed Key
Mercury [7] Structured Data Informed Keyword

MINERVA [6] Structured Data Informed Keyword
AlvisP2P [23] Structured Data Informed Keyword



7 Conclusions

Document classifications (lightweight ontologies) together with semantic links
which codify the mappings existing among nodes define a semantic overlay net-
work which can cover any number of peers (e.g., in the Web). In this paper,
we have shown how these links can be flooded and used to perform a semantic
search on links. The resulting approach, that we call semantic flooding, seems
very promising. In fact the experimental results, evaluated on networks of 10,
100, 1000, and 10000 peers containing classifications which are fragments of the
DMoz web directory, show that Semantic Flooding is robust and gracefully de-
grades with the number of peers. The future work will include evaluating the
sensitivity of the algorithm on the number of links and on their quality. Semantic
Flooding will also be compared with P2P Concept Search, namely DHT based
C-Search, with the goal to understand the conditions under which Semantic
Flooding performs better (or worse) than P2P Concept Search.
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