8 research outputs found

    Analysis and Development of Computational Intelligence based Navigational Controllers for Multiple Mobile Robots

    Get PDF
    Navigational path planning problems of the mobile robots have received considerable attention over the past few decades. The navigation problem of mobile robots are consisting of following three aspects i.e. locomotion, path planning and map building. Based on these three aspects path planning algorithm for a mobile robot is formulated, which is capable of finding an optimal collision free path from the start point to the target point in a given environment. The main objective of the dissertation is to investigate the advanced methodologies for both single and multiple mobile robots navigation in highly cluttered environments using computational intelligence approach. Firstly, three different standalone computational intelligence approaches based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), Cuckoo Search (CS) algorithm and Invasive Weed Optimization (IWO) are presented to address the problem of path planning in unknown environments. Next two different hybrid approaches are developed using CS-ANFIS and IWO-ANFIS to solve the mobile robot navigation problems. The performance of each intelligent navigational controller is demonstrated through simulation results using MATLAB. Experimental results are conducted in the laboratory, using real mobile robots to validate the versatility and effectiveness of the proposed navigation techniques. Comparison studies show, that there are good agreement between them. During the analysis of results, it is noticed that CS-ANFIS and IWO-ANFIS hybrid navigational controllers perform better compared to other discussed navigational controllers. The results obtained from the proposed navigation techniques are validated by comparison with the results from other intelligent techniques such as Fuzzy logic, Neural Network, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and other hybrid algorithms. By investigating the results, finally it is concluded that the proposed navigational methodologies are efficient and robust in the sense, that they can be effectively implemented to solve the path optimization problems of mobile robot in any complex environment

    A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions

    Get PDF
    In this paper, a review on the three most important communication techniques (ground, aerial, and underwater vehicles) has been presented that throws light on trajectory planning, its optimization, and various issues in a summarized way. This kind of extensive research is not often seen in the literature, so an effort has been made for readers interested in path planning to fill the gap. Moreover, optimization techniques suitable for implementing ground, aerial, and underwater vehicles are also a part of this review. This paper covers the numerical, bio-inspired techniques and their hybridization with each other for each of the dimensions mentioned. The paper provides a consolidated platform, where plenty of available research on-ground autonomous vehicle and their trajectory optimization with the extension for aerial and underwater vehicles are documented

    Navigational Strategies for Control of Underwater Robot using AI based Algorithms

    Get PDF
    Autonomous underwater robots have become indispensable marine tools to perform various tedious and risky oceanic tasks of military, scientific, civil as well as commercial purposes. To execute hazardous naval tasks successfully, underwater robot needs an intelligent controller to manoeuver from one point to another within unknown or partially known three-dimensional environment. This dissertation has proposed and implemented various AI based control strategies for underwater robot navigation. Adaptive versions of neuro-fuzzy network and several stochastic evolutionary algorithms have been employed here to avoid obstacles or to escape from dead end situations while tracing near optimal path from initial point to destination of an impulsive underwater scenario. A proper balance between path optimization and collision avoidance has been considered as major aspects for evaluating performances of proposed navigational strategies of underwater robot. Online sensory information about position and orientation of both target and nearest obstacles with respect to the robot’s current position have been considered as inputs for path planners. To validate the feasibility of proposed control algorithms, numerous simulations have been executed within MATLAB based simulation environment where obstacles of different shapes and sizes are distributed in a chaotic manner. Simulation results have been verified by performing real time experiments of robot in underwater environment. Comparisons with other available underwater navigation approaches have also been accomplished for authentication purpose. Extensive simulation and experimental studies have ensured the obstacle avoidance and path optimization abilities of proposed AI based navigational strategies during motion of underwater robot. Moreover, a comparative study has been performed on navigational performances of proposed path planning approaches regarding path length and travel time to find out most efficient technique for navigation within an impulsive underwater environment

    Dynamic Analysis of Cracked Rotor in Viscous Medium and its Crack Diagnosis Using Intelligent Techniques

    Get PDF
    Fatigue cracks have high potential to cause catastrophic failures in the rotor which can lead to catastrophic failure if undetected properly and in time. This fault may interrupt smooth, effective and efficient operation and performance of the machines. Thereby the importance of identification of crack in the rotor is not only for leading safe operation but also to prevent the loss of economy and lives.The condition monitoring of the engineering systems is attracted by the researchers and scientists very much to invent the automated fault diagnosis mechanism using the change in dynamic response before and after damage. When the rotor with transverse crack immersed in the viscous fluid, analysis of cracked rotor is difficult and complex. The analysis of cracked rotor partially submerged in the viscous fluid is widely used in various engineering systems such as long spinning shaft used drilling the seabed for the extracting the oil, high-speed turbine rotors, and analysis of centrifuges in a fluid medium. Therefore, dynamic analysis of cracked rotor partially submerged in the viscous medium have been presented in the current study. The theoretical analysis has been performed to measure the vibration signatures (Natural Frequencies and Amplitude) of multiple cracked mild steel rotor partially submerged in the viscous medium. The presence of the crack in rotor generates an additional flexibility. That is evaluated by strain energy release rate given by linear fracture mechanics. The additional flexibility alters the dynamic characteristics of cracked rotor in a viscous fluid. The local stiffness matrix has been calculated by the inverse of local dimensionless compliance matrix. The finite element analysis has been carried out to measure the vibration characteristics of cracked rotor partially submerged in the viscous medium using commercially available finite element software package ANSYS. It is observed from the current analysis, the various factors such as the viscosity of fluid, depth and position of the cracks affect the performance of the rotor and effectiveness of crack detection techniques. Various Artificial Intelligent (AI) techniques such as fuzzy logic, hybrid BPNN-RBFNN neural network, MANFIS and hybrid fuzzy-rule base controller based multiple faults diagnosis systems are developed using the dynamic response of rotating cracked rotor in a viscous medium to monitor the presence of crack. Experiments have been conducted to authenticate the performance and accuracy of proposed methods. Good agreement is observed between the results

    Robust Model Predictive Control for Linear Parameter Varying Systems along with Exploration of its Application in Medical Mobile Robots

    Get PDF
    This thesis seeks to develop a robust model predictive controller (MPC) for Linear Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We aim to improve robust MPC methods for LPV systems with an input-output display. This improvement will be examined from two perspectives. First, the system must be stable in conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should have a reasonable computational load and not be conservative. Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. The controller is calculated as a linear combination of a set of offline predefined control laws. The coefficients of these offline controllers are derived from a real-time optimization problem. The control gains are determined to ensure stability and increase the terminal set. Secondly, in order to test the system's robustness to external disturbances, a free control move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied for online optimization, showing that this optimization method has better speed and accuracy than traditional algorithms. The proposed controller was compared with two methods (robust MPC and MPC with LPV model based on input-output) in reference tracking and disturbance rejection scenarios. It was shown that the proposed method works well in both parts. However, two other methods could not deal with the disturbance. Thirdly, a support vector machine was introduced to identify the input-output LPV model to estimate the output. The estimated model was compared with the actual nonlinear system outputs, and the identification was shown to be effective. As a consequence, the controller can accurately follow the reference. Finally, an interpolation-based MPC with free control moves is implemented for a wheeled mobile robot in a hospital setting, where an RNN solves the online optimization problem. The controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance rejection, online computational load, and region of attraction. The results indicate that our proposed method surpasses and can navigate quickly and reliably while avoiding obstacles

    Intelligent Diagnosis and Smart Detection of Crack in a Structure from its Vibration Signatures

    Get PDF
    In recent years, there has been a growing interest in the development of structural health monitoring for vibrating structures, especially crack detection methodologies and on-line diagnostic techniques. In the current research, methodologies have been developed for damage detection of a cracked cantilever beam using analytical, fuzzy logic, neural network and fuzzy neuro techniques. The presence of a crack in a structural member introduces a local flexibility that affects its dynamic response. For finding out the deviation in the vibrating signatures of the cracked cantilever beam the local stiffness matrices are taken into account. Theoretical analyses have been carried out to calculate the natural frequencies and mode shapes of the cracked cantilever beam using local stiffness matrices. Strain energy release rate has been used for calculating the local stiffness of the beam. The fuzzy inference system has been designed using the first three relative natural frequencies and mode shapes as input parameters. The output from the fuzzy controller is relative crack location and relative crack depth. Several fuzzy rules have been developed using the vibration signatures of the cantilever beam. A Neural Network technique using multi layered back propagation algorithm has been developed for damage assessment using the first three relative natural frequencies and mode shapes as input parameters and relative crack location and relative crack depth as output parameters. Several training patterns are derived for designing the Neural Network. A hybrid fuzzy-neuro intelligent system has been formulated for fault identification. The fuzzy controller is designed with six input parameters and two output parameters. The input parameters to the fuzzy system are relative deviation of first three natural frequencies and first three mode shapes. The output parameters of the fuzzy system are initial relative crack depth and initial relative crack location. The input parameters to the neural controller are relative deviation of first three natural frequencies and first three mode shapes along with the interim outputs of fuzzy controller. The output parameters of the fuzzy-neuro system are final relative crack depth and final relative crack location. A series of fuzzy rules and training patterns are derived for the fuzzy and neural system respectively to predict the final crack location and final crack depth.To diagnose the crack in the vibrating structure multiple adaptive neuro-fuzzy inference system (MANFIS) methodology has been applied. The final outputs of the MANFIS are relative crack depth and relative crack location. Several hundred fuzzy rules and neural network training patterns are derived using natural frequencies, mode shapes, crack depths and crack locations. The proposed research work aims to broaden the development in the area of fault detection of dynamically vibrating structures. This research also addresses the accuracy for detection of crack location and depth with considerably low computational time. The objective of the research is related to design of an intelligent controller for prediction of damage location and severity in a uniform cracked cantilever beam using AI techniques (i.e. Fuzzy, neural, adaptive neuro-fuzzy and Manfis)

    Design and analysis of Intelligent Navigational controller for Mobile Robot

    Get PDF
    Since last several years requirement graph for autonomous mobile robots according to its virtual application has always been an upward one. Smother and faster mobile robots navigation with multiple function are the necessity of the day. This research is based on navigation system as well as kinematics model analysis for autonomous mobile robot in known environments. To execute and attain introductory robotic behaviour inside environments(e.g. obstacle avoidance, wall or edge following and target seeking) robot uses method of perception, sensor integration and fusion. With the help of these sensors robot creates its collision free path and analyse an environmental map time to time. Mobile robot navigation in an unfamiliar environment can be successfully studied here using online sensor fusion and integration. Various AI algorithm are used to describe overall procedure of mobilerobot navigation and its path planning problem. To design suitable controller that create collision free path are achieved by the combined study of kinematics analysis of motion as well as an artificial intelligent technique. In fuzzy logic approach, a set of linguistic fuzzy rules are generated for navigation of mobile robot. An expert controller has been developed for the navigation in various condition of environment using these fuzzy rules. Further, type-2 fuzzy is employed to simplify and clarify the developed control algorithm more accurately due to fuzzy logic limitations. In addition, recurrent neural network (RNN) methodology has been analysed for robot navigation. Which helps the model at the time of learning stage. The robustness of controller has been checked on Webots simulation platform. Simulation results and performance of the controller using Webots platform show that, the mobile robot is capable for avoiding obstacles and reaching the termination point in efficient manner

    TOK'07 otomatik kontrol ulusal toplantısı: 5-7 Eylül 2007, Sabancı Üniversitesi, Tuzla, İstanbul

    Get PDF
    corecore