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Synopsis 

In recent years, there has been a growing interest in the development of structural health 

monitoring for vibrating structures, especially crack detection methodologies and on-line 

diagnostic techniques. In the current research, methodologies have been developed for 

damage detection of a cracked cantilever beam using analytical, fuzzy logic, neural network 

and fuzzy neuro techniques. The presence of a crack in a structural member introduces a 

local flexibility that affects its dynamic response. For finding out the deviation in the 

vibrating signatures of the cracked cantilever beam the local stiffness matrices are taken into 

account. Theoretical analyses have been carried out to calculate the natural frequencies and 

mode shapes of the cracked cantilever beam using local stiffness matrices. Strain energy 

release rate has been used for calculating the local stiffness of the beam. The fuzzy inference 

system has been designed using the first three relative natural frequencies and mode shapes 

as input parameters. The output from the fuzzy controller is relative crack location and 

relative crack depth. Several fuzzy rules have been developed using the vibration signatures 

of the cantilever beam. A Neural Network technique using multi layered back propagation 

algorithm has been developed for damage assessment using the first three relative natural 

frequencies and mode shapes as input parameters and relative crack location and relative 

crack depth as output parameters. Several training patterns are derived for designing the 

Neural Network. A hybrid fuzzy-neuro intelligent system has been formulated for fault 

identification.  

The fuzzy controller is designed with six input parameters and two output parameters. The 

input parameters to the fuzzy system are relative deviation of first three natural frequencies 

and first three mode shapes. The output parameters of the fuzzy system are initial relative 

crack depth and initial relative crack location. The input parameters to the neural controller 

are relative deviation of first three natural frequencies and first three mode shapes along with 

the interim outputs of fuzzy controller. The output parameters of the fuzzy-neuro system are 

final relative crack depth and final relative crack location.  A series of fuzzy rules and 

training patterns are derived for the fuzzy and neural system respectively to predict the final 

crack location and final crack depth.To diagnose the crack in the vibrating structure multiple 
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adaptive neuro-fuzzy inference system (MANFIS) methodology has been applied. The final 

outputs of the MANFIS are relative crack depth and relative crack location. Several hundred 

fuzzy rules and neural network training patterns are derived using natural frequencies, mode 

shapes, crack depths and crack locations. 

The proposed research work aims to broaden the development in the area of fault detection of 

dynamically vibrating structures. This research also addresses the accuracy for detection of 

crack location and depth with considerably low computational time. The objective of the 

research is related to design of an intelligent controller for prediction of damage location and 

severity in a uniform cracked cantilever beam using AI techniques (i.e. Fuzzy, neural, 

adaptive neuro-fuzzy and Manfis). 
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Research has been carried out in recent years for crack detection of dynamically vibrating 

structures from its modal parameters. A brief description about the methodologies that have 

been adapted for fault diagnosis has been given in the current chapter. At first background 

and motivation in the field of vibration analysis of damaged structures has been out lined. 

The second part of this chapter describes the aims and objective of the research. Finally the 

details of each chapter of the thesis for the current investigation have been explained in the 

third part of this chapter. 

1.1 Background and Motivation 

Most of the researches in the area of crack identification are done to avoid catastrophic 

failure of structures or engineering systems. Researchers from different domain of 

engineering stream have shown their interest to find out a potential tool for damage 

detection. On line condition monitoring, prediction and identification of cracks in structural 

systems as well as in mechanical components are the areas of application of the crack 

detection methodologies. A number of non destructive testing (NDT) techniques with lower 

order accuracy have been developed so far. Techniques developed for damage prediction in 

the field of structural health monitoring with practical applications have been demonstrated 

in very limited research work with very low success rate. 

It has been observed that the presence of cracks in structures or in machine members lead to 

operational problem as well as premature failure. A number of researchers throughout the 

world are working on structural dynamics and particularly on dynamic characteristics of 

structures with crack. Due to presence of crack the dynamic characteristics of structure 

changes. These signatures comprise of natural frequencies; the amplitude responses due to 

vibration and the mode shapes. Cracks present a serious threat to proper performance of 

structures and machines. Most of the failures are due to material fatigue. For this reason 

Chapter 1 

INTRODUCTION



   

2 

methods used for early detection and localization of cracks have been the subject of intensive 

research since several years. Since last two decades a number of experiments and theories 

have been developed to elucidate the phenomenon and determine the crack effect on dynamic 

structures. 

Beams are one of the most commonly used structural elements in numerous engineering 

applications and experience a wide variety of static as well as dynamic loads. Cracks may 

develop in beam-like structures due to such loads. Considering the crack as a significant form 

of such damage, its modelling is an important step in studying the behavior of damaged 

structures. Knowing the effect of crack on stiffness, the beam or shaft can be modeled using 

either Euler-Bernoulli or Timoshenko beam theories. The beam boundary conditions are used 

along with the crack compatibility relations to derive the characteristic equation relating the 

natural frequency, the crack depth and location with the other beam properties. Beam type 

structures are commonly used in steel construction and machinery industries. The current 

study is based on crack detection for structural health monitoring in regard to change in 

natural frequencies and mode shapes of the beam.  

Fatigue cracks are a potential source of catastrophic structural failure. To avoid failure 

caused by cracks, many researchers have performed extensive investigations to develop 

structural integrity monitoring techniques. Most of these techniques are based on vibration 

measurements and analysis because vibration based methods can offer an effective and 

convenient way to detect fatigue cracks. Generally, vibration based methods can be classified 

into two categories: linear and nonlinear approaches. Linear approaches detect the presence 

of cracks in a target object by monitoring changes in the resonant frequencies in the mode 

shapes or in the damping factors. Depending on the assumptions, the type of analysis, the 

overall beam characteristics and the kind of loading or excitation, a number of research 

papers containing a variety of different approaches have been reported in the relevant 

literature. In recent years, transport engineering has experienced serious advances 

characterized mainly by parameters like higher speeds and weights of vehicles. These 

parameters make the transportation problem more complex.  With a race towards high speed, 

high power and lightweight in rotating machinery design and operation often impose severe 

stress and environmental condition upon rotors. As rotating machinery is designed to operate 
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at higher mechanical efficiency; operating speed, power, and load are increased as weight 

and dimensional tolerances are decreased.  High torsional and radial loads, together with a 

complex pattern of rotor motion, can create a severe mechanical stress condition that may 

eventually lead to development of a crack in the shaft. The presence of a transverse crack in 

shaft/rotor incurs a potential risk of destruction or collapse. This produces high costs of 

production and maintenance. Detection of a crack in its early stages may save the rotor/beam 

for use after repair. By monitoring the system, depending upon the type and severity of the 

crack, it may be possible in some cases to extend the use of a flawed rotor without risking a 

catastrophic failure, while arrangements are being made for a replacement rotor. The method 

will also improve safety by helping to prevent major rotor failure. For the time being, the 

research on cracked rotor is still at the theoretical stage. With a well known fact the dynamic 

behavior of a structure changes due to presence of crack. There are two types of problems 

related to this topic: the first may be called direct problem and the second called inverse 

problem. The direct problem is to determine the effect of damages on the structural dynamic 

characteristics, while the inverse problem is to detect, locate and quantify the extent of the 

damages. In the past two decades, both the direct and the inverse problems have attracted 

many researchers. 

A direct procedure is difficult for crack identification and unsuitable in some particular cases, 

since they require minutely detailed periodic inspections, which are very costly. In order to 

avoid these costs, researchers are working on more efficient procedure in crack detection 

through vibration analysis.    

1.2 Aims and Objectives of this Research 

It is required that structures must safely work during its service life but, damages initiate a 

breakdown period on the structures. Cracks are among the most encountered damage types in 

the structures. It is an established fact that dynamic behavior of structures changes due to 

presence of crack in them. It has been observed that the presence of cracks in structures or in 

machine members lead to operational problem as well as premature failure. A number of 

investigators round the globe are working on structural dynamics and particularly on 

dynamic characteristics of structures with crack. Due to presence of cracks the dynamic 
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characteristics of structure changes. The change in dynamic behavior has been utilized by the 

researchers as one of the criteria of fault diagnosis for structures. Major characteristics of the 

structure which undergo change due to presence of crack are; natural frequencies, the 

amplitude responses due to vibration and the mode shapes. 

Scientific study on the changes in these characteristics can be widely utilized for the 

identification of crack in structures. In general fault detection in structures can be more 

specific with the help of these information. 

In the current investigation, a number of literatures published till now have been surveyed, 

reviewed and analyzed. It is felt that, the results presented by the researchers have not been 

utilized so far in a systematic way for engineering applications. Although information on 

some aspect are available but it is not exhaustive for real applications. A systematic attempt 

has been made in the present study to investigate the dynamic behavior of cracked cantilever 

beam structure using theoretical analysis, experimental analysis and artificial intelligence 

techniques for damage diagnosis of cracked structure. The dynamic responses of the system 

are used for crack prediction. 

The phases of the process plan for the present investigation are as follows: 

1. At first theoretical, free and forced vibration analyses of the cracked cantilever beam have 

been addressed. 

2. Experimental analysis is done to obtain the relative values of first, second and third modal 

natural frequencies and mode shapes. 

3. Training of the developed controllers has been done using artificial intelligence techniques 

with series of data obtained from theoretical and experimental analysis. These controllers 

predict relative values of crack depth and crack length from the three inputs such as relative 

values of first, second, third natural frequencies and mode shapes. 

For developing the analytical expressions on dynamic characteristics of structures, a single 

transverse crack in the structure has been considered in the theory and the analyses are 

presented in detail in subsequent chapters. 
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In all these theories, the presence of a transverse crack in the structure has been considered. 

This crack introduces local flexibility at the vicinity of the crack location. Boundary 

conditions are derived from the strain energy equation using castigliano’s theorem. Presence 

of crack also reduces the stiffness of the structure which has been derived from stiffness 

matrix, the details of which have been presented in the respective sections. For dynamic 

behavior of beam with a transverse crack, Timoshenko beam theory with modified boundary 

conditions due to presence of crack, have been used to find out the theoretical expressions for 

natural frequencies and mode shapes for the beam. The first three relative value of first, 

second, third natural frequencies and mode shapes obtained from theoretical analysis are 

used as input parameters to the controller (fuzzy, neural network, fuzzy-neuro, MANFIS 

controller) for crack identification. The outputs from the controller are relative crack location 

and relative crack depth. 

In the last stage of the investigation the effect of crack depth and crack location on the modal 

values of natural frequencies and mode shapes are obtained with a very convincing manner. 

Results obtained from the theoretical, fuzzy, fuzzy-neuro, manfis and experimental analysis 

are compared and a close agreement has been found. Suitable numerical methods are used in 

order to solve the theoretical equations developed. Useful conclusions are drawn from the 

numerical results of respective sections. The results from the various methodologies 

mentioned above are validated using the developed experimental set up.  

From the vibration analysis of a cracked structure the crack characteristics can be detected. 

Smart method can be developed for on line condition monitoring of damaged structure with 

the help of artificial intelligence techniques. The system can be developed using fuzzy logic 

and neural network techniques. Fuzzy system has the advantage of capturing the imprecise 

nature of human knowledge and reasoning processes. The neural network has a different 

approach for designing of the intelligent system because of its tremendous learning 

capability. These two innovative modeling approaches share some common characteristics 

such as i) they assume parallel operations,  ii) they are well known for their fault tolerance 

capabilities . Researchers from different field of engineering applications have integrated the 

capabilities of neural network and fuzzy logic techniques to develop a hybrid method, which 

has a better capability than the independent methods. This is one of the most important 
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reasons for carrying out the research work to develop a hybrid technique for crack detection. 

Multiple Adaptive Neuro-Fuzzy Inference System (MANFIS) has also been devised for 

crack diagnosis. 

In the current investigation work has been done to develop methodologies with the aid of 

artificial intelligence techniques for crack detection in various structural members. 

1.3 Outline of the Research Work 

The research work as outlined in this thesis is broadly divided into ten chapters. Following 

the introduction, Chapter two presents the literature review of previous work on structural 

vibration and its analysis, effect of different parameters on dynamic response of cracked 

structures, dynamic characteristics of beam with transverse crack, crack detection by 

artificial intelligence technique such as fuzzy logic, neural network, fuzzy neuro, multi 

adaptive neuro-fuzzy inference system (MANFIS).  

Chapter three analyses the dynamics characteristics of beam with a transverse crack using the 

expression of strain energy release rate and strain energy density function. The local 

flexibilities generated due to the presence of crack have been evaluated. The free and forced 

vibration analyses have been performed to compute the vibration characteristics of the 

cracked cantilever beam. The results and discussions of the numerical analysis have also 

been presented in this chapter. Finally, the results of experimental and numerical analyses 

have been compared for validation of theoretical analysis. 

Chapter four defines the concept of the fuzzy logic and outlines the methodology used to 

design an intelligent fuzzy logic controller for prediction of relative crack location and 

relative crack depth using the relative deviations of first three natural frequencies and first 

three mode shapes. The results obtained from the developed fuzzy controller have been 

validated with the results from experimental analysis.  

Chapter five discusses the neural network technique being used for crack detection in 

vibrating structures. Comparisons of the results from numerical, fuzzy controller, neural 

controller and experimental analyses have been presented. 
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In Chapter six the application of hybrid intelligent system (fuzzy neuro controller) for crack 

detection has been discussed. The analysis of fuzzy and neural segment of the fuzzu-neuro 

controller has been presented. Comparisons of results of the numerical, fuzzy, neural, fuzzy-

neuro and experimental analysis have been discussed.  

Chapter seven discusses the concept of the multiple adaptive neuro fuzzy inference system 

(MANFIS) and outlines the methodology for prediction of relative crack location and relative 

crack depth using deviations of vibration signatures of cracked beam. The results of the 

numerical, fuzzy, neural, fuzzy-neuro, MANFIS and experimental analysis have been 

discussed. 

In chapter eight the details of the developed experimental set-up for vibration analysis along 

with the specifications of the different equipments used are presented. Finally the 

experimental results are discussed. Chapter nine summarizes the findings of all chapters 

discussed above. 

Finally in Chapter ten contributions, conclusions of this research and future directions for 

further investigation have been discussed. The developed methodologies are found to be 

suitable for fault diagnosis of vibrating structures.  
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This chapter reviews the work related to the analyses of crack in dynamic structures and the 

development of crack diagnosis tool in damaged structures. The progress made in the last 

few decades in the field of crack diagnosis of dynamically vibrating structures has been 

described. This chapter also presents a literature review of past and recent developments in 

area of crack identification and prediction with the aid of artificial intelligence techniques.  

2.1  Introduction 

A significant amount of research has been published in many aspects related to crack 

detection. This section discusses the contributions that cover structural vibration and its 

analysis, dynamics of cracked structures, fault identification methodologies and artificial 

intelligence technique that helps to design an intelligent controller for crack identification. A 

large number of researchers have used the free and forced vibration analysis for developing 

algorithm for crack detection. The ultimate goal of this research is to establish new 

methodologies which will predict the crack location and its intensity in a dynamically 

vibrating structure by the help of artificial intelligence technique with considerably less 

computational time and high precision. This chapter summarizes the past work, mostly in 

computational methods for structures, and discusses possible directions for research.  

Another challenge in literature review is that even the perception of what constitutes progress 

varies widely in the research community. The representations would be difficult to extend to 

different structural and mechanical member for crack detection, where the systems work in 

various environments (i.e. with noise, chaos, uncertainty). Despite these challenges, the next 

section reviews and highlights some of the interesting, important and experimental 

milestones. This chapter provides details survey report within important aspects of what the 

researchers have worked in the area of vibration analysis and planning for methodologies to 

identify crack using fuzzy logic, neural network, neuro-fuzzy and MANFIS technique. 

Chapter 2 

LITERATURE REVIEW
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2.2 History and Development of Dynamic Analysis of Cracked Structure 

The development of techniques for crack identification in real-world environments 

constitutes one of the major trends in the current research on fault diagnosis. Some of the 

researchers have analyzed the dynamic response of cracked structure during last few decades.  

Ayre et al. [1] have developed a method for calculating the natural frequencies of continuous 

beams of uniform span length by vibration analysis. Miles [2] has carried out analysis of 

beams on many supports using vibration parameters. Bollinger et al. [3] have presented a 

method for analysis and prediction of the static and dynamic behavior of machine tool 

spindle systems using finite difference technique. Gladwell [4] has analysed a large structural 

system using component mode synthesis method, for vibration analysis and shown the 

effectiveness of component mode synthesis method with reference to other approaches. 

Mercer et al. [5] have developed a transfer matrix method for the prediction of natural 

frequencies and normal modes of a row of skin-stringer panels. They have also presented few 

examples. Watrasiewicz [6] has applied Wavefront reconstruction interferometry to 

mechanical vibration analysis and validated the results with experimental results. Lin et al. 

[7] have briefly surveyed the use of transfer matrix method for analyzing the dynamic 

behavior of beam structures.  Chun [8] has considered the free vibration of a beam hinged at 

one end by a rotational spring (with a constant spring constant) and the other end free.  Lee 

[9] has evaluated the eigenfrequencies for the fundamental mode of a beam hinged at one end 

by a rotational spring by vibration analysis.  Thomas et al. [10] have used straight beam finite 

elements for the analysis of the vibration of curved beams and concluded that the proposed 

method gives superior results than a solid 20 node isoparametric element. Venkateswara et 

al. [11] have revealed that the Galerkin finite element method is very accurate and even with 

a one element idealization of the beam the fundamental frequencies coincide up to five 

significant figures.   

Broadly the development of dynamic analysis of cracked structure can be divided into two 

parts 1) structural vibration and its analysis 2) Dynamics of cracked structures. 
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2.2.1  Structural Vibration and its Analysis  

The development of vibration theory, as a subdivision of mechanics, came as a natural result 

of the development of the basic sciences i.e. mathematics and mechanics. The sciences are 

founded in the middle of the first millennium B.C. by the ancient Greek philosophers. The 

term vibration has been used from Vedic times of India, approximately 10,000 B.C.. 

Pythagoras of Somas (570-497 B.C.) has conducted several vibration experiments with 

hammers, springs, pipes, and shells. He established the first vibration research laboratory. 

Moreover, he has invented the monochord, a purely scientific instrument to conduct 

experimental research in the vibration of taut strings and to set a standard for vibration 

measurements. 

Extensive experimental results are available for the vibrating strings since Pythagoras times. 

Daniel Bernoulli has explained the experimental results using the principle of superposition 

of the harmonics and has introduced the idea of expressing the response as a sum of the 

simple harmonics. The problem of the vibrating string is solved mathematically first by 

Lagrange considering it as sequence of small masses. The wave equation is introduced by 

D’Alembert in a memoir to the Berlin Academic. He has used it in his memoir also for 

longitudinal vibration of air columns in pipe organs. Experimental results for the same 

problem are obtained by Pythagoras. Euler obtained the differential equation for the lateral 

vibration of bars and he has determined the functions that we now call normal functions and 

the equation that we now call frequency equation for beams with free, clamped or simply 

supported ends, while Daniel Bernoulli has supplied him with experimental verification. The 

first systematic treatise on vibration has been written by Rayleigh [12].  He has formalized 

the idea of normal functions. He has introduced systematically the energy and approximate 

methods in vibration analysis, without solving differential equations. This idea has been 

further developed by Ritz [13]. Timoshenko theory accounts for rotary inertia and the 

correction due to shear deformation of the lateral vibration of beam. Donaldson [14] has 

presented the importance of vibration as a flanking path in airborne noise insulation and the 

reduction of airborne noise transmitted through panels damped by friction. Henderson et al. 

[15] have formulated analytical techniques, based on transfer matrix methods, and presented 

for the analysis of the forced vibrations of cylindrically curved multi-span structures with 
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various examples. Tottenham et al. [16] have used the matrix progression method to 

determine eigenvalues and eigenvectors for the free vibration problem of thin circular 

cylindrical shells. Petyt et al. [17] have calculated the frequencies and modes of vibration of 

a five bay curved beam on hinged supports using the finite element displacement method, 

which are confirmed experimentally. Gorman [18] has proposed method to calculate the first 

five frequencies and modal shapes for the entire family of beams regardless of the location of 

the intermediate support following free lateral vibration of double-span uniform beams.  

2.2.2  Dynamics of Cracked Structures 

The problem on crack is the central problem of science for several decades. The mechanics 

of fracture as an independent branch of the mechanics of deformable solids has originated 

quite recently. Galileo Galilei is rightly considered the founder of fracture mechanics. He has 

stated that the breaking load is independent of the length of a tension bar and is directly 

proportional to its cross sectional area. In general the first stage of the investigation on 

fracture mechanics, is associated with the names of Galileo Galilei, Robert Hooke, Charles 

Augustin de Coulomb, Barre de Saint Venant and Otto mohr. Their investigation is 

characterized by extensive studies of deformation properties of solids and by the 

development of various failure criteria termed strength theories. These theories state that 

fracture occurs at the moment when at a certain point of a body a particular combination of 

parameters, such as stress, strain. etc., reaches its critical value. In this approach the process 

of fracture propagation through the volume of the body is completely ignored, which is 

justified only in cases where the development of defects causing failure takes place in a small 

vicinity of the critical region. 

Irwin [19] first has studied about cracked beam for finding out local flexibilities of the beam 

at crack location. Later Tada [20] has developed theories for strain energy density function 

with the help of stress intensity function at the crack section. With the light of above theory 

Pafelias [21], Gasch [22] and Henry et al. [23] have analyzed the dynamic behavior of a 

simple cracked rotor. Also Mayes et al. [24] have analyzed the vibrational behavior of a 

rotating shaft system containing a transverse crack. Freud et al. [25] have analysed the 

dynamic fracture of a beam or plate in plane bending. Subsequently Adeli et al. [26] have 
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analyzed the effect of axial force for dynamic fracture of a beam or plate in pure bending. 

Dentsoras et al. [27] in their investigation they have taken coupling effect of various type of 

vibration (such as bending vibration, torsional vibration and longitudinal vibration) for 

analysis of dynamic behavior of cracked beam. Wong et al. [28] have diagnosed the fracture 

damage in structures by modal frequency method. Also Nian et al. [29], Quain et al. [30], 

Ismail et al. [31] and Sekhar et al. [32] have used the vibrational diagnosis approach for 

detection of structural fault. Sorkin et al. [33] have evaluated the performance of different 

methodologies for detecting the initiation and propagation of cracks by cyclic loading of the 

structure with particular attention to the requirements for high-performance ship structures. 

Rao et al. [34] have developed a finite element model to analyse three typical problems 

pertaining to the vibrations of initially stressed thin shells of revolution. Wood [35] has 

reviewed significant factors leading to the development of damage tolerance criteria and 

illustrate the role of fracture mechanics in the analysis and testing aspects necessary to satisfy 

the necessary requirements to prevent damage from growing to catastrophic size prior to 

detection in aircrafts. 

2.3 Effect of Different Parameters on Dynamic Response of Cracked 
Structures 

The effect of crack parameters on the dynamic response of the cracked structure can be 

further established with the review of the following published papers.  

Dimarogonas et al. [36] have studied the dynamic response of a cracked cantilever shaft due 

to the local flexibility generated at the crack section. The results from the analytical solution 

are validated using developed experimental setup. Nonlinear vibration of beams made of 

functionally graded materials (FGMs) containing an open edge crack has been studied by 

Kitipornchai et al. [37] based on Timoshenko beam theory and von Kármán geometric 

nonlinearity. The cracked section is modeled as a mass less elastic rotational spring. It is 

found that the intact and cracked FGM beams show different vibration behavior.  Rizos et al. 

[38] has determined the crack location and its depth in a cantilever beam from the vibration 

modes. Analytical results are used to relate the measured vibration modes to the crack 

location and depth. It is stated that the crack location can be found and depth can be 

estimated with satisfactory accuracy.  Ostachowicz et al. [39] have assumed an open and 
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closed crack with triangular disk finite elements. They have analyzed the forced vibrations of 

the beam, the effects of the crack locations and sizes on the vibrational behavior and 

discussed a basis for crack identification. 

2.4 Dynamic Characteristics of Beam with Transverse Crack 

The dynamic characteristics of the cracked structures such as natural frequencies and mode 

shapes are dependent on the crack depth and its position. Following review discusses on the 

effect of crack on vibrating structure.  

Shen et al. [40, 41] have proposed an identification procedure to determine the crack 

characteristics by measuring the difference between natural frequencies and mode shapes. 

They have tested the method for simulated damage in the form of one-side or symmetric 

cracks in a simply supported Bernoulli-Euler beam to evaluate the sensitivity of the solution 

of damage identification. The crack can be simulated by an equivalent spring, connecting the 

two segments of the beam, as stated by Narkis [42]. Analysis of this approximate model 

results in algebraic equations which relate the natural frequencies of beam and crack 

characteristics. The robustness of the proposed method is confirmed by comparing it with the 

results from finite element calculations. Müller et al. [43] have proposed a model to detect 

the crack and establish a clear relation between shaft cracks in turbo rotors and induced 

phenomena in vibrations. This model is designed to estimate the nonlinear effects. Different 

crack identification techniques have been discussed briefly by Dimarogonas [44] and they 

have found that crack in a structural member introduce a local flexibility which affect its 

vibration response. Tsai et al. [45] have investigated diagnostic method of determining the 

position and size of a transverse open crack on a stationary shaft without disengaging it from 

the machine system assuming  the crack as a joint of a local spring. To obtain the dynamic 

characteristics of a stepped shaft and a multidisc shaft the transfer matrix method is 

employed by them on the basis of Timoshenko beam theory. Gounaris et al. [46] have 

proposed a method for crack identification in beams assuming the crack to be always open 

and the method is based on eigenmodes of the structure. In this paper they have co-related 

the mode differences with crack depth and location. A cracked Euler-Bernoulli cantilevered 

beam with an edge crack has been formulated by Chondros and Dimarogonas [47, 48] for 
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vibration analysis. Yokoyama et al. [49] have studied the vibration characteristics of a 

uniform Bernoulli-Euler beam with a single edge crack using a modified line-spring model. 

They have determined the natural frequencies and the corresponding mode shapes for 

uniform beams having edge cracks of different depths at different positions. Kisa et al. [50] 

present a novel numerical technique applicable to analyze the free vibration analysis of 

uniform and stepped cracked beams with circular cross section using finite element and 

component mode synthesis methods. To reveal the accuracy and effectiveness of the offered 

method, a number of numerical examples are demonstrated for free vibration analysis of 

beams. Damage detection in vibrating beam systems has been done by Fabrizio et al. [51] by 

measuring the natural frequencies to locate and quantify the damage. Xia et al. [52] have 

presented a technique for damage identification by selecting a subset of measurement points 

and corresponding modes. They have used two factors for measuring the damage, the 

sensitivity of a residual vector to the structural damage and the sensitivity of the damage to 

the measured noise. A new method of vibration-based damage identification in structures 

exhibiting axial and torsional responses has been proposed by Duffey et al. [53]. The method 

has been derived to detect and localize linear damage in a structure using the measured 

modal vibration parameters. Cracked beam element method for structural analysis has been 

used by Viola et al. [54] for detection of crack location. The local flexibility introduced by 

cracks changes the dynamic behavior of the structure and by examining this change, crack 

position and magnitude can be identified. In order to model the structure a special finite 

element for a cracked Timoshenko beam has been developed. Effect of the cracks on the 

stiffness matrix and consistent mass matrix are investigated and the cracks in the structure 

were identified using the modal data. Theoretical and experimental dynamic behavior of 

different multi-beams systems containing a transverse crack has been performed by Saavedra 

and Cuitino [55]. Yang et al. [56] have developed an energy-based numerical model to 

investigate the influence of cracks on structural dynamic characteristics during the vibration 

of a beam with open crack. Upon the determination of strain energy in the cracked beam, the 

equivalent bending stiffness over the beam length is computed. Gounaris et al. [57] have used 

a method for rotating cracked shafts to identify the depth and the location of a transverse 

surface crack. A local compliance matrix of different degrees of freedom is used to model the 

transverse crack in the shaft of circular cross section, based on available expressions of the 
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stress intensity factors and the associated expressions for the strain energy release rates. 

Fernandez-saez et al. [58] have presented simplified method of evaluating the fundamental 

frequency for the bending vibrations of cracked Euler–Bernouilli beams. Their method is 

based on the well-known approach of representing the crack in a beam through a hinge and 

an elastic spring, by adding polynomial functions to that of the un-cracked beam. This 

approach is applied to simply supported beams with a cracked section in any location of the 

span. Yang et al. [59] have developed a method to detect the onset and progression of surface 

cracks in rotary shafts. They have used a wavelet -based algorithm effective in identifying 

the nonlinear dynamical characteristics of a model-based, cracked rotor. Saavedra et al. [60] 

have presented a theoretical and experimental dynamic analysis of a rotor-bearing system 

with a transversely cracked shaft by modeling a cracked cylindrical shaft using finite 

element. They have proposed a simplified opening and closing crack model and the analysis 

is being done using Hilbert, Hughes, and Taylor integration method (HHT) implemented in 

Matlab platform.  Kim et al. [61] have derived a new algorithm to predict locations and 

severities of damage in structures using modal characteristics. They have reviewed two 

existing algorithms and formulated a new algorithm by eliminating the erratic assumptions 

and limitations in those existing algorithm. As described by them this new proposed method 

has been applied to a two span continuous beam and the results shown an improved accuracy 

in crack location and severity estimation. An analysis has been performed by Patil et al. [62] 

for the detection of multiple cracks using frequency measurements. Their method is based on 

transverse vibration modeling through transfer matrix method and representation of a crack 

by rotational spring. The procedure gives a linear relationship explicitly between the changes 

in natural frequencies of the beam and the damage parameters. Darpe et al. [63] have studied 

a simple Jeffcott rotor with two transverse surface cracks. The stiffness of such a rotor is 

derived based on the concepts of fracture mechanics. Subsequently, the effect of the 

interaction of the two cracks on the breathing behavior and on the unbalance response of the 

rotor is studied. Zheng et al. [64] have presented a tool for vibrational stability analysis of 

cracked hollow beams. According to them each crack is assigned with a local flexibility 

coefficient which is a function of depth of crack. They have used least squared method to 

device the formulae for shallow cracks and deep cracks. Zou et al. [65] have presented a 

slightly modified version of local flexibility of Dimarogonas [2] which is more suitable for 
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theoretical model. According to them there are extensive research on the vibrational behavior 

of the cracked rotor and use of response characteristics to detect crack. Owolabi et al. [66] 

have done experimental investigations with two sets of aluminum beams with a view to 

detect, quantify, and determine the effect of cracks and locations. According to them the 

damage detection depends on the measured changes in the first three natural frequencies and 

the corresponding amplitudes. Identification of location and severity of damage in structures 

using frequency response function (FRF) data have been formulated by Hwang et al. [67]. To 

verify the proposed method, examples for simple cantilever and a helicopter rotor blade are 

numerically demonstrated.  A method for crack identification in double-cracked beams based 

on wavelet analysis has been presented by Loutridis et al. [68] using continuous wavelet 

transform. The location of the crack is determined by the sudden changes in the spatial 

variation of the transformed response. A comprehensive analysis of the stability of a cracked 

beam subjected to a follower compressive load is presented by Wang [69].The beam is fixed 

at its left end and restrained by a translational spring at its right end. The vibration analysis 

on such cracked beam is conducted to identify the critical compression load for flutter or 

buckling instability based on the variation of the first two resonant frequencies of the beam. 

Kishen et al. [70] have studied the fracture behavior of cracked beams and columns using 

finite element analysis. Assuming that failure occurs due to crack propagation when the 

mode I stress intensity factor reaches the fracture toughness of the material, the failure load 

of cracked columns are determined for different crack depths and slenderness ratios.  Hwang 

et al. [71] have presented method to identify the locations and severity of damage in 

structures using frequency response function data. Dharmaraju et al. [72] have used Euler–

Bernoulli beam element and finite element modeling for crack identification. The transverse 

surface crack is considered to remain open. The present identification algorithms have been 

illustrated through numerical examples. Khiem et al. [73] have formulated a method to detect 

multiple cracks of beams by analyzing natural frequencies in the form of a non-linear 

optimization problem, then solving by using the MATLAB functions. They have applied 

spring model of crack to establish the frequency equation based on the dynamic stiffness for 

the multiple cracked beam. Kyricazoglou et al. [74] have presented method to detect the 

damage in composite laminates by measuring and analyzing the slope deflection curve of 

composite beams in flexure. They have provided the damage mechanism and location of 
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damage from comparison of dynamic results with the dynamic response from the damaged 

laminates. They suggested that slope deflection curve is a promising technique for detection 

initial damage in composites.  Zheng et al. [75] have used finite element method to find out 

the natural frequencies and mode shapes of a cracked beam. They have used overall 

additional flexibility matrix instead of local additional flexibility matrix to find out the 

stiffness matrix. According to them the overall additional matrix gives more accurate result 

to calculate the natural frequencies. Mackerle [76] has reviewed the finite-element methods 

along with electrical, magnetic and electromagnetic methods, sonic methods, mechanical 

methods, optical methods, condition monitoring methods applied for the non-destructive 

evaluation of materials. Wang et al. [77] have investigated the bending and torsional 

vibration of a fiber rein- forced composite cantilever with a surface crack. Their analysis 

concluded that changes in natural frequencies and the corresponding mode shapes depends 

on both crack location and material properties. Cerri et al. [78] have proposed a method to 

detect the structural damage affecting a narrow zone of a doubly hinged plane circular arch 

by measuring natural frequencies. Nobile et al. [79] have applied S-theory to determine crack 

initiation and direction for cracked T-beams and circumfentially cracked pipes. As stated by 

them they have used strain energy density factor(s) which is a function of stress intensity 

factor. According to them the strain energy density theory has the ability to describe the multi 

scale feature of material damage and in dealing with mixed mode crack propagation problem. 

A model-based fault diagnosis methodology for nonlinear systems is presented by Luh et al. 

[80]. Their simulation results show that it can detect and isolate actuator faults, sensor faults, 

and system component faults efficiently. A formulation has been developed by Chondros 

[81] for the torsional vibration analysis of a cylindrical shaft with a circumferential crack. 

The work is compared with existing methods. Structural damage detection using transfer 

matrix method has been performed by Escobar et al. [82] for locating and estimating 

structural damage. A robust fault detection method has been formulated by McAdams et al. 

[83] for the damage assessment of turbine blades considering impact of crack damage and 

manufacturing variation. The changes in the transverse vibration and associated 

eigenfrequencies of the beams are considered. They have observed that changes in fault 

detection monitoring signals caused by geometric variation are small with those caused by 

damage and impending failure. For beams containing multiple cracks and subjected to axial 
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force a new method has been proposed by Binici [84] which used a set of end conditions as 

initial parameters for determining the mode shape functions. Analysis for detection of the 

location and size of the cracks has been performed by Chang et al. [85]. The proposed 

analysis is able to calculate both the positions and depths of multi-cracks from spatial 

wavelet based method. First, the mode shapes of free vibration and natural frequencies of the 

multiple cracked beams are obtained. Then the mode shapes are analyzed by wavelet 

transformation to get the positions of the cracks.  The elastic characteristics of a cantilevered 

composite panel of large aspect ratio and with an edge crack are investigated by Wang et al. 

[86].The fundamental mode shapes of the cracked cantilever are used to study the crack. It is 

observed that the analysis may help the development of an online diagnosis tool. Crack 

identification in beam using dynamic response has been proposed by Law et al. [87]. The 

crack is modeled following the Dirac delta function. The dynamic responses are calculated 

based on modal superposition. The proposed identification algorithm is also verified 

experimentally from impact hammer tests on a beam with a single crack. Cam et al. [88,90] 

have performed a study to obtain information about the location and depth of the cracks in 

cracked beam. Their study suggested determining the location and depth of cracks by 

analyzing the vibration signals. Sekhar [89] applied the theory of model based identification 

in a rotor system with two cracks. They have analysed the detection and monitoring of slant 

crack in the rotor system using mechanical impedance. Loutridis et al. [91] have presented a 

new method for crack detection in beams based on instantaneous frequency and empirical 

mode decomposition. The dynamic behavior of a cantilever beam with a breathing crack 

under harmonic excitation is investigated both theoretically and experimentally. Patil et al. 

[92] have utilized a method for prediction of location and size of multiple cracks based on 

measurement of natural frequencies and verified experimentally for slender cantilever beams 

with two and three normal edge cracks. Their analysis is based on energy method and 

representation of a crack by a rotational spring. The equation of motion and corresponding 

boundary conditions has been developed by Behzad et al. [93] for forced bending vibration 

analysis of a beam with an open edge crack. A uniform Euler-Bernoulli beam and Hamilton 

principle have been used in this analysis. They have stated that there is an agreement between 

the theoretical results and finite element results.  Nahvi et al. [94] have proposed method 

based on measured frequencies and mode shapes of the beam. In their experimental set up 
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they have used a hammer as an exciter and the responses are obtained in an accelerometer 

assuming the crack to be an open crack. To identify the crack location and depth the 

intersection of contours of the normalized frequency with the constant modal natural 

frequency planes are used. Leontios et al. [95] have presented a new method of crack 

detection in beams based on Kurtosis. As stated by them the location of the crack has been 

determined by the abrupt changes in spatial varitation of the analyzed response and the size 

of the crack is calculated by the estimation of Kurtosis. In this work the proposed method has 

been validated by experiments on crack Plexiglas beams. Vibration analysis of an axially 

loaded cracked Timoshenko beam have been performed by Mei et al. [96] considering axial 

loading, shear deformation and rotary inertia criteria. The transmission and reflection 

matrices for various discontinuities of an axially loaded Timoshenko beam are derived. 

These matrices are combined to provide a concise and systematic approach for both free and 

forced vibration analyses of beams with cracks and sectional changes. Chasalevris and 

Papadopoulos [97] have studied the dynamic behavior of a cracked beam with two transverse 

surface cracks. Each crack is characterized by its depth, position and  relative angle. A local 

compliance matrix of two degrees of freedom, bending in the horizontal and the vertical 

planes is used to model the rotating transverse crack in the shaft and is calculated based on 

the available expressions of the stress intensity factors and the associated expressions for the 

strain energy release rates. The natural frequencies have been obtained by Loya et al. [98] for 

Timoshenko cracked beams with different boundary conditions by modeling the beam as two 

segments connected by two mass less springs. The results show that the method provides 

simple expressions for calculating the natural frequencies of cracked beams and it gives good 

results for shallow cracks.  Humar et al. [99] have studied the vibration based damage 

detection method and tried to find number of difficulties present in those damage 

identification methods. According to them vibration frequencies, mode shapes and damping 

are directly affected by the physical change in the structure including its stiffness. Vibration 

based structural damage detection in flexural members using multi criteria approach has been 

presented by Shih et al. [100]. In the analysis computer simulation techniques have been 

developed and applied for damage assessment in beams and plates. In addition to changes in 

natural frequencies, two methods, called the modal flexibility and the modal strain energy 

method have been applied which are based on the vibration characteristics of the structure. 
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Dash and chatterjee [101] have studied the fracture toughness of the epoxy composites using 

numerical technique. Harsha [102] has presented a model for investigating structural 

vibrations in rolling element bearings due to radial internal clearance using the vibration 

parameters and the Hertzian elastic contact deformation theory. Panda et al. [103] have 

investigated the nonlinear planar vibration of a pipe conveying pulsatile fluid subjected to 

principal parametric resonance in the presence of internal resonance. A numerical technique 

based on the global-local hybrid spectral element (HSE) method is proposed by Hu et al. 

[104] to study wave propagation in beams containing damages in the form of transverse and 

lateral cracks. This method is employed to investigate the behaviors of wave propagation in 

beams containing multiple transverse cracks and lateral cracks. Yang et al. [105] have 

discussed on the free and forced vibration of Euler–Bernoulli beams containing open edge 

cracks subjected to an axial compressive force and a concentrated transverse load moving 

along the longitudinal direction. Analytical solutions of natural frequencies and dynamic 

deflections are obtained for cantilever beams. It is found that the natural frequencies 

decreases and the dynamic deflection increases due to the presence of the edge crack and the 

axial compressive force. Yoona et al. [106] have investigated the influence of two open 

cracks on the dynamic behavior of a double cracked simply supported beam both analytically 

and experimentally. The equation of motion is derived by using the Hamilton’s principle and 

analyzed by numerical method. The simply supported beam is modeled by the Euler-

Bernoulli beam theory. A combined analytical and experimental study has been conducted by 

Wang et al. [107] to develop efficient and effective damage detection techniques for beam-

type structures. In combination with the uniform load surface (ULS), two new damage 

detection algorithms, i.e., the generalized fractal dimension (GFD) and simplified gapped-

smoothing (SGS) methods, have been proposed for prediction of damage location and size 

successfully. The results from the proposed algorithm are experimentally validated.  

Lissenden et al. [108] have focused on the relationship between a crack and load, which 

propagated due to bending loads, and the torsional stiffness of the shaft. They have used a 3-

D finite element model of a shaft section with a crack to predict the effect of a crack on 

stiffness. Al-Said [109] has proposed an algorithm based on a mathematical model to identify 

crack location and depth in an Euler-Bernoulli beam carrying a rigid disk. As stated by him, 

the lateral vibration of the beam has been described in the mathematical model using 
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Lagrange’s equation. He has used mode shapes for two uniform beams connected by mass 

less torsional spring as trial function for the proposed method. The presented method utilizes 

the natural frequencies to estimate the crack location and depth. Kisa et al. [110] have 

presented a numerical technique to analyze the free vibration of uniform and stepped cracked 

beam of circular cross section. They have used finite element and component mode synthesis 

methods for the analysis and computed the flexibility matrix taking into account inertia 

forces and calculated the inverse of the compliance matrix by following appropriate 

expression for stress intensity factor and strain energy release rate. Karthikeyan et al. [111] 

have followed a method for crack location and size from the free and forced response of the 

beam. They have used Finite Element Method for free and forced vibration analysis of the 

open transverse surface crack beam. Orhan [112] has studied the free and forced vibration 

analysis of a cracked beam to identify the crack in a single- and two-edge cracks cantilever 

beam. Darpe [113] has presented a method using both the typical nonlinear breathing 

phenomenon of the crack and the coupling of bending-torsional vibrations to detect fatigue 

transverse cracks in rotating shafts. Viola et al. [114] have investigated the in-plane linear 

dynamic behavior of multi-stepped and multi-damaged circular arches. They have proposed 

analytical and numerical solutions for multi-stepped arches in damaged and undamaged 

configurations by adapting Euler characteristics exponent procedure for analytical solutions 

and focused on generalized differential quadrature method, generalized differential 

quadrature element for numerical solutions. According to them the convergence and stability 

characteristics of the generalized differential quadrature element techniques are investigated 

and the stability of the numerical procedure is found to be very good. Sinha [115] has 

proposed the higher order spectra tools for the identification of presence of harmonics in a 

signal which is a typical case of a non linear dynamic behavior in case of a mechanical 

system. He has found that for a misaligned rotating shaft or a cracked shaft, they are going to 

generate higher harmonics exhibiting non linear behavior. He has concluded that the results 

from higher order spectra tools are encouraging and suggested the use of the tool for 

condition monitoring of rotating machinery. Peng et al. [116,117,137] have used nonlinear 

output frequency response functions (NOFRFs), to explain the occurrence of the nonlinear 

phenomena when a cracked structure is subjected to sinusoidal excitations. They have also 

applied finite element model to analyze the crack induced nonlinear response of a beam by 
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using NOFRF concept. From this research study it has been concluded that NOFRF concept 

can be used in fault diagnosis of mechanical structures. Tandon et al. [118] have compared 

the condition monitoring techniques available for rolling element bearing namely vibration, 

stator current, acoustic emission and shock pulse method. They have concluded that acoustic 

emission proved to be the best among them. Friswell [119] has given an overview of the use 

of inverse method in the detection of crack location and size by using vibration data. He has 

suggested that the uncertain parameters associated with the model have to be identified. A 

number of problems with this method have been discussed for health monitoring, including 

modeling error, environmental efforts, damage localization and regularization. Yan et al. 

[120] have presented a general summary and review of vibration-based structural damage 

detection techniques. Various structural damage detection methods based on structural 

dynamic characteristic parameters are summarized and evaluated. The principle of intelligent 

damage diagnosis and its application prospects in structural damage detection are introduced. 

Naniwadekar et al. [121] have presented a technique based on measurement of change in 

natural frequencies and modeling of crack by rotational spring to detect a crack with straight 

front in different orientations in a section of straight horizontal steel hollow pipe. Variation 

of rotational spring stiffness with crack size and orientation has been obtained experimentally 

by deflection and vibration methods. The method is found to be very robust. Trendafilova et 

al. [122] have dealt with vibration-based fault detection in structures and suggests a viable 

methodology based on principal component analysis (PCA) and a simple pattern recognition 

(PR) method. The suggested damage detection methodology is based purely on the analysis 

of the vibration response of the structure. Courtney et al. [123] have used the bispectrum 

signal processing technique to analyze the nonlinear response of a sample to continuous 

excitation at two frequencies. The increased nonlinearity due to defects such as fatigue cracks 

is detected. Flexural wave propagation characteristics have been used by Park [124] for 

identification of damage in beam structures. The results from the proposed method are 

validated by the experimental analysis. The locations of damage on the beam structures with 

different magnitudes are identified accurately using the developed method. Different 

methodologies for crack detection for multi-crack structures have been analyzed by Sekhar 

[125] and the respective influences, identification methods in vibrating structures such as 

beams, rotors, pipes etc. are discussed. Waveform fractal method has been proposed by Qiao 
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et al. [126] for mode shape-based damage identification of beam-type structures. In their 

analysis a mathematical solution using waveform fractal dimension to higher mode shapes 

for crack identification has been demonstrated. The applicability and effectiveness of the 

applied method is validated by an experimental program on damage identification of a 

cracked composite cantilever beam using smart piezoelectric sensors/actuators. To calculate 

the natural frequencies and normal mode shapes of uniform isotropic beam element have 

been developed by Li et al. [127] using dynamic stiffness matrix based on trigonometric 

shear deformation theory. The numerical results obtained are compared to the available 

solutions wherever possible and validate the accuracy and efficiency of the present approach. 

Ostachowicz [128] has proposed Spectral finite element method for crack detection in 

structures using fracture mechanics, elastic wave propagations and applications of Lamb 

waves. The results obtained indicated that the current approach is capable of detecting cracks 

of very small size, even in the presence of measurement errors. Damage identification based 

on Lamb wave measurements have been introduced by Grabowska et al. [129]. The usage of 

wavelet transformation with propagating Lamb waves are for distinguishing between 

different types of damage. Reddy et al. [130] have presented fractal finite element based 

continuum shape sensitivity analysis for a multiple crack system in a homogeneous, 

isotropic, and two dimensional linear-elastic body subjected to mixed-mode loading 

conditions. The best feature of this method is that the stress intensity factors and their 

derivatives for the multiple crack system can be obtained efficiently. Hearndon et al. [131] 

have developed a method to study the influence of crack on dynamic properties of a 

cantilever beam subjected to bending with the help of Euler-Bernoulli and Timo- shenko 

theories. A finite element model based on the response of the cracked beam element under 

static load has been proposed by them to compute the influence of crack location and size on 

the structural stiffness. In this work they have revealed that the experimental and 

computational natural frequencies decreases with increasing crack length. Al-said [132] has 

developed a crack identification algorithm to identify crack location and depth in a stepped 

cantilever beam carrying concentrated masses. According to him in vibration analysis the 

difference between the natural frequencies are used to locate the crack position and depth. As 

stated by him the advantage of the algorithm is to identify the crack by monitoring a single 

natural frequency system. According to him the advantage of the algorithm is to identify the 
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crack by monitoring a single natural frequency system. The robustness of the algorithm has 

been tested from an experimental work and from finite element analysis in this paper. Shin et 

al. [133] have presented vibration analysis of circular arches of variable cross section as they 

are widely used in modern architectural and structural requirements. In this study generalized 

differential quadrature method and differential transformation method have been applied by 

them for deriving governing equation of motion and for obtaining natural frequencies for 

different boundary conditions and the results are compared with previously published work. 

Cerri et al. [134] have presented a comparison of the experimental results of the dynamic 

behavior of a circular arch in undamaged and several damaged configuration with those 

obtained by analytical methods. In this work they have proposed an identification procedure 

by measuring natural frequencies and natural vibration modes and validated the results 

experimentally. Ebersbach et al. [135] have suggested an expert system for condition 

monitoring of fixed plant, laboratory and industry testing by using vibration analysis which 

will allow a great analysis and enable the technician to perform routine analysis. As 

described by them the expert system incorporates tri axial and demodulated frequency and 

the time domain vibration data analysis algorithms for high accuracy fault detection. Babu et 

al. [136] have addressed the problem of multi-crack assessment for rotors and described that 

solutions comprising of parameters characterizing the cracks are more complicated. They 

have developed a new technique called amplitude deviation curve, or slope deviation curve, 

which is a modification of the operational deflection shape. Yaghin et al. [138] have used the 

theory of wavelet analysis including continuous and discrete wavelet transform followed by 

its application to structural health monitoring. According to them by using the frequency 

analysis response of dam with ABAQUS software, crack detection has been done in dam 

structure under Wavelet analyzing in MATLAB software. Bayissa et al. [139] have presented 

a new method for damage identification based on the statistical moments of the energy 

density function of the vibration responses in time-frequency domain. According to them the 

major advantage of this method is that the time-frequency analysis conducted using the 

wavelet transform provides a tool to characterize deterministic as well as random responses 

and can be used to detect slight changes in the response of local vibration. Finally they have 

suggested that the proposed method is more sensitive to damage than the other methods. A 

solution to the free vibration problem of a stepped column with cracks is presented by Sukla 
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[140]. The open cracks at step changes in the cross-section of the column or at the 

intermediate points of the uniform segments are represented by mass less rotational springs. 

The proposed approach measures the vibration parameters assuming the column consists of 

an arbitrary number of uniform segments.  Dilena et al. [141] have shown that the natural 

frequency and anti resonant frequency contains certain generalized fourier coefficients of the 

stiffness variation due to damage. According to them the results of numerical simulations on 

rods with localized or diffused cracks are in good agreement with theory. Mazanoglu et al. 

[142] have followed energy based method for vibration identification of non-uniform Euler – 

Bernoulli beams having open cracks. They have estimated the distribution of energy 

consumed by considering strain change at the cracked beam surface and the stress field due 

to angular displacement of beam because of bending. Rayleigh – Ritz approximation method 

has been adapted by them for analysis of beam with crack. Lee [143] has presented a method 

to identify crack in a beam by modeling the cracks as rotational springs. Newton-Rapson 

method has been adapted by him to identify the locations and sizes of the double as well as 

triple cracks in a cantilever beam. He has concluded that the detected crack locations and 

sizes are in excellent agreement with the actual ones. Faverjon et al. [144] have presented a 

damage assessment technique for detection of size of the open crack in beams. They have 

used constitutive relation error updating method for identification of crack location and size 

of the beam. According to them even if noise has been added to the simulation the algorithm 

can identify the crack location and size with satisfactory precision. He et al. [145] have 

presented a method to calculate the stress intensity factor and local flexibility matrix for 

cracked pipes by dividing the cracked pipe into series of these annuli. They have described 

that the calculation of local flexibility matrix for cracked pipes have been calculated 

experimentally without calculating the Stress intensity factor. Further the results from their 

method have been compared with the experimental results to verify the effectiveness of the 

method. Douka et al. [146] have presented the influence of two transverse open cracks on the 

anti resonances of a double cracked cantilever beam both analytically and experimentally. 

They have shown that the shift in the anti resonances of the cracked beam can be used as 

additional information for crack identification in double cracked beam. The results of 

experiments performed by them on Plexiglas beams for crack location and severity are in 

good agreement with theoretical predictions. Labuschagne et al. [147] have considered three 
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different linear theories: Euler – Bernoulli, Timo Shenko and Two dimensional elasticity for 

three models of cantilever beams. Using natural frequencies and modes as the basis, they 

concluded that the Timo Shenko theory is close to the two dimensional theory for practical 

purpose, but the applicability of Euler – Bernoulli theory is limited. Gan et al. [148] have 

developed a clonal selection programming (CSP)-based fault detection system to perform 

induction machine fault detection and analysis. The extracted features are inputs of a CSP-

based classifier for fault identification and classification. The proposed CSP-based machine 

fault diagnostic system has been intensively tested with unbalanced electrical faults and 

mechanical faults operating at different rotating speeds. Ribeiro et al. [149,150] have used 

transmissibility concept for a structure and observed the response when the structure is 

excited at a given set of coordinates for fault detection.   

2.5 Damage Diagnosis by Artificial Intelligence Technique 

Intelligence is the computational part of the ability to achieve goals in the world. The aim of 

artificial intelligence is to develop algorithms that allow machines to perform tasks that 

involve cognition when performed by humans. The word “cognition” comes from the latin 

word  “cognitio”, which means “knowledge”. Cognitive sciences concern thinking, 

perception, reasoning, creation of meaning, and other functions of a human mind. As cracks 

pose as a potential cause of failure for mechanical or structural systems, the early detection of 

it will save the systems from catastrophic failure and also save a lot amount of finance 

involved in it. Algorithms have been developed which can predict the crack location and its 

severity of a system before hand using different Artificial Intelligence techniques. Since the 

algorithms use Artificial Intelligence techniques they can be used as non destructive testing 

methodology for early detection of crack in dynamically vibrating structures. McCarthy 

[151] has stated that Artificial intelligence is the science and engineering of making 

intelligent machines, especially intelligent computer programs. It is related to the similar task 

of using computers to understand human intelligence, but AI does not have to confine itself 

to methods that are biologically observable. 
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2.5.1 Fuzzy Logic Technique for Damage Diagnosis  

The fuzzy logic technique is one of the AI methods which can be used for damage diagnosis 

in the domain of dynamically vibrating structures. It is very much evident that the crack can 

be detected from the vibration analysis of the cracked structure but to develop a 

methodology/controller for on line condition monitoring of damaged structure artificial 

intelligence techniques has to be adapted. To design an intelligent controller fuzzy logic play 

vital role. This is due to the fact that fuzzy if-then rules are well suited for capturing the 

imprecise nature of human knowledge and reasoning processes. Fuzzy sets are functions that 

map a value, which might be a member of a set, to a number between zero and one, 

indicating its actual degree of membership .Fuzzy logic is based on the idea that all things 

admit of degrees.  A degree of zero means that the value is not in the set and a degree of one 

means that the value is completely representative of the set. Fuzzy logic modeling is 

primarily based on fuzzy sets and fuzzy if-then rules proposed by Zadeh [152] which are 

closely related to perception and cognitive science.  

2.5.1.1 Fuzzy History 

About 300 B.C., the Greek scholar Aristotle developed binary logic. Aristotle thought that 

the world was made up of opposites, for example male versus female, hot versus cold, dry 

verus wet, active versus passive. Everything has to be A or not-A, it can't be both. 

Subsequently with this idea a new technique was developed wich accommodate the 

uncertainty of the problem and gives the solution i.e. fuzzy logic. Fuzzy logic is based on the 

idea that A can equal not-A. That means that something can contain a part of its opposite. 

Negoită [153] has dealt with a new clustering technique using the concept of fuzzy set [152]. 

A membership function is proposed and a method to select the cluster elements is derived 

using the separation theorem of the fuzzy sets. Kandel [154] has discussed two theorems, 

which are the basis of a new technique that generates the complete set of fuzzy implicants, 

and used for the minimization of fuzzy functions. 
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2.5.1.2 Application of Fuzzy Logic 

The fuzzy logic method can be used in a wide spectrum of industrial application as well as in 

domestic appliances such as shower heads, rice cookers, vacuum cleaners etc. The 

application of fuzzy approach is further expressed with the review of following published 

papers.  

Fox [155] has studied the use of fuzzy logic in medical diagnosis and raised a broad range of 

issues in connection to the role of information-processing techniques in the development of 

medical computing. Gologlu [156] has presented a set-up planning module as part of a 

feature-based process planning system with the aid of artificial intelligence. Zimmermann 

[157] has applied fuzzy linear programming approach for solving linear vector maximum 

problem. The solutions are obtained by fuzzy linear programming. These are found to be 

efficient solutions then the numerous models suggested to solve the vector maximum 

problem. Wada et al. [158] have proposed a fuzzy control method with triangular type 

membership functions using an image processing unit to control the level of granules inside a 

hopper. They have stated that the image processing unit can be used as a detecting element 

and with the use of fuzzy reasoning methods good process responses are obtained. Fuzzy 

finite element method for static analysis of engineering systems has been done by Rao et al. 

[159] using an optimization-based scheme taking fuzzy parameters into consideration.  A 

fuzzy arithmetical approach has been used by Hanss et al. [160] for the solution of finite 

element problems involving uncertain parameters. Boutros et al. [161] have reported a 

simple, effective and robust fusion approach based on fuzzy logic and sugeno-style inference 

engine. Using this method, four condition-monitoring indicators, developed for detection of 

transient and gradual abnormalities, are fused into one single comprehensive fuzzy fused 

index (FFI) for reliable machinery health assessment. This approach has been successfully 

tested and validated in two different practical applications.  

 2.5.1.3 Application of Fuzzy Logic for Fault Diagnosis  

In this section a number of journal papers related to fault diagnosis using fuzzy technique has 

been reviewed and described. 
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A fuzzy finite element approach has been proposed by Akpan et al. [162] for modeling smart 

structures with imprecise parameters. A simple method for diagnosis of railway wheel 

defects using fuzzy-logic has been proposed by Skarlatos et al. [163]. The method is based 

on vibration measurements at different train speeds on healthy wheels and wheels with 

known defects. To facilitate the implementation of the method fuzzy-logic is adopted.  Liu et 

al. [164] have described a new method of grinding burn identification with highly sensitive 

acoustic emission (AE) techniques. The wavelet packet transform is used to extract features 

from AE signals and fuzzy pattern recognition is employed for optimizing features and 

identifying the grinding status. Experimental results show that the accuracy of grinding burn 

recognition is satisfactory.  Parhi et al. [165] have designed a mobile robot navigation system 

using fuzzy logic. Fuzzy rules embedded in the controller of a mobile robot enable it to avoid 

obstacles in a cluttered environment that includes other mobile robots. Angelov et al. [166] 

have presented a systematic classification of the data-driven approaches for design of fuzzy 

systems. The condition monitoring of a lab-scale, single stage, gearbox using different non-

destructive inspection methodologies and the processing of the acquired waveforms with 

advanced signal processing techniques have been presented by Loutas et al. [167]. Acoustic 

emission (AE) and vibration measurements with fuzzy method are utilized for this purpose. 

The experimental setup has been used for validation of results from the proposed method. As 

stated by the author the system can be used for the early diagnosis of natural wear in gear 

systems. Saravanan et al. [168] have used decision tree for selecting best statistical features 

that will discriminate the fault conditions of the gear box from the signals extracted to 

determine the condition of an inaccessible gear in an operating machine. A rule set is formed 

from the extracted features and fed to a fuzzy classifier. A fuzzy classifier is built and tested 

with representative data.  A fuzzy finite element method has been used by Chen et al. [169] 

for vibration analysis of imprecisely defined systems by using a search based algorithm. The 

fuzzy approach enhances the computational efficiency for identifying the system dynamic 

responses. Pawar et al. [170,174] have used a genetic fuzzy system and finite element model 

of a cantilever beam to find the location and extent of damage. Using these changes in 

frequencies, a fuzzy system is generated and the rule-base and membership functions are 

optimized by genetic algorithm. The genetic fuzzy system gives very good results for hinge 

less helicopter rotor blade for frequency as well as mode shape-based data. Taha et al. [171] 
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have introduced a method to improve pattern recognition and damage detection by 

supplementing Intelligent Structural Health Monitoring (ISHM) with fuzzy sets. Bayesian 

updating is used to demarcate levels of damage into fuzzy sets accommodating the 

uncertainty associated with the ambiguous damage states. The new techniques are examined 

to provide damage identification using data simulated from finite element analysis of a pre-

stressed concrete bridge. Packianather et al. [172] have proposed a method for identification 

of defects in wood veneer using neural network. Dwivedy et al. [173] have discussed about 

application of AI techniques in various engineering problems. Kim et al. [175] have 

presented a computer assisted crack diagnosis system for reinforced concrete structures. The 

system presented adapts fuzzy set theory to reflect fuzzy conditions, for crack symptoms and 

characteristics which are difficult to treat using crisp sets. The inputs to the system are mostly 

linguistic variables of the crack and some numeric data about concrete and environmental 

conditions. An attempt has been made by Sasmal et al. [176] to develop a systematic 

procedure and formulations for condition evaluation of existing bridges using analytic 

hierarchy process in a fuzzy environment. Fuzzy logic approach has been used to take care of 

the uncertainties and imprecision in the bridge observations. Chandrashekhar et al. [177] 

have shown that geometric and measurement uncertainty cause considerable problem in 

damage assessment which can be alleviated by using a fuzzy logic-based approach for 

damage detection. Monte Carlo simulation (MCS) is used to study the changes in the damage 

indicator due to uncertainty in the geometric properties of the beam. The paper brings 

together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in 

structural damage detection.    

2.5.2 Neural Network Technique for Damage Diagnosis  

The human brain is very complex, nonlinear and parallel computer. There are billions of 

neurons and trillions of connections between them. The interest in neural network stems from 

the wish of understanding principles leading in some manner to the comprehension of the 

basic human brain functions, and to building the machines that are able to perform complex 

tasks. Neural network theory revolves around the idea that certain key properties of 

biological neurons can be extracted and applied to simulations, thus creating a simulated 

brain. The neural network technique can be used for damage diagnosis in vibrating cracked 
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structures. For on line condition monitoring of damaged structure artificial intelligence 

techniques has to be adapted. To design an intelligent controller neural network play vital 

role.  

2.5.2.1   Neural Network History 

The modern era of neural network research is credited with the work done by neuro-

physiologist, Warren McCulloch and young mathematical prodigy Walter Pitts in 1943[179].  

They wrote a paper on how neurons might work, and they designed and built a primitive 

artificial neural network using simple electric circuits. They are credited with the McCulloch-

Pitts Theory of Formal Neural Networks. The next major development in neural network 

technology have arrived in 1949 with Donald Hebb [180]. A major point bought forward 

from his research, described how neural pathways are strengthened each time they were used. 

As we shall see, this is true of neural networks, specifically in training a network.  Years 

later, John von Neumann thought of imitating simplistic neuron functions by using telegraph 

relays or vacuum tubes. This led to the invention of the von Neumann machine.  

2.5.2.2   Application of Neural Network 

This section describes the review of literature from the application area of neural network in 

various fields. 

Little et al. [181] have solved a linearized version of the model and explicitly showed that the 

capacity of the memory is related to the number of synapses rather than the number of 

neurons. In addition, they have shown that in order to utilize this large capacity, the neural 

network must store the major part of the information in memory to generate patterns which 

evolve with time. Urban et al. [182] have described the development of enhanced, high speed 

data reduction algorithms using artificial neural networks (ANN). The networks are trained 

using computed data and subsequently give values of film parameters in the millisecond time 

regime. Athanasiu et al. [183] have used an artificial neural network (ANN) with local 

connectivity as a track identifier for high energy physics experiments. The performance of 

the ANN is evaluated with data of the experiment, with very encouraging results. Sette et al. 

[185] have presented a method to simulate a complex production process using a neural 
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network and the optimization by genetic algorithm for quality control of the end product in a 

manufacturing environment. They have used the genetic algorithm with a sharing function 

and a Pareto optimization to optimize the input parameters for obtaining the best yarns. 

According to them the results from this method are considerably better than current manual 

machine intervention. Mohanty et al. [186] have proposed a method for classification of 

remotely sensed data using an artificial neural network (ANN) approach. Taib et al. [187] 

have applied an artificial neural network (ANN) for the analysis of the response of an optical 

fibre pH sensor. A three layer feed forward neural network is used and network training is 

performed using the recursive prediction error (RPE) algorithm. An application of the 

method has been demonstrated. Kermanshahi [188] have applied two artificial neural 

networks, a recurrent neural network (RNN) and a three-layer feed-forward back-propagation 

(BP) for long-term load forecasting. In this study, total system load forecast reflecting current 

and future trends, tempered with good judgement which is the key to all planning and indeed 

financial success is carried out for nine utilities in Japan. Ghiassi et al. [190] have presented a 

dynamic neural network model for forecasting time series events that uses a different 

architecture than traditional models. To assess the effectiveness of this method, they have 

forecasted a number of standard benchmarks in time series research from forecasting 

literature. Results show that this approach is more accurate and performs significantly better 

than the traditional neural network. Hines et al. [191] have focused on the implementation of 

methods and the development of methods for next generation plants and space reactors. As 

stated by them the advanced techniques are expected to become increasingly important for 

current generation nuclear power plants.  Song et al. [192] have presented a method for 

comparison of logistic regression and artificial neural network for computer-aided diagnosis 

on breast sonograms.  They have concluded that there is no difference in performance 

between logistic regression and the artificial neural network as measured by the area under 

the ROC curve. Kadi et al. [193] have attempted to reflect on the work done in the 

mechanical modeling of fiber-reinforced composite materials using ANN during the last 

decade. Lucon et al. [194] have utilized artificial neural networks in place of a traditional 

micromechanical approach to calculate the global elastic properties of composite materials 

given the local properties and local geometry. This approach is shown to be more 

computationally efficient than conventional numerical micromechanical approaches. Assaad  
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et al. [195] have adapted an ensemble method to the problem of predicting future values of 

time series using recurrent neural networks (RNNs) as base learners. The improvement is 

made by combining a large number of RNNs, each of which is generated by training on a 

different set of examples. Carbonneau et al. [196] have investigated the applicability of 

advanced machine learning techniques, including neural networks, recurrent neural networks, 

and support vector machines, to forecast distorted demand at the end of a supply chain. Lolas 

et al. [197] have presented the first module of an expert system, a neural network architecture 

that could predict the reliability performance of a vehicle at later stages of its life by using 

only information from a first inspection after the vehicle’s prototype production. A case 

study is presented by them to demonstrate the methodology. Ozerdem et al. [198] have 

employed an artificial neural network approach to predict the mechanical properties of cast 

alloys. In artificial neural network (ANN), multi layer perceptron (MLP) architecture with 

back-propagation algorithm is utilized. ANN system is trained using the prepared training set 

and has given satisfactory results. Reddy et al. [199] have developed an artificial neural 

network (ANN) model for the analysis and simulation of the correlation between the 

mechanical properties and composition and heat treatment parameters of low alloy steels. 

Panigrahi et al. [200] have used adaptive bacterial foraging algorithm and AI technique for 

monitoring power system. Sun et al. [201] have formulated and solve the force distribution 

problem for multi arm systems with flexible-link arms, with particular attention to the non 

minimum phase character of the system.  

2.5.2.3 Application of Neural Network for Fault Diagnosis  

The application of neural network for fault diagnosis in different domain of engineering 

system can be established with the review of literatures as follows. 

Uhrig et al. [202] have described methods that deal with power plants or parts of plants that 

can be isolated. Typically, the measured variables from the plants are analog variables that 

must be sampled and normalized to expected peak values before they are introduced into 

neural networks. Specific applications using neural network described by them include: 

transient identification, plant-wide monitoring, analysis of vibrations, and monitoring of 

performance and efficiency.  Sreedhar et al. [203] have presented an adaptive neural network 
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for fault detection in nonlinear systems. The scheme used by them provides robust fault 

detection in the presence of modeling errors and is validated by simulating faults in a section 

of a thermal power plant model. Uhrig et al. [204] have done a comprehensive study of the 

application of soft computing technologies, particularly neural networks, fuzzy logic, and 

genetic algorithms, to the surveillance, diagnostics and operation of nuclear power plants. 

The benefits of combining the use of neutral networks, fuzzy systems and genetic algorithms 

are illustrated in several applications. Gao et al. [205] have proposed an Elman neural 

network-based method for fault detection in motor drive systems. They have stated that the 

Elman neural network has the advantageous time series prediction capability because of its 

memory nodes, as well as local recurrent connections. The intelligent computational tools of 

feed forward neural networks and genetic algorithms are used to develop a real-time 

detection and diagnosis system of specific mechanical, sensor failures in a deep-trough 

hydroponic system by Ferentinos et al. [206]. Samanta et al. [207] have presented the 

comparision of the performance of bearing fault detection using three types of artificial 

neural networks (ANNs), namely, multilayer perception (MLP), radial basis function (RBF) 

network, and probabilistic neural network (PNN). They have used vibration signals of a 

rotating machine with defective bearings as inputs to all three ANN classifiers for normal or 

fault recognition. The characteristic parameters along with the selection of input features are 

optimized using genetic algorithms (GA). According to them the procedure has used the 

experimental vibration data of a rotating machine with and without bearing faults. The results 

show the relative effectiveness of three classifiers in detection of the bearing condition. Choi  

et al. [209] have developed a method to estimate the size of a tooth transverse crack for a 

spur gear in operation. Zhou et al. [211] have described how the recursive algorithm updates 

the BRB (Belief Rule Base) system work, so that the updated BRB cannot only be used for 

pipeline leak detection but also satisfy the given patterns. They have also demonstrated that 

compared with other methods such as fuzzy neural networks (FNNs), the developed system 

has a special characteristic of allowing direct intervention of human experts in deciding the 

internal structure and the parameters of a BRB expert system. Nishith et al. [212] have 

proposed a method with the application of a counter propagation neural network (CPNN) to 

detect single faults and their magnitudes in a non isothermal continuous stirred tank reactor 

(CSTR). Stavroulakis et al. [213] have used soft computing and in particular neural network 
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techniques for crack detection and identification problems. Elastostatic and elastodynamic 

excitations are modelled by the BEM. Results of inverse calculations obtained by the back 

propagation neural network model are presented. Suh et al. [214] have established that a 

crack has an important effect on the dynamic behavior of a structure. This effect depends 

mainly on the location and depth of the crack. A neural network technique is developed for 

identifying the damage occurrence in the side shell of a ship’s structure by Zubaydi et al. 

[215]. The side shell is modeled as a stiffened plate. The input to the network is the 

autocorrelation function of the vibration response of the structure. The response is obtained 

using a finite element model of the structure. The results show that the method presented in 

this work is successful in identifying the occurrence of damage.  Kao et al. [216] have 

employed a novel neural network-based approach for detecting structural damage. The first 

step, system identification, uses neural system identification networks (NSINs) to identify the 

undamaged and damaged states of a structural system. The second step, structural damage 

detection, uses the aforementioned trained NSINs to generate free vibration responses with 

the same initial condition. Furthermore, numerical and experimental examples demonstrate 

the feasibility of applying the proposed method for detecting structural damage. Yam et al. 

[217,218] have presented an integrated method for damage detection of composite structures 

using their vibration responses, wavelet transform and artificial neural networks (ANN). The 

ANN are applied to establish the mapping relationship between structural damage and 

damage status (location and severity). The results of show that the method can be applied to 

online structural damage detection and health monitoring for various industrial structures. 

Sahin et al. [219] have presented a damage detection algorithm using a combination of global 

(changes in natural frequencies) and local (curvature mode shapes) vibration-based analysis 

data as input in artificial neural networks (ANNs) for location and severity prediction of 

damage in beam-like structures. Different damage scenarios have been introduced by 

reducing the local thickness of the selected elements at different locations along finite 

element model (FEM) of the beam structure.  Zacharias et al. [220] have proposed a crack 

detection method by an artificial neural network (ANN) trained exclusively with frequency 

response spectra from finite-element simulations. The classification fails for some data sets 

of intact crates, due to experimental conditions not accounted for in the finite-element 

simulation. Suresh et al. [221] have presented a method considering the flexural vibration in 
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a cantilever beam having transverse crack. They have computed modal frequency parameters 

analytically for various crack locations and depths and these parameters are used to train the 

neural network to identify the damage location and size. Damage assessment in structures 

from changes in static parameter using neural network have been performed by Maity et al. 

[222]. The basic strategy applied in their study is to train a neural network to recognize the 

behaviour of the undamaged structure as well as of the structure with various possible 

damaged states. When this trained network is subjected to the measured response, it is able to 

detect any existing damage.  Lee et al. [223] have developed a neural networks-based 

damage detection method using the modal properties, which can effectively consider the 

modelling errors in the baseline finite element model from which the training patterns are to 

be generated. Two numerical example analyses on a simple beam and a multi-girder bridge 

are presented to demonstrate the effectiveness of the proposed method. Yeung et al. [224] 

have proposed a damage detection procedure, using pattern recognition of the vibration 

signature and finite element model of a real structure. They have stated that the neural 

networks may be adjusted so that a satisfactory rate of damage detection may be achieved 

even in the presence of noisy signals.  A new approach for crack detection in beam structures 

using neural network (Radial Basis Function) have been performed by Li et al. [225]. 

Damage detection algorithm is presented using a combination of global and local vibration-

based analysis data as input in artificial neural networks (ANNs) for location and severity 

prediction of damage in beam like structures. Finite element analysis has been used to obtain 

the dynamic characteristics of intact and damaged cantilever steel beams for the first three 

modes. The results from the proposed method have been validated with the results from 

experimental analysis. Neural network based damage detection generally consists of a 

training phase and a recognition phase. The relative sensitivities of structural dynamic 

parameters are analyzed by He-sheng et al. [226] using neural network. The combined 

parameters are presented as the input to the neural network, which computed with the change 

rates of the several natural frequencies and the change ratios of the frequencies. Some 

numerical simulation examples, such as, cantilever and truss with different damage extends 

and different damage locations are analyzed. The results indicated that the combined 

parameters are more suitable for the input patterns of neural networks than the other 

parameters alone. Choubey et al. [227] have studied to analyze the effect of cracks on natural 
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frequencies in two vessel structures. Finite element analysis has been used by them to obtain 

the dynamic characteristics of intact and damaged vessels. The natural frequencies for 

different modes have been used as input pattern of ANN (artificial neural network) model. 

The output of the ANN model is a crack size for a particular location. Li et al. [228] have 

described a new and practical method to estimate the size of a crack on a rotating beam in a 

laboratory setting. Their paper consists of selecting and validating a sensor and a 

measurement variable, devising a signal processing method for crack size estimation and 

carrying out experimental validations. The study employed a diagnostic neural network to 

map the frequencies to crack size. The experimental results show that the proposed approach 

can provide reasonably good estimates of the crack size using the indirectly excited acoustic 

signal. Yu et al. [229] have developed a vibration-based damage detection method for a static 

laminated composite shell partially filled with fluid and validated by experiment. An 

artificial neural network (ANN) is trained by them using numerically simulated structural 

damage index to establish the mapping relationship between the structural damage index and 

damage status. The damage status is successfully identified using ANN and the method can 

be applied to online structural damage detection and health monitoring. Wang et al. [230] 

have presented the numerical simulation and the model experiment upon a hypothetical 

concrete arch dam for the research of crack detection based on the reduction of natural 

frequencies. Numerical analysis and model experiment show that the crack occurring in the 

arch dam will reduce natural frequencies and can be detected by using the statistical neural 

network based on the information of such reduction. Pawar et al. [231] have proposed spatial 

Fourier analysis and Neural technique for damage detection in beam. Their study 

investigated the effect of damage on beams with fixed boundary conditions using Fourier 

analysis. A finite element model is used to obtain the mode shapes of a damaged beam. It is 

found that damage caused considerable change in the Fourier coefficients of the mode 

shapes, which are found to be sensitive to both damage size and location. A neural network is 

trained to detect the damage location and size using Fourier coefficients as input. Numerical 

studies showed that damage detection using Fourier coefficients and neural networks has the 

capability to detect the location and damage size accurately. Reddy et al. [232] have 

proposed a method for beams with fixed boundary conditions of a damaged fixed beam by 

using Fourier analysis, for identification of crack location and depth. They have also used 
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neural network which is trained to detect the damage location and size using fourier 

coefficients as input.  They have studied that the method for damage detection using Fourier 

coefficients and neural network has the capability to detect the location and damage size even 

in the presence of noise parameters satisfactorily and accurately. Bakhary et al. [233] have 

used Artificial Neural Network for damage detection. In their analysis an ANN model is 

created by applying Rosenblueth’s point estimate method verified by Monte Carlo 

simulation. The statistics of the stiffness parameters are estimated. The probability of damage 

existence (PDE) is then calculated based on the probability density function of the existence 

of undamaged and damaged states. The developed approach is applied to detect simulated 

damage in a numerical steel portal frame model and also in a laboratory tested concrete slab.  

2.5.3 Neuro-Fuzzy Technique for Damage Diagnosis  

In the field of artificial intelligence, Neuro-Fuzzy refers to combinations of artificial neural 

networks and fuzzy logic which incorporates the capability of both fuzzy logic and neural 

network technique. This hybrid method can give better results than the independent 

techniques. Fuzzy systems have the ability to make use of knowledge expressed in the form 

of linguistic rules, thus they offer the possibility of implementing expert human knowledge 

and experience. Usually, tuning parameters of membership functions is a time consuming 

task.  Neural network learning techniques can automate this process, significantly reducing 

development time, and resulting in better performance. Neuro-fuzzy hybridization results in a 

hybrid intelligent system that synergizes these two techniques by combining the human-like 

reasoning style of fuzzy systems with the learning and connectionist structure of neural 

networks. Hence, this methodology can take the vibration signatures as in put parameters and 

predict the crack location and depth. Jantunen [234] has used Neuro-Fuzzy System for 

condition monitoring and diagnostic management of mechanical system. 

2.5.3.1 Neuro-Fuzzy Technique History 

 A neuro-fuzzy system is based on a fuzzy system which is trained by a learning algorithm 

derived from neural network theory. The learning procedure operates on local information, 

and causes only local modifications in the underlying fuzzy system. The strength of neuro-
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fuzzy systems involves two contradictory requirements in fuzzy modeling: interpretability 

versus accuracy. In practice, one of the two properties prevails. The neuro-fuzzy in fuzzy 

modeling research field is divided into two areas: linguistic fuzzy modeling that is focused on 

interpretability, mainly the Mamdani model; and precise fuzzy modeling that is focused on 

accuracy, mainly the Takagi-Sugeno-Kang (TSK) model. 

2.5.3.2  Application of Neuro-Fuzzy Technique  

Ichihashi et al. [235] have developed a popular and efficient method of making a decision 

tree for classification from symbolic data without much computation. Fuzzy reasoning rules 

in the form of a decision tree, which can be viewed as a fuzzy partition, are obtained by fuzzy 

ID3. Wang et al. [236] have evaluated the performance of recurrent neural networks (RNNs) 

and neuro-fuzzy (NF) systems using two benchmark data sets. Through comparison it is 

found that if an NF system is properly trained, it performs better than RNNs in both 

forecasting accuracy and training efficiency. The performance of the developed prognostic 

system is evaluated by using three test cases.  

2.5.3.3 Appilication of Neuro-Fuzzy Technique for Fault Diagnosis 

Singh et al. [237] have reviewed the progress made in electrical drive condition monitoring 

and diagnostic research and development in general and induction machine drive condition 

monitoring and diagnostic research and development using expert systems, neural network 

and fuzzy logic, in particular, since its inception. Xu et al. [238] have proposed neuro-fuzzy 

control strategy, in which the neural-network technique is adopted to solve time-delay 

problem and the fuzzy controller is used to determine the control current of MR dampers 

quickly and accurately. They have observed that the control effect of the neuro-fuzzy control 

strategy is better than that of the bi-state control strategy. A novel integrated classifier has 

been developed by Wang et al. [239] for real-time machinery health condition monitoring, 

specifically for gear systems. The diagnostic classification is performed by a neural fuzzy 

scheme. An online hybrid training technique is adopted based on recursive Levenberg–

Marquet and least-squares estimate (LSE) algorithms to improve the classifier convergence 

and adaptive capability to accommodate different machinery conditions. The viability of this 
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new monitoring system is verified by experimental tests under different gear conditions. Test 

results show that the proposed integrated classifier provides a robust problem solving 

framework. Saridakis et al. [240] have proposed a method using fuzzy logic, genetic 

algorithm and neural network for considering the dynamic behavior of a shaft with two 

transverse cracks characterized by position, depth and relative angle. They have concluded 

that genetic algorithm along with the neural network which form the analytical model for 

analysis remarkably reduce the computational time without any loss of accuracy. Rafiee et al. 

[241] have presented an optimized gear fault identification system using genetic algorithm 

(GA) to investigate the type of gear failures of a complex gearbox system using artificial 

neural networks (ANNs) with a well-designed structure suited for practical implementations.  

2.5.4 Multiple Adaptive Neuro Fuzzy Inference Technique (MANFIS)for Damage 
Diagnosis 

Adaptive neuro-fuzzy inference systems (ANFIS), fusing the capabilities of artificial neural 

networks and fuzzy inference systems, offer a lot of space for solving different kinds of 

problems, and are especially efficient in the domain of signal prediction. However, the 

ANFIS technique is sometimes notated as being computationally expensive. After 

considering the conventional ANFIS architecture, a new idea came up known as multiple 

adaptive neuro-fuzzy inference systems (MANFIS) developed with the intention of making 

the ANFIS technique more efficient with regard to root mean square error (RMSE) and/or 

computing time by Jovanovic et al. [242]. So this technique can be used for crack diagnosis 

effectively in cracked structures with multiple ANFIS system. 

2.5.4.1 MANFIS History  

Fuzzy inference is the process of formulating the mapping from a given input to an output 

using fuzzy logic. The mapping then provides a basis from which decisions can be made, or 

patterns discerned. The process of fuzzy inference includes membership functions, fuzzy 

logic operators, and if–then rules. ANFIS provides a method for the fuzzy modeling 

procedure to learn information about a dataset, in order to compute the membership function 

parameters that best allow the associated fuzzy inference system to track the given 

input/output data. Jang [243] has exhibited the use of ANFIS technique in engineering 
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application. Random and bootstrap sampling method and ANFIS (Adaptive Network based 

Fuzzy Inference System）are integrated into En-ANFIS (an ensemble ANFIS) to predict 

chaotic and traffic flow time series to achieve both high accuracy and less computational 

complexity for time series prediction by Chen et al. [244]. Hinojosa et al. [245] have 

presented four modeling methods of microwave devices using multiple neuro-fuzzy inference 

systems (MANFIS) based on space-mapping (SM) approach. 

2.5.4.2 Application of MANFIS  

In this section, applications of MANFIS technique in various fields have been established 

with the literature review of published paper. 

Jassar et al. [246] have developed an inferential sensor model, based on adaptive neuro-fuzzy 

inference system modeling, for estimating the average air temperature in multi-zone space 

heating systems. This modeling technique has the advantage of expert knowledge of fuzzy 

inference systems (FISs) and learning capability of artificial neural networks (ANNs). The 

average air temperature results estimated by using the developed model are strongly in 

agreement with the experimental results. Domenech et al. [247] have applied fuzzy logic for 

accurate analog circuit macro model sizing is presented. In the proposed method, multiple 

adaptive neuro-fuzzy inference systems (MANFIS) are trained to predict the performance 

characteristics. Zhang et al. [248] have presented an investigation into the use of the delay 

coordinate embedding technique with adaptive-network-based-fuzzy-inference system 

(ANFIS) and MANFIS technique to learn and predict the continuation of chaotic signals 

ahead in time.  

2.5.4.3 Application of MANFIS for Fault Diagnosis 

The papers presented, the use of MANFIS technique for fault diagnosis has been reviewed 

and discussed in this section.  

Nguyen et al. [249] have developed a bearing diagnostics method using fuzzy inference 

based on vibration data. Adaptive Network based Fuzzy Inference System (ANFIS) and 

Genetic Algorithm (GA) has been proposed to select the fuzzy model input and output 
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parameters. The result is also tested with other set of bearing data to illustrate the reliability 

of the chosen model. Elbaset et al. [250] have presented an application of ANFIS approach 

for automated fault detection and classification in transmission lines using measured data 

from one terminal of the transmission line. The ANFIS design and implementation are aimed 

at high-speed processing which can provide selection of real-time detection and classification 

of faults. The ANFIS's are trained and tested using various sets of field data. Ye et al. [251] 

have presented an online diagnostic algorithm for mechanical faults of electrical machines 

with variable speed drive systems using wavelet packet decomposition. A new integrated 

diagnostic system for electrical machine mechanical faults is proposed using multiple 

adaptive neuro-fuzzy inference Systems (ANFIS). The diagnostic algorithm is validated on a 

three-phase induction motor drive system. Yeo et al. [252] have proposed an algorithm for 

fault detection and classification for both low impedance faults and high impedance faults 

using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are 

current signals only based on Root-Mean-Square values of three-phase currents and zero 

sequence current. The performance of the proposed algorithm is tested and found to be 

encouraging. Sadeh et al. [253] have presented an algorithm for locating faults in a combined 

overhead transmission line with underground power cable using Adaptive Network-Based 

Fuzzy Inference System (ANFIS). Simulation results confirm that the proposed method can 

be used as an efficient means for accurate fault location on the combined transmission lines. 

Razavi-Far et al. [254] have described a neuro-fuzzy networks based scheme for fault 

detection and isolation of a U-tube steam generator in a nuclear power plant. Experimental 

results presented in the final part of the paper confirm the effectiveness of this approach. 

Tran et al. [255] have presented a fault diagnosis method based on adaptive neuro-fuzzy 

inference system (ANFIS) in combination with decision trees. The crisp rules obtained from 

the decision tree are then converted to fuzzy if-then rules that are employed to identify the 

structure of ANFIS classifier. In order to evaluate the proposed algorithm, the data sets 

obtained from vibration signals and current signals of the induction motors are used. The 

results indicate that the ANFIS model has potential for fault diagnosis of induction motors. 

Lei et al. [256,257] have presented a method for fault diagnosis based on empirical mode 

decomposition (EMD), an improved distance evaluation technique and the combination of 

multiple adaptive neuro-fuzzy inference systems (ANFISs). Their proposed method is 
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applied to the fault diagnosis of rolling element bearings, and testing results show that the 

multiple ANFIS combination can reliably recognize different fault categories and severities.  

 From the above literature survey, it is found that the vibration signatures of the cracked 

structure can be calculated by using strain energy release rate and stress intensity factor. 

Different Artificial Intelligence Techniques can be used for fault detection and condition 

monitoring of various engineering applications. It is found from the review that the AI 

techniques are not used potentially for on line condition monitoring of crack in  vibrating 

structures.  

So in the subsequent section algorithm have been developed for on line condition monitoring 

of a cracked cantilever beam using AI techniques such as Fuzzy Logic, Neural Network, 

Fuzzy Neuro and MANFIS techniques. 
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Cracks in vibrating components can initiate catastrophic failures. Therefore, there is the need 

to understand the dynamic characteristics of cracked structures to save the structure 

beforehand by detecting the crack location and its intensity. When a structure suffers 

damage, its dynamic properties change. Specifically, damage due to the crack can cause a 

stiffness reduction, with an inherent reduction in natural frequencies, an increase in modal 

damping, and a change in the mode shapes. 

3.1 Introduction 
 

Dynamic characteristics of structures with crack have been studied for last four decades 

intensively. Natural frequencies and modes shapes undergo variation due to presence of 

crack in terms of its location and intensity. Scientists are focusing their thoughts on various 

aspects of cracked structures. The current research addresses the investigation of the dynamic 

behavior of a cracked beam with a transverse crack. The presence of a crack in a structural 

member introduces a local flexibility that affects its dynamic response. For finding out the 

deviation in the vibrating signatures of the cracked cantilever beam the local stiffness 

matrices are taken into account. Theoretical expressions have been developed to calculate the 

natural frequencies and mode shapes of the cracked cantilever beam using local stiffness 

matrices. Strain energy release rate has been used for calculating the local stiffnesses of the 

beam. The local stiffnesses are dependent on the crack depth. Different boundary conditions 

are outlined which take into account the crack location. Comparisons are made between the 

numerical results and corresponding experimental results for validation of the established 

theory.  

 

 

 

Chapter 3 

ANALYSIS OF DYNAMIC CHARACTERISTICS OF BEAM 
WITH TRANSVERSE CRACK 
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3.2 Dynamic Characteristics of a Cantilever Beam with a Transverse Crack 

3.2.1 Theoretical Analysis 

A systematic approach has been adopted in the present investigation to develop theoretical 

expressions for calculation of natural frequencies and mode shapes of cracked cantilever 

beam with a transverse crack and to notice the effect of crack on natural frequencies and 

mode shapes. Experiments have been conducted over cracked cantilever beam specimen for 

validation of the theory established. Natural frequencies and the mode shapes of the cracked 

cantilever beam specimen are found out both numerically and experimentally for different 

relative crack depth and relative crack location from fixed end of the cantilever beam. 

Remarkable variations in mode shapes are noticed at the vicinity of crack location.  

 
3.2.1.1  Local Flexibility of a Cracked Cantilever Beam under Bending and Axial Loading 

A cantilever beam with a transverse surface crack of depth ‘a1’ on beam of width ‘B’ and 

height ‘W’ is considered in the current research. The beam is subjected to axial force (P1) and 

bending moment (P2) (Fig.3.2.1) which gives coupling with the longitudinal and transverse 

motion. The presence of crack introduces a local flexibility, which can be defined in matrix 

form, the dimension of which depends on the degrees of freedom. Here a 2x2 matrix is 

considered. 

 

 

 

 

 

 

 Fig.  3.2.1 Geometry of beam, (a) cantilever beam, (b) cross-sectional view of the beam.  
 (c) segments taken during integration at the crack section 
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The strain energy release rate at the fractured section can be written as [20]; 
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Kl1, Kl2 are the stress intensity factors of mode I (opening of the crack) for load P1 and P2 
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Let Ut be the strain energy due to the crack. Then from Castigliano’s theorem, the additional 

displacement along the force Pi is: 
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the strain energy density function.  
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From (Eqs. 3.2.4 and 3.2.5), thus we have 
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The flexibility influence co-efficient Cij will be, by definition  
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To find out the final flexibility matrix we have to integrate over the breadth ‘B’ 

∫ ∫
+

−∂∂
∂

=
∂
∂

=
2/B

2/B

a

0ji

2

j

i
ij

1

dzda)a(J
PPP

uC        (3.2.8) 

Putting the value, strain energy release rate from above, Eq. 3.2.8 modifies as 
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Putting ξ = (a/w),
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We get da = Wdξ and when a = 0, ξ = 0; a = a1, ξ = a1/W = ξ1 

From the above condition Eq. 3.2.9 converts to, 
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From the Eq. 3.2.10, calculating C11, C12 (=C21) and C22 we get, 
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Converting the influence co-efficient into dimensionless form 

π
′

=
2
EBCC 1111   211212 C

12
BWECC =

π
′

= ; 
π

′
=

72
BWECC

2

2222                  (3.2.14) 

The local stiffness matrix can be obtained by taking the inversion of compliance matrix. i.e. 
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       Fig. 3.2.2 Relative crack depth (a1/W) vs. dimensionless compliance (ln ( xyC )) 
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Fig. 3.2.2 shows the variation of dimension-less compliances to that of relative crack depth 

From Fig. (3.2.2) it can be observed that as the crack depth increases, the compliances (C11, 

C12=C21, C22) also increase. 

3.2.1.2 Free Vibration Analysis of the Cracked Cantilever Beam 

A cantilever beam of length ‘L’ width ‘B’ and depth ‘W’, with a crack of depth ‘a1’ at a 

distance ‘L1’ from the fixed end is considered (Fig. 3.2.1). Taking u1(x,t) and u2(x,t) as the 

amplitudes of longitudinal vibration for the sections before and after the crack and y1(x,t), 

y2(x,t) are the amplitudes of bending vibration for the same sections (Fig. 3.2.3). 

 

 

 

 

 

 

The normal function for the system can be defined as 

)xKsin(A)xK(cosA)x(u u2u11 +=        (3.2.16a) 

)xKsin(A)xK(cosA)x(u u4u32 +=       (3.2.16b) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y8y7y6y51 +++=   (3.2.16c) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y12y11y10y92 +++=   (3.2.16d) 

L 

L1 

Y1 Y2 

U1 
U2 

Fig. 3.2.3 Beam model 
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Ai, (i=1, 12) Constants are to be determined, from boundary conditions. The boundary 

conditions of the cantilever beam in consideration are: 
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At the cracked section: 

)('u)('u 21 β=β ;          3.2.18(a)  

)(y)(y 21 β=β ;           3.2.18(b)  

)(y)(y 21 β′′=β′′ ;          3.2.18(c) 

)(y)(y 21 β′′′=β′′′ ;          3.2.18(d)      
 

Also at the cracked section (due to the discontinuity of axial deformation to the left and right 

of the crack), we have: 

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

dx
)L(dy

dx
)L(dyK))L(u)L(u(K

dx
)L(duAE 1112

12111211
11

                   
(3.2.19) 

Multiplying both sides of the above equation by
1211KLK

AE

 
we get; 

))(y)(y(M))(u)(u(M)(uMM 12112221 β′−β′+β−β=β′                    (3.2.20) 

Similarly at the crack section (due to the discontinuity of slope to the left and right of the 

crack)   
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⎟
⎠
⎞

⎜
⎝
⎛ −+−=

dx
)L(dy

dx
)L(dyK))L(u)L(u(K

dx
)L(ydEI 1112

221112212
11

2

                  
(3.2.21) 

Multiplying both sides of the above equation by
2122

2 KKL
EI

 
we get, 

))(y)(y(M))(u)(u(M)(yMM 124123143 β′−β′+β−β=β′′                   (3.2.22)

  

Where, 
11

1 LK
AEM = , 

12
2 K

AEM = , 
22

3 LK
EIM = , 

21
24 KL
EIM =  

The normal functions, Eq. {3.2.16} along with the boundary conditions as mentioned above, 

yield the characteristic equation of the system as: 

0Q =                         (3.2.23) 

Where Q is a 12x12 matrix and is expressed as 

1 0 1 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 G3 G4 -G7 -G8 0 0 0 0 

0 0 0 0 G4 G3 G8 -G7 0 0 0 0 
G1 G2 -G5 -G6 -G1 -G2 G5 G6 0 0 0 0 

G2 G1 G6 -G5 -G2 -G1 -G6 G5 0 0 0 0 

G1 G2 G5 G6 -G1 -G2 -G5 -G6 0 0 0 0 

S1 S2 S3 S4 -G2 -G1 G6 -G5 S5 S6 S7 S8 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 -T8 T7 

0 0 0 0 0 0 0 0 -T6 T5 T6 -T5 

S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 -T5 -T6 

 

Q =
(3.2.24) 
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Where G1= Cosh ( yK α ), G2=Sinh ( yK α ), G3= Cosh ( yK ), G4=Sinh ( yK ), G5=Cos ( yK α ),  

G6=Sin ( yK α ), G7=Cosh ( yK ), G8=Sin ( yK ),  

T5=Cos ( uK α ), T6=Sin ( uK α ), T7=Cos ( uK ), T8=Sin ( uK ) 

M12=
M1
M2

, M34= 3

4

M

M
 

S1=G2 + M3 yK G1, S2= G1 + M3 yK G2, S3= െG6 െ M3 yK G5, S4= G5െ M3 yK G6, S5 = 34M

Ky
, 

S6= 34M

Ky
T6, S7= 34-M

Ky
T5, S8= 34-M

Ky
T6, S9= M12 yK G2 

S10=M12 yK G1, S11=െM12 yK G6, S12= M12 yK G5 

S13= െM12 yK G2, S14=െM12 yK G1, 

S15= M12 yK G6, S16= െM12 yK G5, S17 = T5 –M1 uK T6, S18= T6 ൅ M1 uK  T5 

This determinant is a function of natural circular frequency (ωn), the relative location of the 

crack (L1/L) and the local stiffness matrix (K) which in turn is a function of the relative crack 

depth (a1/W). 

3.2.1.3 Forced Vibration Analysis of Cracked Cantilever Beam 

If the cantilever beam with transverse crack is excited at its free end by a harmonic excitation  

(Y = Y0 sin(ωt) ), the non-dimensional amplitude at the free end may be expressed 

as 0
0

2 y
L
y

)1(y == . Therefore the boundary conditions for the beam remain same as before 

except the boundary condition  0)1(y2 =′′′  which modified as 02 y)1(y =  

The constants Ai, i=1, to 12 are then computed from the algebraic condition, 

 Q1D=B1                  (3.2.25) 
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Q1 is the (12 x 12) matrix obtained from boundary conditions as mentioned above, 

D is a column matrix obtained from the constants, 

B1 is a column matrix, transpose of which is given by, [ ]0 0 0 0 0 0 0 0y 0 0 0B 0
T
1 =    (3.2.26) 

3.2.2  Numerical Analysis 

The numerical analysis is carried out for the cracked cantilever beam to find the relative 

amplitudes of transverse vibration at different crack location and crack depth. The cracked 

cantilever beam of the current research has the following dimensions.  

Length of the Beam     = 0.8m 

Width of the beam     = 0.05m 

Height of the Beam     = 0.006m 

Relative crack depth (a1/W)    = Varies from 0.05 to 0.8 

Relative crack location (L1/L)    = Varies from 0.125 to 0.95 

3.2.2.1 Results of Numerical Analysis 

The relative amplitudes of transverse vibration for first three mode shapes of cracked 

cantilever beam made of Aluminum are obtained at different crack location and crack depth 

by numerical solution of (Eqs.3.2.16c and 3.2.161d) of section 3.2.1.2. The results of 

numerical analysis are presented in Fig. 3.2.4 to Fig. 3.2.27. The relative amplitudes of 

transverse vibration for first three mode shapes of un-cracked cantilever beam made of 

Aluminum are also plotted in the corresponding figures for immediate comparison. The three 

dimensional variation of relative natural frequencies and relative mode shape difference with 

respect to relative crack location and relative crack depth along with the contour plots are 

presented in  Fig. 3.2.28  to  Fig. 3.2.29.        
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Fig.3.2.4 (a)  Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.1, L1/L=0.0256 

Fig. 3.2.4(a1) Magnified view of Fig. 3.2.4(a) at the vicinity of the 
crack location. 
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Fig.3.2.4 (b)   Relative amplitude vs. relative distance from the fixed end  
          (2nd mode of vibration), a1/W=0.1, L1/L=0.0256 

Fig. 3.2.4(b1)  Magnified view of Fig. 3.2.4(b) at the vicinity of the 
crack location. 
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Fig.3.2.4 (c)   Relative amplitude vs. relative distance from the fixed end  
          (3rd mode of vibration), a1/W=0.1, L1/L=0.0256 

Fig. 3.2.4(c1)  Magnified view of Fig. 3.2.4(c) at the vicinity of the 
crack location. 
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Fig. 3.2.5(a1)  Magnified view of Fig. 3.2.5(a) at the vicinity of the 
crack location. 
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Fig.3.2.5 (a)   Relative amplitude vs. relative distance from the fixed end  
          (1st mode of vibration), a1/W=0.2, L1/L=0.0256 
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Fig.3.2.5 (b) Relative amplitude vs. relative distance from the fixed end  
        (2nd mode of vibration), a1/W=0.2, L1/L=0.0256 

Fig. 3.2.5 (b1)   Magnified view of Fig. 3.2.5(b) at the vicinity of the  
  crack location. 
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Fig.3.2.5 (c)    Relative amplitude vs. relative distance from the fixed  
 end (3rd mode of vibration), a1/W=0.2, L1/L=0.0256 

Fig. 3.2.5(c1)   Magnified view of Fig. 3.2.5(c) at the vicinity of  
  the crack location. 
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Fig.3.2.6 (a)   Relative amplitude vs. relative distance from the fixed end  
          (1st mode of vibration), a1/W=0.3, L1/L=0.0256 

Fig. 3.2.6(a1)  Magnified view of Fig. 3.2.6(a) at the vicinity of the 
crack location. 
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Fig.3.2.6 (b)   Relative amplitude vs. relative distance from the fixed end  
          (2nd mode of vibration), a1/W=0.3, L1/L=0.0256 

Fig. 3.2.6(b1)  Magnified view of Fig. 3.2.6(b) at the vicinity of the 
crack location. 
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Fig. 3.2.6(c1)   Magnified view of Fig. 3.2.6(c) at the vicinity of  
  the crack location. 
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Fig.3.2.6 (c)    Relative amplitude vs. relative distance from the fixed  
 end (3rd mode of vibration), a1/W=0.3, L1/L=0.0256 
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Fig.3.2.7 (a)    Relative amplitude vs. relative distance from the fixed  
 end  (1st mode of vibration), a1/W=0.4, L1/L=0.0256 

Fig. 3.2.7(a1)   Magnified view of Fig. 3.2.7(a) at the vicinity of  
  the crack location. 
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Fig.3.2.7 (b)    Relative amplitude vs. relative distance from the fixed  
 end (2nd mode of vibration), a1/W=0.4, L1/L=0.0256 

Fig. 3.2.7(b1)   Magnified view of Fig. 3.2.7(b) at the vicinity of  
  the crack location. 
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Fig.3.2.7 (c)    Relative amplitude vs. relative distance from the fixed  
 end (3rd mode of vibration), a1/W=0.4, L1/L=0.0256 

Fig. 3.2.7(c1)   Magnified view of Fig. 3.2.7(c) at the vicinity of the  
  crack location. 
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Fig.3.2.8 (a)    Relative amplitude vs. relative distance from the fixed  
 end (1st mode of vibration), a1/W=0.1, L1/L=0.0513 

Fig. 3.2.8(a1)   Magnified view of Fig. 3.2.8 (a)   at the vicinity of  
  the crack location. 
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Fig.3.2.8 (b)    Relative amplitude vs. relative distance from the fixed  
 end (2nd mode of vibration), a1/W=0.1, L1/L=0.0513 

Fig. 3.2.8(b1)   Magnified view of Fig. 3.2.8 (b)   at the vicinity of  
  the crack location. 
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Fig. 3.2.8 (c)    Relative amplitude vs. relative distance from the fixed  
 end (3rd mode of vibration), a1/W=0.1, L1/L=0.0513 

Fig. 3.2.8 (c1)  Magnified view of Fig. 3.2.8 (c) at the vicinity of  
  the crack location. 
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Fig.3.2.9 (a)     Relative amplitude vs. relative distance from the fixed  
  end(1st mode of vibration), a1/W=0.2, L1/L=0.0513 

Fig. 3.2.9 (a1)  Magnified view of Fig. 3.2.9 (a)   at the vicinity of  
  the crack location. 
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Fig. 3.2.9(b1)  Magnified view of Fig. 3.2.9 (b)    at the vicinity of  
  the crack location. 
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Fig.3.2.9 (b)    Relative amplitude vs. relative distance from the fixed  
 end (2nd mode of vibration), a1/W=0.2, L1/L=0.0513 
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Fig.3.2.9 (c)    Relative amplitude vs. relative distance from the fixed  
 end (3rd mode of vibration), a1/W=0.2, L1/L=0.0513 

Fig. 3.2.9 (c1)   Magnified view of Fig. 3.2.9 (c) at the vicinity of  
  the crack location. 
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Fig.3.2.10 (a)   Relative amplitude vs. relative distance from the fixed  
 end (1st mode of vibration), a1/W= 0.3, L1/L=0.0513 

Fig. 3.2.10 (a1)  Magnified view of fig. 3.2.10 (a)   at the vicinity  
  of    the crack location. 
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Fig.3.2.10 (b)  Relative amplitude vs. relative distance from the fixed  
 end (2nd mode of vibration), a1/W=0.3, L1/L=0.0513 

 Fig. 3.2.10 (b1) Magnified view of Fig. 3.2.10 (b) at the vicinity of  
  the crack location. 
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Fig.3.2.10 (c)  Relative amplitude vs. relative distance from the fixed  
 end (3rd mode of vibration), a1/W=0.3, L1/L=0.0513 

Fig. 3.2.10 (c1)   Magnified view of Fig. 3.2.10 (c) at the vicinity of  
  the crack location. 
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Fig. 3.2.11 (a1)  Magnified view of Fig. 3.2.11 (a) at the vicinity of  
  the crack location. 
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Fig.3.2.11 (a)   Relative amplitude vs. relative distance from the fixed  
 end (1st mode of vibration), a1/W=0.4, L1/L=0.0513 
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Fig. 3.2.11 (b)  Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.4, L1/L=0.0513 

Fig. 3.2.11(b1)   Magnified view of Fig. 3.2.11 (b) at the vicinity of  
the crack location. 
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Fig.3.2.11 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.4, L1/L=0.0513 

Fig. 3.2.11 (c1)     Magnified view of Fig. 3.2.11 (c)   at the vicinity 
of the crack location. 
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Fig.3.2.12 (a)  Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.1, L1/L=0.1795 

Fig. 3.2.12 (a1)  Magnified view of Fig. 3.2.12 (a)   at the vicinity  
  of the crack location. 
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Fig. 3.2.12 (b1) Magnified view of Fig. 3.2.12 (b)   at the vicinity 
of the crack location. 
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Fig. 3.2.12 (b)  Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.1, L1/L=0.1795 
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Fig. 3.2.12 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.1, L1/L=0.1795 

Fig. 3.2.12 (c1)  Magnified view of Fig. 3.2.12 (c)   at the vicinity 
of the crack location. 
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Fig.3.2.13 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.2, L1/L=0.1795 

Fig. 3.2.13 (a1)   Magnified view of Fig. 3.2.13 (a)   at the vicinity 
of the crack location. 
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Fig. 3.2.13 (b)    Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.2, L1/L=0.1795 

Fig. 3.2.13(b1)  Magnified view of Fig. 3.2.13 (b) at the vicinity 
of the crack location. 
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Fig.3.2.13 (c)  Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.2, L1/L=0.1795 

Fig. 3.2.13 (c1) Magnified view of Fig. 3.2.13 (c) at the vicinity 
of the crack location. 
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Fig.3.2.14 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.3, L1/L=0.1795 

Fig. 3.2.14 (a1)   Magnified view of Fig. 3.2.14 (a)   at the vicinity 
of the crack location. 
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Fig.3.2.14 (b)   Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.3, L1/L=0.1795 

Fig. 3.2.14(b1)  Magnified view of Fig. 3.2.14(b) at the vicinity of 
the crack location. 
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Fig.3.2.14 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.3, L1/L=0.1795 

Fig. 3.2.14(c1)  Magnified view of Fig. 3.2.14(c) at the vicinity 
of the crack location. 
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Fig.3.2.15 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.4, L1/L=0.1795 

Fig. 3.2.15 (a1)   Magnified view of Fig. 3.2.15 (a)   at the vicinity 
of the crack location. 

 

Relative distance from fixed end

R
el

at
iv

e 
am

pl
itu

de
 



   

88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative distance from fixed end

R
el

at
iv

e 
am

pl
itu

de
 

Fig.3.2.15 (b)  Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.4, L1/L=0.1795 

Fig. 3.2.15(b1)  Magnified view of Fig. 3.2.15(b) at the vicinity of 
the crack location. 
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Fig.3.2.15 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.4, L1/L=0.1795 

Fig. 3.2.15(c1) Magnified view of Fig. 3.2.15(c) at the vicinity of 
the crack location. 
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Fig.3.2.16 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.1, L1/L=0.2564 

Fig. 3.2.16(a1)  Magnified view of Fig. 3.2.16(a) at the vicinity 
of the crack location. 
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Fig.3.2.16 (b)   Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.1, L1/L=0.2564 

Fig. 3.2.16(b1)  Magnified view of Fig. 3.2.16(b) at the vicinity of 
the crack location. 
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Fig. 3.2.16 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.1, L1/L=0.2564 

Fig. 3.2.16 (c1)    Magnified view of Fig. 3.2.16 (c) at the vicinity 
of the crack location. 

 

Relative distance from fixed end

R
el

at
iv

e 
am

pl
itu

de
 



   

93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative distance from fixed end

R
el

at
iv

e 
am

pl
itu

de
 

Fig.3.2.17 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.2, L1/L=0.2564 

Fig. 3.2.17 (a1) Magnified view of Fig. 3.2.17 (a) at the vicinity of 
the crack location. 
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Fig.3.2.17 (b)  Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.2, L1/L=0.2564 

Fig. 3.2.17(b1) Magnified view of Fig. 3.2.17(b) at the vicinity of 
the crack location. 
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Fig. 3.2.17 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd  mode of vibration), a1/W=0.2, L1/L=0.2564 

Fig. 3.2.17 (c1)  Magnified view of Fig. 3.2.17 (c) at the vicinity 
of the crack location. 
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Fig.3.2.18 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.3, L1/L=0.2564 

Fig. 3.2.18 (a1) Magnified view of Fig. 3.2.18 (a) at the vicinity 
of the crack location. 
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Fig.3.2.18 (b)   Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.3, L1/L=0.2564 

Fig. 3.2.18(b1)  Magnified view of Fig. 3.2.18 (b) at the vicinity of 
the crack location. 
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Fig. 3.2.18 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd  mode of vibration), a1/W=0.3, L1/L=0.2564 

Fig. 3.2.18 (c1)    Magnified view of Fig. 3.2.18 (c)   at the vicinity 
of the crack location. 
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Fig.3.2.19 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st  mode of vibration), a1/W=0.4, L1/L=0.2564 

Fig. 3.2.19 (a1)    Magnified view of Fig. 3.2.19 (a)    at the vicinity 
of the crack location. 
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Fig.3.2.19 (b)   Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.4, L1/L=0.2564 

Fig. 3.2.19(b1) Magnified view of Fig. 3.2.19(b) at the vicinity of 
the crack location. 
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Fig.3.2.19 (c)    Relative amplitude vs. relative distance from the fixed 
end (3rd  mode of vibration), a1/W=0.4, L1/L=0.2564 

Fig. 3.2.19 (c1)  Magnified view of Fig. 3.2.19 (c) at the vicinity 
of the crack location. 
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Fig.3.2.20 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.1, L1/L=0.3846 

Fig. .3.2.20 (a1) Magnified view of Fig. 3.2.20 (a) at the vicinity of 
the crack location. 
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Fig.3.2.20 (b)   Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.1, L1/L=0.3846 

Fig. 3.2.20(b1)  Magnified view of Fig. 3.2.20 (b) at the vicinity of 
the crack location. 
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Fig.3.2.20 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.1, L1/L=0.3846 

Fig. 3.2.20 (c1)  Magnified view of Fig. 3.2.20 (c) at the vicinity of 
the crack location. 
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Fig.3.2.21 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st  mode of vibration), a1/W=0.2, L1/L=0.3846 

Fig. 3.2.21 (a1)   Magnified view of Fig. 3.2.21 (a)    at the vicinity 
of the crack location. 
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Fig.3.2.21 (b)   Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.2, L1/L=0.3846 

Fig. 3.2.21 (b1)  Magnified view of Fig. 3.2.21 (b)at the vicinity 
of the crack location. 

 

Relative distance from fixed end

R
el

at
iv

e 
am

pl
itu

de
 



   

107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative distance from fixed end

R
el

at
iv

e 
am

pl
itu

de
 

Fig.3.2.21(c)   Relative amplitude vs. relative distance from the fixed end 
         (3rd mode of vibration), a1/W=0.2, L1/L=0.3846 

Fig. 3.2.21(c1)    Magnified view of Fig. 3.2.21(c)    at the vicinity 
of the crack location. 
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Fig.3.2.22 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st  mode of vibration), a1/W=0.3, L1/L=0.3846 

Fig. 3.2.22 (a1)  Magnified view of Fig. 3.2.22 (a) at the vicinity 
of the crack location. 
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Fig.3.2.22 (b)  Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.3, L1/L=0.3846 

Fig. 3.2.22 (b1)  Magnified view of Fig. 3.2.22 (b) at the vicinity 
of the crack location. 
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Fig.3.2.22 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.3, L1/L=0.3846 

Fig. 3.2.22 (c1)  Magnified view of Fig. 3.2.22 (c) at the vicinity 
of the crack location. 
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Fig.3.2.23 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.4, L1/L=0.3846 

Fig. 3.2.23 (a1)  Magnified view of Fig. 3.2.23 (a) at the vicinity 
of the crack location. 
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Fig.3.2.23 (b)   Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.4, L1/L=0.3846 

Fig. 3.2.23(b1)  Magnified view of Fig. 3.2.23(b) at the vicinity of 
the crack location. 
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Fig.3.2.23 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.4, L1/L=0.3846 

Fig. 3.2.23 (c1)  Magnified view of Fig. 3.2.23 (c) at the vicinity 
of the crack location. 
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Fig.3.2.24 (a)   Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.1, L1/L=0.5128 

Fig. 3.2.24 (a1)  Magnified view of Fig. 3.2.24 (a) at the vicinity of 
the crack location. 
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Fig.3.2.24 (b)   Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.1, L1/L=0.5128 

Fig. 3.2.24(b1)  Magnified view of Fig. 3.2.24 (b) at the vicinity of 
the crack location. 
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Fig.3.2.24 (c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.1, L1/L=0.5128 

Fig. 3.2.24 (c1)  Magnified view of Fig. 3.2.24 (c) at the vicinity 
of the crack location. 
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Fig. 3.2.25(a)  Relative amplitude vs. relative distance from the fixed  
 end (1st mode of vibration), a1/W=0.2, L1/L=0.5128 

 

Fig. 3.2.25(a1)  Magnified view of Fig. 3.2.25(a) at the vicinity of 
the crack location. 
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Fig. 3.2.25(b)  Relative amplitude vs. relative distance from the fixed  
 end (2nd mode of vibration), a1/W=0.2, L1/L=0.5128 

 

Fig. 3.2.25(b1)  Magnified view of Fig.3.2.25 (b) at the vicinity of 
the crack location. 
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Fig. 3.2.25(c1)  Magnified view of Fig. 3.2.25(c) at the vicinity of 
the crack location. 
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Fig. 3.2.25(c) Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.2, L1/L=0.5128 
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Fig.3.2.26(a)   Relative amplitude vs. relative distance from the fixed end 
         (1st mode of vibration), a1/W=0.3, L1/L=0.5128 
 

Fig. 3.2.26(a1)  Magnified view of Fig. 3.2.26(a) at the vicinity 
of the crack location. 
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Fig. 3.2.26(b1)  Magnified view of Fig. 3.2.26(b) at the vicinity 
of  the crack location. 
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Fig.3.2.26 (b)  Relative amplitude vs. relative distance from the fixed 
end 2nd mode of vibration), a1/W=0.3, L1/L=0.5128 
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Fig. 3.2.26(c)   Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.3, L1/L=0.5128 

          

Fig. 3.2.26(c1)  Magnified view of Fig. 3.2.26(c) at the vicinity of 
the crack location. 
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Fig. 3.2.27(a)  Relative amplitude vs. relative distance from the fixed 
end (1st mode of vibration), a1/W=0.4, L1/L=0.5128 

 

Fig. 3.2.27(a1) Magnified view of Fig. 3.2.27(a1) at the vicinity of 
the crack location. 
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Fig.3.2.27 (b)    Relative amplitude vs. relative distance from the fixed 
end (2nd mode of vibration), a1/W=0.4, L1/L=0.5128 

    

Fig. 3.2.27(b1)  Magnified view of Fig. 3.2.27(b) at the vicinity of 
the crack location.  
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Fig. 3.2.27(c)    Relative amplitude vs. relative distance from the fixed 
end (3rd mode of vibration), a1/W=0.4, L1/L=0.5128 

 

Fig. 3.2.27(c1) Magnified view of fig. Fig. 3.2.27(c) at the vicinity 
of the crack location. 
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Fig. 3.2.28 (a) Three dimensional cum contour plot for relative first natural frequency 

Fig.3.2.28 (b) Three dimensional cum contour plot for relative second natural frequency 
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Fig. 3.2.28 (c) Three dimensional cum contour plot for relative third natural frequency 
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Fig. 3.2.29 (a) Three dimensional cum contour plot for relative 1st mode shape difference 

R
el

at
iv

e 
1st

 m
od

e 
sh

ap
e 

di
ff

er
en

ce
  

 Rel
at

iv
e 

cr
ac

k 
de

pt
h 

Relative crack position 



   

128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 3.2.29 (c) Three dimensional cum contour plot for relative 3rd mode shape difference 
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Fig. 3.2.29 (b) Three dimensional cum contour plot for relative 2nd mode shape difference 
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3.3  Analysis of Experimental Results 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An experimental set-up is used for carrying out the experiment as shown in the schematic 

diagram (Fig. 3.3.1). A number of tests are conducted on aluminum beam specimen (800 x 

50 x 6 mm) with a transverse crack as shown in Fig. 3.3.1 for determining the amplitude of 

vibration, natural frequencies and mode shapes. The beam is allowed to vibrate under 1st, 2nd 

and 3rd modes of vibration.  

 

3.3.1  Experimental Results 

The experimental results for relative amplitude at different relative crack location (0.026, 

0.05128) and relative crack depths (0.3, 0.4) are depicted in Fig.3.3.2 to Fig. 3.3.4. 

Corresponding numerical results are also plotted for cracked and un-cracked beam in the 

same graphs for immediate comparison.    

Fig. 3.3.1   Schematic block diagram of experimental set-up 
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1. Vibration Pick-up    4. Distribution box 7. Power amplifier 
   (Accelerometer) 
 
2. Vibration analyser     5. Power supply 8. Vibration exciter  
 (PULSE Lite Type 3560L) 
 
3. Vibration indicator               6. Function generator      9. Cantilever beam 
    with software                                                                    specimen 
(PULSE labshop software)       
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Fig.3.3.2 (a)  Relative amplitude vs. relative distance from the fixed end  
(1st mode of vibration), a1/W=0.4, L1/L=0.026 
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Fig.3.3.2 (b)  Relative amplitude vs. relative distance from the fixed end  
(2nd  mode of vibration), a1/W=0.4, L1/L=0.026 
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 Fig.3.3.3 (a)  Relative amplitude vs. relative distance from the fixed end  
(1st mode of vibration), a1/W =0.3, L1/L =0.05128 
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Fig.3.3.2 (c)  Relative amplitude vs. relative distance from the fixed end  
(3rd  mode of vibration), a1/W=0.4, L1/L=0.026 
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Fig.3.3.3 (b)  Relative amplitude vs. relative distance from the fixed end  
(2nd mode of vibration), a1/W =0.3, L1/L =0.05128 
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Fig.3.3.3(c) Relative amplitude vs. relative distance from the fixed end  
(3rd  mode of vibration), a1/W =0.3, L1/L =0.05128 
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Fig.3.3.4 (a)  Relative amplitude vs. relative distance from the fixed end  
(1st mode of vibration), a1/W =0.4, L1/L =0.05128 
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Fig.3.3.4 (b)  Relative amplitude vs. relative distance from the fixed end  
(2nd  mode of vibration), a1/W =0.4, L1/L =0.05128 
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3.3.2.  Comparison among the Results of Numerical and Experimental Analyses 

It is evident from the comparison of experimental and numerical results depicted in the 

Fig.3.3.2 to Fig. 3.3.4. and Table 3.3.1 that they are in good agreement. Table 3.3.1 

delineates the comparison of results between numerical and experimental results. This table 

depicts ten sets of data out of hundreds of data set recorded to show the comparison between 

the numerical and experimental results. In Table 3.3.1 column “one” for relative first natural 

frequency, column “two” for relative second natural frequency, column “three” for relative 

third natural frequency, column “four” for relative first mode shape difference, column “five” 

for relative second mode shape difference, column “six” for relative third mode shape 

difference, column “seven” for relative crack depth and relative crack location of numerical 

Fig.3.3.4 (c)   Relative amplitude vs. relative distance from the fixed end  
(3rd mode of vibration), a1/W =0.4, L1/L =0.05128 
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analysis, column “eight” for relative crack depth and relative crack location of experimental 

analysis. 

Various numerical and experimental results are found out from the above theoretical and 

experimental analysis. The numerical, experimental results and comparison between the 

numerical and experimental results are put forward in the graphical and tabular format. The 

relative natural frequency and relative mode shape difference used in the above analysis can 

be defined as follows. 

Relative natural frequency =  

Relative mode shape difference =  

 

3.4  Discussions 

From above theoretical, numerical and experimental analysis the following discussions are 

made. Fig.3.2.1 (a) represents the cracked cantilever beam, Fig.3.2.1 (b) shows the cross 

sectional view and Fig.3.2.1(c) shows the segment at crack section. Fig. 3.2.2 shows the 

Relative 
first 

natural  
frequency 

 
“fnf” 

Relative 
second 
natural  

frequency 
 

“snf” 

Relative 
third 

natural  
frequency 

 
“tnf” 

Relative 
first 

mode 
shape 

difference 
“fmd” 

Relative 
second 
mode 
shape 

difference 
“smd” 

Relative 
third 
mode 
shape 

difference 
“tmd” 

Numerical results 
 

(relative crack 
depth “rcd” and 
location“rcl”) 

Experimental 
results 

(relative crack 
depth “rcd” and 
location“rcl”) 

rcd rcl rcd rcl 

0.9848 0.9958 0.9975 0.2709 0.2372 0.3158 0.202 0.06888 0.205 0.0725 

0.9673 0.9874 0.9943 0.3969 0.3247 0.3923 0.427 0.079 0.43 0.08388 

0.9623 0.9948 0.9983 0.1814 0.0279 0.0774 0.537 0.15988 0.568 0.1575 

0.9756 0.9976 0.9972 0.1383 -0.0823 0.1898 0.394 0.18675 0.391 0.18775 

0.9852 0.9984 0.9967 0.01 -0.8678 0.2572 0.231 0.23625 0.23 0.24 

0.9723 0.9961 0.9818 0.1947 0.0672 0.4105 0.556 0.2825 0.545 0.28625 

0.9823 0.9872 0.9919 0.0726 0.2567 0.3994 0.451 0.40388 0.447 0.40513 

0.981 0.9809 0.9931 0.0898 0.3154 0.392 0.497 0.42388 0.495 0.4235 

0.986 0.9842 0.9988 -0.032 0.322 0.3965 0.426 0.50125 0.425 0.50375 

0.9834 0.9685 0.9974 0.038 0.4558 0.3507 0.542 0.535 0.535 0.53313 

Table 3.3.1  Comparison of results between numerical and experimental analyses  

(Uncrack mode – Crack mode)  
          Uncrack mode 

(Natural frequency of cracked beam)       
(Natural frequency of uncracked beam) 
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variation of dimension-less compliances to that of relative crack depth.  It is observed that as 

the crack depth increases the compliance value increases. Fig.3.2.4 to Fig.3.2.27 show the 

plots of relative beam distance from fixed end verses relative amplitudes for first, second, 

third modes of vibration, for different relative crack locations and different relative crack 

depths. Fig.3.2.28 depicts the variation of relative natural frequencies with respect to relative 

crack locations and relative crack depth in three dimensional forms, along with the contour 

plots. Fig.3.2.29 exhibits the variation of relative mode shapes with respect to relative crack 

locations and relative crack depth in three dimensional forms along with the contour plot.  

The observations made from the above results are depicted below. 

(1) From Fig.3.2.2 it is observed that as the crack depth increases, the compliances (C11, 

C12=C21, C22) also increase. This is due to decrease in local stiffness at the crack 

section.    

(2)  It is observed from Fig. 3.2.4 to Fig. 3.2.27 that there are remarkable changes in the 

mode shapes of the beam due to the presence of crack as compared to un-cracked 

beam. 

(3) It is evident from Fig.3.2.4 that up to the relative crack depth of 0.1 and relative crack 

location 0.0256, there is no appreciable change in the mode shapes as compared with 

similar un-cracked beam. However with the magnification of ordinates at the vicinity 

of crack location as shown in Fig.3.2.4 to Fig.3.2.27, significant variation is noted in 

mode shapes. 

(4) Similarly for relative crack depth of 0.3 the mode shape variations are more 

prominent (Fig.3.2.6 to Fig.3.2.27).     

(5) Again with the increase in the relative crack depth up to 0.50, keeping the relative 

crack location same, it is observed that there is appreciable variation in the 1st and 2nd 

mode shapes as depicted in Fig.3.26 to Fig.3.2.27. With the magnification of 

ordinates at the vicinity of crack location (Fig.3.24 to 3.2.27) abrupt changes in mode 

shape are observed. 

(6) Fig.3.3.2 to Fig.3.3.4 shows the comparison between the experimental and numerical 

results for the cracked and un-cracked beam.  
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3.5  Summary 

From the above analyses and discussions, the conclusions drawn are depicted as follows. 

Crack depth and crack location have got effect on mode shapes and natural frequencies of the 

vibrating structures. At the crack location significant changes in mode shapes are observed in 

magnified views. These changes will help in depicting the location and intensity of the crack. 

The mode shapes for the beam with crack obtained theoretically are compared with the 

experimental results for cross verification. This methodology has been applied for collection 

of rule and training data set for inverse problem in the subsequent section. The results 

obtained from various analyses mentioned above shows a very good agreement. The 

methodology can be utilized for condition monitoring of vibrating structures. Artificial 

intelligence embedded technique can be developed for smart detection of fault in structures. 

In the next sections fuzzy inference technique, Neural technique and hybrid technique are 

applied for predicting crack location and crack depth as an inverse problem for condition 

monitoring.  

Publications 

• Das H.C. and Parhi D.R., Modal analysis of vibrating structures impregnated with crack, 

International Journal of    Applied Mechanics & Engineering, 13(3), 2008, 639-652. 
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Much research effort has been spent on various structural health monitoring techniques in 

order to develop a reliable, efficient and economical approach to increase the safety and 

reduce the maintenance cost of elastic structures. Although improved design methodologies 

have significantly enhanced the reliability and safety of structures in recent years, it is still 

not possible to build structures that have zero percent probability of failure. There is an 

increasing interest in the development of smart structures with built-in fault detection 

systems that would provide failure warnings. This current research presents methodologies 

for structural damage detection and assessment using fuzzy logic. The approach for damage 

detection is based on monitoring various system responses to determine the condition 

monitoring of a vibrating structure. In this chapter an intelligent controller has been proposed 

for crack detection algorithm employing fuzzy theory.  

 

4.1 Introduction 
It is observed that the human beings do not need precise, numerical information input to 

make a decision, but they are able to perform highly adaptive control. Humans have a 

remarkable capability to perform a wide variety of physical and mental tasks without any 

explicit measurements or computations. Examples of everyday tasks are parking a car, 

driving in city traffic, playing golf, and summarizing a story. In performing such familiar 

tasks, humans use perceptions of time, distance, speed, shape, and other attributes of physical 

and mental objects [152]. Fuzzy logic is a problem-solving control system methodology that 

lends itself for implementation in systems ranging from simple, small, embedded micro-

controllers to large, networked, workstation-based data acquisition and control systems. The 

theory of fuzzy logic systems is inspired by the remarkable human capability to operate on 

and reason with perception-based information. The rule-based fuzzy logic provides a 

scientific formalism for reasoning and decision making with uncertain and imprecise 

Chapter 4 

ANALYSIS OF FUZZY LOGIC TECHNIQUE FOR CRACK 
DETECTION 
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information. This methodology can be implemented in hardware, software, or a combination 

of both. Fuzzy logic approach to control problems mimics how a person would make 

decisions. Fuzzy systems allow for easier understanding as they are expressed in terms of 

linguistic variables [178]. Damage detection is one of the key aspects in structural 

engineering both for safety reasons and because of economic benefits that can result. Many 

non-destructive testing methods for health monitoring have been proposed and investigated. 

These methods include modal analysis, strain analysis, photo- elastic techniques, ultrasound 

and acoustic emissions [170]. A fuzzy logic methodology can be presented for structural fault 

detection based on eigen value, and dynamic responses of vibrating structure.  

This chapter proposes an on-line crack detection methodology embedded with a new 

intelligent fuzzy inference system. In this approach, the fuzzy logic controller is designed and 

is used to detect the relative crack location and relative crack depth. The designed fuzzy 

controller has six inputs and two outputs. The inputs to the designed fuzzy controller are 

relative deviation of first three natural frequencies and relative deviation of first three mode 

shapes and the out puts are relative crack location and relative crack depth. The fuzzy logic 

system learns the full dynamics of the cracked beam. The inputs have ten membership 

functions each and the outputs have forty seven membership functions for relative crack 

location and nineteen membership functions relative crack depth. Each membership function 

consists of triangular, trapezoidal and Gaussian membership functions. In this methodology 

six hundred and ninety two rules have been used to design the fuzzy controllers. This   

research focuses a fuzzy logic framework to be implemented for on-line crack detection. The 

results of the proposed fuzzy controller have been compared with the numerical method 

which shows the effectiveness of the developed method. It is also concluded that the current 

method can be successfully employed for crack detection. This fuzzy controller designed for 

crack detection has been authenticated by experimental results. 

This chapter organized into five sections following the introduction, the analysis of fuzzy 

inference system is described in section 4.2. The fuzzy controller design for crack detection 

and corresponding results are discussed in section 4.3. In section 4.4, the results of the fuzzy 

controller are compared with experimental and numerical results to demonstrate the 

superiority of the proposed methodology and finally summary is given in section 4.5. 
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4.2 Fuzzy Inference System 
Fuzzy inference is the process of formulating the mapping from a given input to an out put 

using fuzzy logic. The mapping then provides a basis from which decisions can be made, or 

patterns discerned. The process of fuzzy inference involves: membership functions, fuzzy 

logic operators, and if-then rules. Fuzzy inference systems have been successfully applied in 

fields such as automatic control, fault diagnosis, data classification, decision analysis, expert 

systems, and computer vision. 

In general, there are five parts of the fuzzy inference process. 

 
(i) Input  fuzzification: The step is to take the inputs and determine the degree to which they 

belong to each of the appropriate fuzzy sets via membership functions. 

(ii) Antecedent matching: Once the inputs have been fuzzified, the degree to which each 

part of the antecedent has been satisfied for each rule is known. If the antecedent of a given 

rule has more than one part, the fuzzy operator is applied to obtain one number that 

represents the result of the antecedent for that rule. This number will then be applied to the 

output function. 

(iii) Rule fulfillment: A consequent of a rule is a fuzzy set represented by a membership 

function. In this step, the consequent is reshaped using a function associated with the 

antecedent. 

(iv) Consequent aggregation: Since decisions are based on all the rules in a fuzzy inference 

system, the rules must be combined in some manner in order to make a decision. 

Aggregation is the process by which the fuzzy sets that represent the outputs of each rule are 

combined into a single fuzzy set. 

(v) Output defuzzification: Taking fuzzy sets as input, defuzzification outputs a crisp value, 

which is suitable for analysis and control. 

 

4.2.1 Membership Functions 

The membership function of a fuzzy set is a generalization of the indicator function in 

classical sets. In fuzzy logic, it represents the degree of truth as an extension of valuation.For 

any set X, a membership function on X is any function from X to the real unit interval [0, 1]. 

Membership functions on X represent fuzzy subsets of X. The membership function which 



   

141 

represents a fuzzy set A is usually denoted by μA. For an element x of X, the value μA(x) is 

called the membership degree of x in the fuzzy set A. The membership degree μA(x) 

quantifies the grade of membership of the element x to the fuzzy set A. The value 0 means 

that x is not a member of the fuzzy set; the value 1 means that x is fully a member of the 

fuzzy set. The values between 0 and 1 characterize fuzzy members, which belong to the 

fuzzy set only partially. 

The Triangular membership function with straight lines is defined as  

f (u, α, β, γ) =0  u<α 

= (u-α)/ (β-α)  α<=u<=β 

= (α - u)/ (β-α)  β<=u<=γ 

=0  u>γ 

One typical plot of the triangular membership function is given in Fig. 4.2.1(a). 

 

A Gaussian membership function is defined by 

f (u: m, σ) =exp [-{(u-m)/√2σ} 2] 

Where the parameters m and σ control the center and width of the membership function. A 

plot of the Gaussian membership function is presented if Fig. 4.2.1(b). 
 
Trapezoidal membership function is defined as 

f (u, a, b, c, d) = 0 when u < a and u > d 

= (u - a) / (b - a) when a <= u <= b 

= 1 when b <= u <= c 

= (d - u) / (d - c) when c <= u <= d 

A plot of the Trapezoidal membership function furnished in Fig. 4.2.1(c). 

 

 

 

 

 
Fig.4.2.1(c) Trapezoidal 
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4.2.2 Fuzzy Logic Controllers (FLC) and Fuzzy Reasoning Rules 

 
In a fuzzy logic controller (FLC), the dynamic behavior of a fuzzy system is characterized by 

a set of linguistic description rules based on expert knowledge. The expert knowledge is 

usually of the form IF (a set of conditions are satisfied) THEN (a set of consequences can be 

inferred). Since the antecedents and the consequents of these IF-THEN rules are associated 

with fuzzy concepts (linguistic terms), they are often called fuzzy conditional statements. In 

our terminology, a fuzzy control rule is a fuzzy conditional statement in which the antecedent 

is a condition in its application domain and the consequent is a control action for the system 

under control. Basically, fuzzy control rules provide a convenient way for expressing control 

policy and domain knowledge. 
 
Furthermore, several linguistic variables might be involved in the antecedents and the 

conclusions of these rules. When this is the case, the system will be referred to as a multi-

input- multi-output (MIMO) fuzzy system. For example, in the case of two-input-single-

output (MISO) fuzzy systems, fuzzy control rules have the form 

Rule-1: if x is A1 and y is B1 then z is C1 

also 

Rule-2: if x is A2 and y is B2 then z is C2 

also 

 

also 

Rule-n: if x is An and y is Bn then z is Cn 

where x and y are the process state variables, z is the control variable, Ai, Bi, and Ci are 

linguistic values of the linguistic variables x, y and z.  

The inputs to the fuzzy logic controller for crack detection comprises of 

Relative first natural frequency = “fnf”; Relative second natural frequency = “snf”;  

Relative third natural frequency = “tnf”; Relative first mode shape difference = “fmd”;  

Relative second mode shape difference = “smd”;  

Relative third mode shape difference = “tmd”. 
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The linguistic term used for the outputs are as follows; 

Relative crack location = “rcl” and Relative crack depth = “rcd” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3 Defuzzification 

The output of the inference process so far is a fuzzy set, specifying a possibility distribution 

of control action. In the on-line control, a nonfuzzy (crisp) control action is usually required. 

Consequently, one must defuzzify the fuzzy control action (output) inferred from the fuzzy 

control algorithm, namely: 

z0 = defuzzifier(C); 

where z0 is the nonfuzzy control output and defuzzifier is the defuzzification operator. 

 
Defuzzification is a process to select a representative element from the fuzzy output C 

inferred from the fuzzy control algorithm. The widely used defuzzification operators are: 

(a) Centroid of area method 

(b) Mean of maxima method 

Fig. 4.2.2  Schematic diagram of the fuzzy logic controller for crack detection 
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4.3 Analysis of the Fuzzy Controller used for Crack Detection 
 

fuzzy controllers (Fig. 4.3.1(a), 4.3.2(a), 4.3.3(a)) developed for crack detection has got six 

input parameters and two output parameters.  

The linguistic term used for the inputs are as follows; 

Relative first natural frequency = “fnf”; Relative second natural frequency = “snf”;  

Relative third natural frequency = “tnf”; Relative first mode shape difference = “fmd”;  

Relative second mode shape difference = “smd”;  

Relative third mode shape difference = “tmd”. 

The linguistic term used for the outputs are as follows; 

Relative crack location = “rcl” and Relative crack depth = “rcd” 

In the current section the fuzzy controllers are developed with triangular, Gaussian and 

trapezoidal membership functions. The linguistic terms used in the fuzzy inference system 

for the membership functions are described in the Table 4.3.1.  For each input parameter ten 

membership functions are taken. For the output parameter “relative crack location (rcl)” forty 

six membership functions are taken and for the output parameter “relative crack depth (rcd)” 

nineteen membership functions are taken.  

4.3.1 Fuzzy Mechanism for Crack Detection 

For the fuzzy subsets, the fuzzy control rules are defined in a general form as follows: 

If (fnf is fnfi  and snf is snfj and tnf is tnfk and fmd is fmdl and smd is smdm  

and tmd is tmdn)  then rcl is rclijklmn and rcd is rcdijklmn 

 
where i=1 to 10, j=1 to 10, k = 1 to 10, l= 1 to 10, m= 1 to 10, n= 1 to 10    
Because “fnf”, “snf”, “tnf”, “fmd”, “smd”, “tmd” have ten membership functions each. From expression (4.3.1), two set of rules can be written 

If (fnf is fnfi  and snf is snfj and tnf is tnfk and fmd is fmdl and smd is smdm  

and tmd is tmdn)  then rcd is rcdijklmn 

 

If (fnf is fnfi  and snf is snfj and tnf is tnfk and fmd is fmdl and smd is smdm  

and tmd is tmdn)  then rcl is rclijklmn  

(4.3.1)

(4.3.2)
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According to the usual fuzzy logic control method [165], a factor  is defined for the rules as 

follows: 

 

)moddif(μ Λ )moddif(μ Λ )(moddifμ Λ )(freqμ Λ )(freqμ Λ )(freqμ W ntmdmsmdlfmdktnfjsnfifnfijklmn nmlkji
=

 

Where freqi , freqj and freqk are the first , second and third relative natural frequencies of the 

cantilever beam with crack respectively ; moddifl, moddifm and moddifn  are the first, second 

and third mode relative differences of the cantilever beam with crack respectively. By 

applying the composition rule of inference [165] the membership values of the relative crack 

location and relative crack depth, (location)rcl and (depth)rcd can be computed as;  

 

rcd depth                )depth(   W )depth(

   rcl length          )location(   W )location(

ijklmnijklmn

ijklmnijklmn

rcdijklmnrcd

rclijklmnrcl

∈∀μΛ=μ

∈∀μΛ=μ
     

 

The overall conclusion by combining the outputs of all the fuzzy rules can be written as 

follows: 

(depth)μ..........    (depth)μ ..........   (depth)μ(depth)μ

 (location)μ.....   (location)μ ....   (location)μ(location)μ

 10  10  10  10  10  10ijklmn111111

  10  10  10  10  10  10ijklmn111111

rcdrcdrcdrcd

rclrclrclrcl

∨∨∨∨=

∨∨∨∨=
  

The crisp values of relative crack location and relative crack depth are computed using the 

centroid of area method [165] as: 

∫ ⋅
∫ ⋅⋅

==

∫ ⋅
∫ ⋅⋅

==

d(depth)    (depth)μ
d(depth)    (depth)μ    (depth)

rcd ackdepthrelativecr

)d(location    (location)μ
)d(location   (location) μ   (location 

rcllocationcrack  relative

rcd

rcd

rcl

rcl

    

4.3.2 Fuzzy Controller for Finding out Crack Depth and Crack Location  

The inputs to the fuzzy controller are relative deviation of first natural frequency; relative 

deviation of second natural frequency; relative deviation of third natural frequency; relative 

(4.3.3)

(4.3.4)

(4.3.5)
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first mode shape difference; relative second mode shape difference and relative third mode 

shape difference. The outputs from the fuzzy controller are relative crack depth and relative 

crack location.  Several hundred fuzzy rules are outlined to train the fuzzy controller. Twenty 

numbers of the fuzzy rules out of several hundred fuzzy rules are being listed in Table 4.3.2.   

4.3.3 Results of Fuzzy Controller 

 

In the current research the fuzzy controller is designed with three types of membership 

functions i.e triangular (Fig. 4.3.1), gaussian (Fig. 4.3.2) and trapezoidal (Fig. 4.3.3). 

Fig.4.3.4 shows the defuzzyfication of triangular membership function fuzzy controller 

results when the rule-1 and rule-19 are activated from Table 4.3.2. Fig.4.3.5 shows the 

defuzzyfication of Gaussian membership function fuzzy controller results when the rule-1 

and rule-19 are activated from Table 4.3.2. Fig. 4.3.6 shows the defuzzyfication of 

trapezoidal membership function fuzzy controller results when the rule-1 and rule-19 are 

activated from Table 4.3.2. Table 4.3.3 presents the comparison of results between 

triangular, Gaussian and trapezoidal fuzzy controller, numerical analysis and experimental 

analysis. In this table ten sets of inputs out of several hundred sets are taken. Corresponding 

ten set of outputs through the fuzzy controller, numerical analysis and experimental analysis 

are depicted in the same table. In the Table 4.3.3 the first column represents the relative first 

natural frequency (fnf), the second column represents the relative of second natural 

frequency (snf), the third column represents the relative of third natural frequency (tnf), the 

fourth column represents the relative first mode shape difference (fmd), the fifth column 

represents the relative second mode shape difference (smd), the sixth column represents the 

relative third mode shape difference (tmd) as inputs ,the seventh column presents the outputs 

relative crack location(rcl), relative crack depth(rcd) from the triangular membership 

function fuzzy controller, the eighth column presents the outputs, relative crack location(rcl), 

relative crack depth(rcd) from the gaussian membership function fuzzy controller ,the ninth 

column presents the outputs, relative crack location(rcl), relative crack depth(rcd) from the 

trapezoidal membership function fuzzy controller, the tenth column presents the outputs, 

relative crack location(rcl), relative crack depth(rcd) from the numerical analysis and the 
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eleventh column presents the outputs, relative crack location(rcl), relative crack depth(rcd) 

from the experimental analysis. 

 
4.4 Discussions 
 

In this chapter fuzzy controller has been addressed for prediction of crack location and crack 

depth. Three types of membership functions such as triangular function (Fig. 4.2.1(a)), 

gaussian function (Fig. 4.2.1(b)) and trapezoidal function (Fig. 4.2.1(c)) have been used for 

designing the fuzzy controllers. The working principle for the fuzzy controller has been 

depicted in Fig. 4.2.2. The complete architecture of triangular, Gaussian and trapezoidal 

fuzzy controller are presented in Fig. 4.3.1, Fig. 4.3.2 and Fig. 4.3.3 respectively. The 

linguistic terms of the fuzzy membership function have been given in Table 4.3.1. Table 

4.3.2 gives twenty sets of the fuzzy rules sets being used for the fuzzy controller. Fig. 4.3.4 

to Fig. 4.3.6 exhibits the fuzzy results after defuzzification when rule 1 and 19 of the Table 

4.3.2 are activated for triangular, gaussian, trapezoidal membership functions respectively. 

Table 4.3.3 gives the comparison of the results obtained from numerical, experimental, 

fuzzy controller with triangular membership function, fuzzy controller with gaussian 

membership function and fuzzy controller with trapezoidal membership function. During 

comparison a good agreement is seen between the results. It is evident from the Table 4.3.3 

that the average percentage deviation of the results of the triangular membership function 

fuzzy controller is 2.9%, for gaussian membership function fuzzy controller is 0.9% and for 

trapezoidal membership function fuzzy controller is 1.5%. 
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Fig. 4.3.1(b1) Triangular membership functions for 
relative natural frequency for first mode of vibration 

1.0 
     L1F4      L1F3      L1F2    L1F1    M1F1    M1F2    H1F1    H1F2     H1F3     H1F4 
  

0.0, 0.912   0.92      0.928      0.936    0.944    0.952      0.96      0.968     0.976    0.984      0.992       1.0 

Fig. 4.3.1(b3) Triangular membership functions for 
relative natural frequency for third mode of vibration 

1.0 

    L3F4      L3F3     L3F2     L3F1    M3F1   M3F2    H3F1     H3F2     H3F3     H3F4 

0.0,0.934   0.940     0.946    0.952     0.958     0.964     0.970    0.976      0.982    0.988      0.994        1.0 
  0.0,-1.0  - 0.81818    -0.63636  -0.45454 -0.27272  -0.0909   0.09092  0.27272  0.45454   0.63636   0.81818    1.0  

Fig. 4.3.1(b4) Triangular membership functions 
for relative mode shape difference for first mode of 
vibration 

1.0 
   S1M4      S1M3    S1M2    S1M1   M1M1  M1M2   H1M1   H1M2   H1M3    H1M4 

Fig. 4.3.1(b5) Triangular membership functions for 
relative mode shape difference for second mode of 
vibration 

1.0 

     S2M4    S2M3   S2M2    S2M1   M2M1   M2M2   H2M1   H2M2    H2M3  H2M4 

  0.0,-1.0   -0.81818   -0.63636  -0.45454  -0.27272 -0.0909   0.09092   0.27272   0.45454   0.63636  0.81818      1.0 

Fig. 4.3.1(b6) Triangular membership functions for 
relative mode shape difference for third mode of 
vibration 

1.0 

  S3M4    S3M3     S3M2    S3M1   M3M1   M3M2   H3M1   H3M2   H3M3  H3M4

0.0,-1.0   -0.81818  -0.63636  -0.45454 -0.27272 -0.0909   0.09092   0.27272  0.45454  0.63636  0.81818       1.0  

L2F4     L2F3     L2F2     L2F1     M2F1    M2F2    H2F1    H2F2     H2F3     H2F4 

0.0, 0.934 0.940   0.946    0.952     0.958    0.964      0.970     0.976     0.982    0.988    0.994      1.0

1.0 

Fig. 4.3.1(b2) Triangular membership functions for 
relative natural frequency for second mode of vibration 

  SD9        SD8         SD7        SD6         SD5        SD4         SD3       SD2         SD1        M D          LD1        LD2        LD3         LD4        LD5         LD6        LD7       LD8         LD9 

0.0,0.01  0.0545      0.099      0.1435     0.188      0.2325       0.277     0.3215     0.366    0.4105       0.455     0.4995     0.5440      0.5885      0.633    0.6775       0.722     0.7665     0.8110     0.8555       0.9 

Fig. 4.3.1(b7) Triangular membership functions for relative crack depth 

Fig. 4.3.1(a) Triangular fuzzy controller 

Inputs Outputs 

Fuzzy Controller 
fnf 
snf 
tnf 
fmd 
smd 
tmd 

rcl 

rcd 

1.0 

          SL22         SL20         SL18        SL16        SL14         SL12        SL10         SL8           SL6           SL4           SL2           ML1          BL1          BL3        BL5          BL7          BL9         BL10         BL12         BL14        BL16         BL18        BL20     
                    SL21          SL19       SL17         SL15       SL13          SL11          SL9          SL7           SL5          SL3         SL1           ML2          BL2          BL4           BL6         BL8         BL11         BL13        BL15         BL17        BL19         BL21     BL22 
 

Fig. 4.3.1(b8) Triangular membership functions for relative crack location 
 

 0.0,.01      .052        .0943      .1364      .1785       .2206       .2628       .3049       .3470      .3891      .4312       .4734       .5155       .5576       .5997      .6418      .6840      .7261     .7682        .8103       .8524      .8946      .9367      .9789 
          .0311     .0732       .1153      .1575       .1996      .2417       .2838       .3259       .3681     .4102       .4523        .4944       .5365      .5787       .6208      .6629      .7050       .7471      .7893       .8314      .8735      .9156      .9578         1.0 

1.0 
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         0.0,.01      .0522     .0943     .1364     .1785    .2206     .2628     .3049     .3470     3891     .4312     .4734     .5155     .5576    .5997     .6418     .6840     .7261    .7682      .8103    .8524      .8946    .9367    .9789 
                 .0311      .0732     .1153     .1575    .1996     .2417     .2838     .3259    .3681     .4102     .4523     .4944     .5365    .5787     .6208     .6629    .7050      .7471     .7893    .8314     .8735     .9156     .9578      1.0 

Fig. 4.3.2(b5) Gaussian membership functions 
for relative mode shape difference for second
mode of vibration 

     S2M4   S2M3   S2M2    S2M1    M2M1  M2M2  H2M1  H2M2  H2M3    H2M4 
 

   0.0,-1.0 -0.81818 -0.63636    -0.45454   -0.27272     -0.0909      0.09092  0.27272   0.45454    0.63636      0.81818       1.0  

1.0 

     SD9      SD8         SD7        SD6          SD5       SD4          SD3         SD2        SD1        M D         LD1         LD2        LD3         LD4        LD5         LD6         LD7         LD8       LD9 

    0.0,0.01     0.0545     0.099     0.1435        0.188     0.2325       0.277       0.3215    0.366     0.4105        0.455     0.4995     0.5440     0.5885     0.633       0.6775      0.722      0.7665     0.8110      0.8555      0.9 

1.0 

Fig. 4.3.2(b7) Gaussian membership functions for relative crack depth 

           SL22       SL20      SL18      SL16      SL14      SL12       SL10       SL8        SL6         SL4         SL2        ML1        BL1        BL3       BL5        BL7        BL9       BL10       BL12       BL14      BL16     BL18     BL20     
                  SL21       SL19      SL17      SL15      SL13       SL11       SL9         SL7         SL5         SL3        SL1       ML2        BL2        BL4        BL6        BL8        BL11      BL13      BL15      BL17      BL19      BL21      BL22 
 1.0 

Fig. 4.3.2(b8.) Gaussian membership functions for relative crack location 
 

Fig. 4.3.2(a)  Gaussian fuzzy  controller 

Inputs Outputs 

Fuzzy Controller 
fnf 
snf 
tnf 
fmd 
smd 
tmd 

rcl 

rcd 
 

Fig. 4.3.2(b1) Gaussian membership functions
for relative natural frequency for first mode of
vibration 

0.0, 0.912  0.92    0.928     0.936   0.944    0.952    0.96     0.968     0.976    0.984    0.992      1.0 

1.0 
     L1F4     L1F3    L1F2    L1F1    M1F1    M1F2   H1F1    H1F2   H1F3    H1F4

Fig. 4.3.2(b2) Gaussian membership functions for 
relative natural frequency for second mode of 
vibration

L2F4     L2F3     L2F2     L2F1    M2F1    M2F2     H2F1    H2F2    H2F3     H2F4 

0.0,0.934 0.940   0.946     0.952     0.958    0.964     0.970    0.976     0.982     0.988    0.994       1.0 

1.0 

Fig. 4.3.2(b3) Gaussian membership functions for
relative natural frequency for third mode of
vibration 

   L3F4    L3F3    L3F2    L3F1   M3F1    M3F2   H3F1     H3F2   H3F3   H3F4

0.0,0.934 0.940   0.946    0.952    0.958   0.964    0.970    0.976   0.982     0.988   0.994       1.0

1.0 

Fig. 4.3.2(b4)  Gaussian membership functions for 
relative mode shape difference for first mode of 
vibration 

       S1M4  S1M3   S1M2   S1M1   M1M1   M1M2   H1M1    H1M2   H1M3    H1M4 
 

0.0,-1.0  -0.81818  -0.63636 -0.45454 -0.27272  -0.0909  0.09092  0.27272  0.45454   0.63636  0.81818    1.0  

1.0 

  0.0,-1.0   -0.81818  -0.63636  -0.45454  -0.27272   -0.0909    0.09092    0.27272   0.45454   0.63636     0.81818        1.0

1.0 

          S3M4     S3M3     S3M2  S3M1   M3M1  M3M2  H3M1  H3M2  H3M3      H3M4 

Fig. 4.3.2(b6). Gaussian membership functions for 
relative mode shape difference for third mode of 
vibration 
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    0.0,   .01      .0522         .0943        .1364        .1785        .2206       .2628        .3049        .3470        .3891      .4312        .4734        .5155       .5576       .5997       .6418        .6840       .7261       .7682       .8103       .8524        .8946        .9367       .9789 
                .0311         .0732        .1153        .1575       .1996         .2417        .2838       .3259       .3681       .4102       .4523        .4944         .5365      .5787       .6208       .6629       .7050        .7471        .7893       .8314       .8735        .9156        .9578         1.0 

Fig. 4.3.3 (b8) Trapezodial membership functions for relative crack location. 

      SL22        SL20        SL18        SL16        SL14         SL12        SL10         SL8          SL6         SL4         SL2         ML1          BL1         BL3        BL5          BL7          BL9        BL10        BL12      BL14       BL16       BL18        BL20     
               SL21        SL19        SL17        SL15         SL13        SL11        SL9          SL7          SL5         SL3          SL1          ML2         BL2         BL4         BL6         BL8         BL11       BL13       BL15       BL17       BL19       BL21        BL22 

1.0 

Fig. 4.3.3(a)  Trapezoidal fuzzy controller. 

Fig. 4.3.3(b1) Trapezodial membership functions for
relative natural frequency for first mode of vibration.

1.0 

                  0.912  0.92      0.928         0.936        0.944     0.952         0.96        0.968        0.976       0.984      0.992      1.0 

       L1F4       L1F3        L1F2       L1F1       M1F1     M1F2      H1F1       H1F2       H1F3      H1F4 

Fig. 4.3.3 (b2) Trapezodial Membership functions for
relative natural frequency for second mode of
vibration. 

    1.0

0.934  0.940   0.946     0.952       0.958       0.964        0.970        0.976        0.982       0.988         0.994        1.0 

 L2F4         L2F3        L2F2        L2F1      M2F1       M2F2        H2F1      H2F2       H2F3      H2F4 

Fig. 4.3.3 (b3) Trapezodial membership functions for
relative natural frequency for third mode of vibration. 

1.0 

0.934 0.940      0.946     0.952       0.958       0.964        0.970       0.976      0.982       0.988      0.994        1.0

       L3F4        L3F3      L3F2        L3F1     M3F1     M3F2     H3F1       H3F2        H3F3      H3F4 

Fig. 4.3.3 (b4) Trapezodial membership functions
for relative mode shape difference for first mode of
vibration. 

    1.0 

-1.0  -0.81818 -0.63636 -0.45454  -0.27272  -0.0909  0.09092   0.27272  0.45454   0.63636    0.81818     1.0  

S1M4      S1M3       S1M2      S1M1     M1M1     M1M2     H1M1      H1M2      H1M3      H1M4 

   1.0 

-1.0   -0.81818   -0.63636   -0.45454   -0.27272   -0.0909     0.09092     0.27272     0.45454     0.63636      0.81818       1.0  

   S2M4     S2M3     S2M2       S2M1      M2M1    M2M2     H2M1      H2M2     H2M3     H2M4 

Fig. 4.3.3 (b5) Trapezodial membership functions for
relative mode shape difference for second mode of
vibration. 

Fig. 4.3.3 (b6) Trapezodial membership functions for
relative mode shape difference for third mode of
vibration.

  1.0 

  -1.0   -0.81818   -0.63636   -0.45454   -0.27272    -0.0909   0.09092       0.27272          0.45454      0.63636        0.81818       1.0  

  S3M4        S3M3       S3M2       S3M1      M3M1      M3M2     H3M1     H3M2      H3M3      H3M4 

fmd 
smd 
tmd 

fnf 
snf 
tnf 

rcd 

rcl 

Outputs Inputs 

Fuzzy Controller 

 

0.0, 0.0, 

0.0, 
0.0, 

0.0, 0.0, 

1.0 

SD9             SD8          SD7            SD6            SD5           SD4            SD3           SD2           SD1          MD             LD1         LD2            LD3          LD4            LD5         LD6            LD7         LD8            LD9 

   0.01    0.0545         0.099        0.1435         0.188         0.2325         0.277        0.3215        0.366        0.4105        0.455        0.4995        0.5440       0.5885         0.633        0.6775        0.722       0.7665        0.8110         0.8555         0.9 0.0, 

Fig. 4.3.3 (b7) Trapezodial membership functions for relative crack depth. 
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Memberships Function 
Name  

Linguistic 
Terms 

Description and range of the Linguistic terms 

L1F1,L1F2,L1F3,L1F4 fnf 1 to 4 Low ranges of relative natural frequency for first mode 
of vibration in descending order respectively  

M1F1,M1F2 fnf 5,6 Medium ranges of relative natural frequency for first 
mode of vibration in ascending order respectively 

H1F1,H1F2,H1F3,H1F4 fnf 7 to 10 Higher ranges of  relative natural frequency for first 
mode of vibration in ascending order respectively 

L2F1,L2F2,L2F3,L2F4 snf 1 to 4 Low ranges of relative natural frequency for second 
mode of vibration in descending order respectively 

M2F1,M2F2 snf 5,6 Medium ranges of relative natural frequency for second 
mode of vibration in ascending order respectively 

H2F1,H2F2,H2F3,H2F4 snf 7 to 10 Higher ranges of  relative natural frequencies for second 
mode of vibration in ascending order respectively 

L3F1,L3F2,L3F3,L3F4 tnf 1 to 4 Low ranges of relative natural frequencies for third 
mode of vibration in descending order respectively 

M3F1,M3F2 tnf 5,6 Medium ranges of relative natural frequencies for third 
mode of vibration in ascending order respectively 

H3F1,H3F2,H3F3,H3F4 tnf 7 to 10 Higher ranges of  relative natural frequencies for third 
mode of vibration in ascending order respectively 

S1M1,S1M2,S1M3,S1M4 fmd 1 to 4 Small ranges of  first relative mode shape difference in  
descending order respectively 

M1M1,M1M2 fmd 5,6 medium ranges of  first relative mode shape difference 
in ascending order respectively 

H1M1,H1M2,H1M3,H1M4 fmd 7 to 10 Higher ranges of first  relative mode shape difference in 
ascending order respectively 

S2M1,S2M2,S2M3,S2M4 smd 1 to 4 Small ranges of  second relative mode shape difference 
in descending order respectively 

M2M1,M2M2 smd 5,6 medium ranges of  second relative mode shape 
difference in ascending order respectively 

H2M1,H2M2,H2M3,H2M4 smd 7 to10 Higher ranges of second  relative mode shape difference 
in ascending order respectively 

S3M1,S3M2,S3M3,S3M4 tmd 1 to 4 Small ranges of  third relative mode shape difference in 
descending order respectively 

M3M1,M3M2 tmd 5,6 medium ranges of  third relative mode shape difference 
in ascending order respectively 

H3M1,H3M2,H3M3,H3M4 tmd 7 to 10 Higher ranges of third  relative mode shape difference in 
ascending order respectively 

SL1,SL2……SL22 rcl 1 to 22 Small ranges of relative crack location in descending 
order respectively 

ML1,ML2 rcl 23,24 Medium ranges of relative crack location in ascending 
order respectively 

BL1,BL2…….BL22 rcl 25 to 46 Bigger  ranges of relative crack location in ascending 
order respectively 

SD1,SD2……SD9 rcd 1 to 9 Small ranges of relative crack depth in descending order 
respectively 

MD rcd 10 Medium relative crack depth  
LD1,LD2……LD9 rcd 11 to 19 Larger  ranges of relative crack depth in ascending order 

respectively 

Table 4.3.1 Description of fuzzy linguistic terms 
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Sl.No. Examples of some rules used in the fuzzy controller 
1 If fnf is H1F3,snf is H2F4,tnf is H3F1,fmd is H1M3,smd is H2M3,tmd is 

H3M3,  then rcd is SD8,and rcl is SL22 
2 If fnf is H1F3,snf is H2F3,tnf is H3F1,fmd is H1M3,smd is H2M3,tmd is 

H3M3, then rcd is SD8,and rcl is SL22 
3 If fnf is H1F1,snf is M2F1,tnf is L3F2,fmd is H1M4,smd is H2M4,tmd is 

H3M4, then rcd is MD,and rcl is SL22 
4 If fnf is M1F1,snf is L2F2,tnf is L3F2,fmd is H1M4,smd is H2M4,tmd is 

H3M4,  then rcd is LD5,and rcl is SL22 
5 If fnf is H1F1,snf is M2F1,tnf is L3F1,fmd is H1M3,smd is H2M3,tmd is 

H3M3, then rcd is LD1,and rcl is SL21 
6 If fnf is M1F1,snf is L2F1,tnf is L3F2,fmd is H1M4,smd is H2M3,tmd is 

H3M4, then rcd is LD6,and rcl is SL21 
7 If fnf is H1F2,snf is M2F2,tnf is M3F2,fmd is H1M3,smd is H2M3,tmd is 

H3M9, then rcd is SD1,and rcl is SL20 
8 If fnf is H1F3,snf is H2F4,tnf is H3F2,fmd is H1M2,smd is H2M1,tmd is 

H3M2,  then rcd is SD7,and rcl is SL19                  
9 If fnf is H1F1,snf is M2F2,tnf is H3F2,fmd is H1M2,smd is H2M2,tmd is 

H3M2,  then rcd is LD2,and rcl is SL18 
10 If fnf is H1F3,snf is H2F4,tnf is H3F3,fmd is S1M1,smd is S2M1,tmd is S3M1, 

then rcd is SD3,and rcl is SL17 
11 If fnf is H1F1,snf is H2F3,tnf is H3F2,fmd is H1M2,smd is H2M1,tmd is 

H3M1, then rcd is LD2,and rcl is SL16 
12 If fnf is H1F2,snf is H2F4,tnf is H3F2,fmd is H1M2,smd is M2M2,tmd is 

H3M2,   then rcd is LD1,and rcl is SL15 
13 If fnf is H1F2,snf is H2F4,tnf is H3F1,fmd is H1M2,smd is M2M2,tmd is 

H3M2, then rcd is MD,and rcl is SL14 
14 If fnf is H1F1,snf is H2F4,tnf is M3F1,fmd is H1M2,smd is M2M2,tmd is 

H3M3, then rcd is LD4,and rcl is SL13 
15 If fnf is H1F2,snf is H2F4,tnf is L3F1,fmd is H1M2,smd is M2M1,tmd is 

H3M3, then rcd is LD3,and rcl is SL12 
16 If fnf is H1F3,snf is H2F4,tnf is M3F1,fmd is H1M2,smd is H2M1,tmd is 

H3M3, then rcd is SD2,and rcl is SL10 
17 If fnf is M1F1,snf is M2F2,tnf is L3F3,fmd is H1M2,smd is H2M2,tmd is 

H3M3, then rcd is LD9,and rcl is SL9 
18 If fnf is M1F2,snf is M2F1,tnf is L3F3,fmd is H1M2,smd is H2M2,tmd is 

H3M3, then rcd is LD9,and rcl is SL7 
19 If fnf is H1F4,snf is H2F4,tnf is H3F1,fmd is H1M3,smd is H2M3,tmd is 

H3M3,  then rcd is SD9,and rcl is SL21 
20 If fnf is H1F4,snf is H2F3,tnf is M3F2,fmd is M1M1,smd is H2M2,tmd is 

H3M3, then rcd is SD4,and rcl is BL7 

   Table 4.3.2 Examples of twenty fuzzy rules being used in fuzzy controller 
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Rule no 19 of Table 4.3.2 is activated 
Inputs 

Relative crack depth 

Outputs 

  

Fig.4.3.4    Resultant values of relative crack depth and relative crack location from triangular 
fuzzy controller when Rules 1 and 19 of Table 4.3.2 are activated 

Relative crack location 

Rule no 1 of Table 4.3.2 is activated 

0.0983 

0.0466 
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Outputs 

Rule no 1 of Table 4.3.2 is activated 
Inputs 

Rule no 19 of Table 4.3.2 is activated 
   

 

  

 

 

 

 

  

  

  

  

  

  

  

  

 

 

 

 

  

Fig. 4.3.5   Resultant values of relative crack depth and relative crack location from gaussian 
fuzzy controller when Rules 1 and 19 of Table 4.3.2 are activated 

0.04403 

0.07457 Relative crack depth 

Relative crack location 
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0.04523 

Inputs

Relative crack location 

Fig. 4.3.6  Resultant values of relative crack depth and relative crack location from trapezoidal fuzzy 
controller when Rules 1 and 19 of Table 4.3.2 are activated. 

Rule no 19 of Table 4.3.2 is activatedRule no 1 of Table 4.3.2 is activated 

0.08392 Relative crack depth 
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4.5 Summary 

From the above analyses and discussions, the conclusions drawn are depicted as follows. 

Crack depth and crack location have got effect on mode shapes and natural frequencies of the 

vibrating structures. The fuzzy controllers developed here take natural frequencies and mode 

shape differences for prediction of crack location and crack depth. The predicted results from 

fuzzy controllers for crack location and crack depth are compared with the theoretical and 

experimental results for cross verification. They show a very good agreement. The result of 

gaussian membership function fuzzy controller is more accurate in comparison to other two 

controllers.  The developed fuzzy controller along with the methodology can be used as a 

robust tool for fault detection in cracked structures.  
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Engineering structures used in wide range of civil, mechanical and aeronautical fields are 

prone to damage such as crack formation and deterioration during their service period. An 

effective and reliable structural crack detection methodology can be a useful tool for timely 

determination of damage and deterioration in structural members. Crack detection 

methodologies attempt to determine whether structural damage has occurred, as well as the 

location and extent of any such damage. The information obtained by crack detection 

methodology can play a vital role in the development of economical repair and retrofit 

programmes. Crack can be detected and quantified by on-line crack detection techniques 

using vibration-based analysis data in the service life of a structure. The effects of crack on a 

structure changes the natural frequencies and mode shapes. Hence, crack can be detected 

using artificial intelligence technique from dynamic analysis using natural frequencies and 

mode shapes. This chapter presents on-line diagnostic technology for crack detection in 

terms of crack location and its intensity in elastic structures using artificial neural network 

technique. An intelligent controller has been proposed in this chapter using feed forward 

multilayer neural network trained by back-propagation algorithm for crack diagnosis. The 

results of the developed neural controller are compared with experimental results, which are 

satisfactory and show a very good agreement.  

5.1 Introduction 
 
Artificial Neural Networks (ANN) [184,189] are relatively crude electronic models based on 

the neural structure of the brain. The field goes by many names, such as connectionism, 

parallel distributed processing, neurocomputing, natural intelligent systems, machine 

learning algorithms, and artificial neuralnetworks. According to [189] “A neural network is a 

massively parallel distributed processor made up of simple processing units, called neurons, 

which have a naturaltendency for storing experiential knowledge and making it available for 

Chapter 5 

ANALYSIS OF ARTIFICIAL NEURAL NETWORK FOR 
CRACK DETECTION 
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use”. This knowledge is acquired from the environment through a learning process and is 

stored in connections between the neurons, know as synaptic weights.  

 
Generalization ability: Generalization [189] refers to the neural network producing 

reasonable outputs for inputs not encountered during training (learning). This information-

processing capability makes it possible for neural networks to solve complex (large-scale) 

problems that are currently intractable.  

 
Non-linearity: Artificial neural networks can be used even for non-linear problems 

[175,180] as the interconnected neurons can be either linear or non-linear. This feature is 

extremely important in the field of structural health monitoring as the signals from complex 

structures under variable loading may be non-linear. 

 
Input-Output mapping: This is the most powerful feature of the neural network which 

involves supervised learning. The network tries to correlate a unique input signal with a 

desired response. It modifies the synaptic weights by a learning process in order to achieve 

the desired response. Training the network involves feeding the network with a set of input 

signals and the corresponding desired response.  

 
Adaptivity: Neural networks adapt easily to changes in the environment, by adjusting the 

synaptic weight accordingly on retraining the system. Real-time networks which are capable 

of changing its synaptic weights automatically can be designed for non-stationary 

environmental conditions.  

 
Evidential response: For pattern classification purposes, networks can be designed to 

provide information about the pattern to be selected, as well as the confidence of the decision 

made. This helps in rejecting indistinct patterns, thereby improving the classification 

performance of the network. 

 
Contextual information: Related information is dealt naturally by the network as the 

knowledge is represented by the very structure and activation state of the network.  
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Fault tolerance: Neural networks are inherently fault tolerant. If the neural networks are 

implemented in hardware form, and if a neuron or a connecting link is damaged, then only 

the output quality deteriorates [189] rather than the system failing completely.  
 

Over the past few years researchers around the globe have been focusing their attention 

towards the development of real-time structural health monitoring systems. This field is of 

paramount importance especially with the structures that are prone to in-service defects. This 

necessitates the need for an online structural health monitoring system, which is capable of 

determining the presence of the damage such as crack (in the incipient stage itself), 

determining the location of the damage and the size of the damage. Various non-destructive 

techniques which are capable of achieving the goal have been discovered. For complex 

situations (variable loading, variable damage level, and variable type of damage) using 

complex structures the response signal obtained from the sensors (damage signature vector) 

will be complicated. This makes it difficult to decode the signal to determine the damage 

location and damage. Moreover, it is also difficult or impossible to create accurate 

mathematical models for complex structures due to both geometric and material property 

non-linearity. This is where the role of Artificial Neural Networks is of utmost importance.  

The following features of neural networks make it an effective tool in structural health 

monitoring.Scores of researchers have documented the use of artificial neural networks in 

tandem with existing non-destructive testing techniques for the purpose of structural health 

monitoring. Fang et al. [208] in their research have explored the structural damage detection 

using frequency response functions (FRFs) as input data to the back-propagation neural 

network (BPNN). Their analysis results on a cantilevered beam show that, in damage cases 

the neural network can assess damage conditions with very good accuracy. Rajakarunakaran 

et al. [210] in their paper have presented the development of artificial neural network-based 

model for the fault detection of centrifugal pumping system. The fault detection model is 

developed by using two different artificial neural network approaches, namely feed forward 

network with back propagation algorithm and binary adaptive resonance network (ART1). 

They have tested the performance of the developed back propagation and ART1 model for a 

total of seven categories of faults in the centrifugal pumping system.  
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In this chapter an on-line crack detection methodology has been proposed using feed forward 

multilayer neural network trained by back-propagation algorithm. The artificial neural 

network controller is designed and is used to detect the relative crack location and relative 

crack depth. The developed neural network controller has six inputs and two outputs. The 

inputs to the designed neural network controller are relative first three natural frequencies 

and relative first three mode shape differences and the out puts are relative crack location and 

relative crack depth. This chapter describes the application of neural network technique for 

on-line crack detection. The results of the developed neural network controller have been 

compared with the results of fuzzy controller and numerical method and found to be most 

accurate. Hence it is concluded that the developed method can be more accurately applied for 

crack detection. The developed neural network controller has been authenticated by 

experiments. 

This chapter is outlined into six sections following the introduction; the neural network 

technology and its importance in the field of structural health monitoring along with multi-

layer perceptron architecture trained by back-propagation algorithm is described in section 

5.2. The chapter 5.3 presents the analysis of neural network controller design for crack 

detection and corresponding results are discussed. In section 5.4, the results of the neural 

network controller are compared with the results of fuzzy controller, experimental and 

numerical analysis to demonstrate the superiority of the proposed methodology and finally 

the discussions and summary are described in section 5.5 and 5.6. 

5.2 Neural Network Technique 

The field of neural network technique can be thought of as being related to artificial 

intelligence, machine learning, fault detection, parallel processing, statistics, and other fields. 

The attraction of neural networks is that they are best suited to solve the problems that are the 

most difficult to solve by traditional computational methods.  

5.2.1 Design of Neural Network 

A neural network is a massively parallel distributed processor that has a natural propensity 

for storing experimental knowledge and making it available for further use. It resembles the 

brain in two respects: 
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1. Knowledge is acquired by the network through a learning process. 

2. Interneuron connection strengths known as synaptic weights and are used to store the 

knowledge. 

The procedure used to perform the learning process is called a learning algorithm, the 

function of which is to modify the synaptic weights of the network in an orderly fashion so as 

to attain a desired design objective. In neural network a neuron is an information processing 

unit. Fig.5.2.1 shows the model of a neuron. A neuron model can be identified by three basic 

elements, which is described below. 

i) A set of synapses or connecting links, each of which is characterized by a 

weight or strength of its own. Specifically, a signal xj at the input of synapse j 

connected to neuron k is multiplied by the synaptic weight wkj. In the synaptic 

weight wkj the subscript refers to the neuron in question and the second 

subscript refers to the input end of the synapse to which the weight refers. 

ii). An adder for summing the input signals, weighted by the respective synapses 

of the neuron. 

iii). An activation function for limiting the amplitude of the output of a neuron. 

Generally the normalised amplitude range of the output of a neuron is given as 

the closed unit interval [0,1] or alternatively [-1,1].  

In mathematical terms, we can describe a neuron k by writing the following pair of 

equations: 

∑
1=

=
p

j
jkjk xwu         (5.2.1) 

( )kk ufy =          (5.2.2) 

Where x1, x2,…..,xp are the input signals; wk1, wk2,…..,wkp are the synaptic weights of neuron 

k; uk is the linear combiner output; ( )⋅f  is the activation function; and yk is the output signal 

of the neuron.  
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The use of neural networks in various fields offers the following useful properties due to 

which it can be applied to many fields. 

• In a neural network modification of the synaptic weights can be done by a set of training 

samples (i.e. supervised learning). For this, a training set will be presented to the neural 

network for training and the synaptic weights of the network are modified so as to 

minimise the difference between the desired response and the actual response. 

• Neural networks have a built-in capability to adapt their synaptic weights in the 

surrounding environment. In particular, a neural network trained to operate in a specific 

environment can deal with minor changes in the operating environmental conditions. 

• A neural network implemented has the potential to be inherently fault tolerant in the 

sense that its performance is degraded gracefully under adverse operating conditions. 

 

5.2.2 Activation Function 

The activation function, denoted by f(.), defines the output of a neuron in terms of the 

activity level at its input. Generally three types of activation functions are used (e.g. 

wk1 

wk2 

wkp 

∑  ( )⋅f  

x1 

x2 

xp 

Activation 

Summing 

Output uk Input 

Fig. 5.2.1 Model of a neuron 

Synaptic 
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Threshold Activation Function, Ramping Activation Function, Hyperbolic tangent Activation 

function). 

  

5.2.2.1 Threshold Activation Function 

 

 

 

 

 

 

 

 

 

 

The Threshold Activation Function is shown in Fig.5.2.2. This function limits the output of 

the neuron to either 0, if the net input argument x is less than zero; or 1, if x is greater than or 

equal to zero. 

Mathematically the Threshold Activation Function can be described as: 
                                          

                                                      (5.2.3) 

 

 5.2.2.2 Ramping Activation Function 

 

 

 

 

 

 

 

 

 

Fig.5.2.2 Threshold activation function 
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The Ramping Activation Function is shown in Fig.5.2.3. 

Mathematically the Ramping Activation Function can be described as:  
 

 

                                       (5.2.4) 

 

 

5.2.2.3 Hyperbolic Tangent Activation Function 

 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
The hyperbolic tangent activation function is shown in Fig.5.2.4. 

Mathematically the Ramping Activation Function can be described as:  

 

  

 
5.2.3  Modeling of Back Propagation Neural Network  

The back propagation paradigm trains a neural network using a gradient descent algorithm in 

which the mean square error between the network's output and the desired output is 

minimized. This creates a global cost function that is minimized iteratively by 'back 

propagating’ the error from the output nodes to the input nodes. Once the network's error has 

decreased to less than or equal to the specified threshold, the network has converged and is 

(0, 1.0) 

x
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Fig.5.2.4   Hyperbolic tangent activation function  
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considered to be trained. A simpler version of back propagation, the simple delta rule or the 

perceptron convergence procedure, which are applicable only in networks with only one 

modifiable connection layer can be proven to find a solution for all input-output mappings 

which are realizable in that simpler architecture. The error surface in such networks has only 

one minimum, and the system moves on this error surface towards this minimum (and stays 

there after it has reached it). This is not true for back propagation in a network with more 

than one modifiable connection layers. That is, although in practice one can almost always 

find a network architecture (even with only two layers of modifiable connections) that can 

realize a particular input-output mapping, this is not guaranteed. This is because in a network 

with hidden layer(s) of nodes, i.e. nodes that are neither in the input nor in the output layer – 

the error surface has, in addition to the global, ``lowest'', minimum also local minima, and the 

system can get stuck in such local error minima. The Fig. 5.2.5 shows a typical architecture 

for networks with back propagation as the learning rule. 

 

 

 

 

 

 

 

 

 

 

 

5.3  Analysis of Neural Network Controller used for Crack Detection 

A feed forward multilayer neural network controller trained by back-propagation algorithm 

has been developed for detection of the relative crack location and relative crack depth 

(Fig.5.3.1) for the cracked cantilever beam. The neural network controller has got six input 

parameters and two output parameters.  

Fig. 5.2.5 Architecture of feed forward multilayer neural network trained by  
back- propagation algorithm 
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The inputs to the neural network controller are as follows; 

Relative first natural frequency = “fnf”; Relative second natural frequency = “snf”;  

Relative third natural frequency = “tnf”; Relative first mode shape difference = “fmd”;  

Relative second mode shape difference = “smd” and  

Relative third mode shape difference = “tmd”. 

The outputs from the neural network are as follows; 

Relative crack location = “rcl” and Relative crack depth = “rcd”  

The back propagation neural network has got ten layers (i.e. input layer, output layer and 

eight hidden layers). The neurons associated with the input and output layers are six and two 

respectively. The neurons associated in the eight hidden layers are twelve, thirty-six, fifty, 

one hundred fifty, three hundred, one hundred fifty, fifty and eight respectively. The input 

layer neurons represent relative deviation of first three natural frequencies and first three 

relative mode shape difference. The output layer neurons represent relative crack location 

and relative crack depth. The neurons are taken in order to give the neural network a 

diamond shape (Fig.5.3.2).   

5.3.1  Neural Controller Mechanism for Crack Detection 

The neural network used is a ten-layer perceptron [189]. The chosen number of layers was 

found empirically to facilitate training. The input layer has six neurons, three for first three 

relative natural frequencies and other three for first three relative mode shape difference. The 

output layer has two neurons, which represent relative crack location and relative crack 

depth. The first hidden layer has 12 neurons, the second hidden layer has 36 neurons, the 

third hidden layer has 50 neurons, the fourth hidden layer has 150 neurons, the fifth hidden 

layer has 300 neurons, the sixth hidden layer has 150 neurons, the seventh hidden layer has 

50 neurons and the eighth hidden layer has 8 neurons. These numbers of hidden neurons are 

also found empirically. Fig. 5.3.2 depicts the neural network with its input and output signals.  

The neural network is trained with 800 patterns representing typical scenarios, some of which 

are depicted in Table5.3.1. For example, from Table5.3.1, when the first three relative natural 

frequencies and first three mode shape differences are 0.9839, 0.9903, 0.9938, 0.0127, 
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0.8437, and 0.2639 respectively then the relative crack location and relative crack depth are 

0.225 and 0.25 respectively. The neural network is trained to give outputs such as relative 

crack depth and relative crack location.  

During training and during normal operation, the input patterns fed to the neural network 

comprise the following components: 

{ } frequency naturalfirst  ofdeviation  relative    y 1
1 =     (5.3.1(a)) 

{ } frequency natural second ofdeviation  relative    y 1
2 =    (5.3.1(b)) 

{ } frequency natural  thirdofdeviation  relative     y 1
3 =     (5.3.1(c))                

{ } shape modefirst  ofdeviation  relative     y 1
4 =                (5.3.1(d)) 

{ } shape mode second ofdeviation  relative     y 1
5 =                                           (5.3.1(e)) 

{ } shape mode  thirdofdeviation  relative     y 1
6 =                                               (5.3.1(f)) 

These input values are distributed to the hidden neurons which generate outputs given by 

[189]: 

{ } { }( )    Vf    y lay
j

lay
j =          (5.3.2) 

where 

{ } { } { }∑ −=
i

1lay
i

lay
ji

lay
j    y.WV          (5.3.3) 

lay = layer number  

j = label for jth neuron in hidden layer ‘lay’ 
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i = label for ith neuron in hidden layer ‘lay-1’ 

{ }lay
jiW  = weight of the connection from neuron i in layer ‘lay-1’ 

to neuron j in layer ‘lay’ 

f (.) = activation function, chosen in this work as the hyperbolic tangent function: 

( ) xx

xx

ee
eexf −

−

+
−

=        (5.3.4) 

During training, the network output θactual, n may differ from the desired output θdesired,n  as 

specified in the training pattern presented to the network. A measure of the performance of 

the network is the instantaneous sum-squared difference between θdesired, n and θactual, n for the 

set of presented training patterns: 

( )2
patterns

training all
n,actualn,desired2

1Err ∑ −= θθ       (5.3.5) 

Where θactual, n (n=1) represents Relative crack location (“rcl”) 

            θactual, n (n=2) represents Relative crack depth (“rcd”) 

The error back propagation method is employed to train the network [189]. This method 

requires the computation of local error gradients in order to determine appropriate weight 

corrections to reduce Err. For the output layer, the error gradient { }10δ  is:  

{ } { }( )( )n,actualn,desired
10

1
10 Vf θθδ −′=       (5.3.6) 

The local gradient for neurons in hidden layer {lay} is given by: 
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{ } { }( ) { } { } ⎟
⎠

⎞
⎜
⎝

⎛
δ′=δ ∑ ++

k

1lay
kj

1lay
k

lay
j

lay
j WVf                   (5.3.7) 

The synaptic weights are updated according to the following expressions: 

( ) ( ) ( )1tWtW1tW jijiji +Δ+=+                    (5.3.8) 

and  ( ) ( ) { } { }1lay
i

lay
jjiji ytW  1tW −ηδ+Δα=+Δ                    (5.3.9) 

where 

α = momentum coefficient (chosen empirically as 0.2 in this work) 

η = learning rate (chosen empirically as 0.35 in this work) 

t = iteration number, each iteration consisting of the presentation of a training  

     pattern and correction of the weights. 

The final output from the neural network is: 
{ }( )10
nn,actual Vf=θ        (5.3.10) 

where 

{ } { } { }∑=
i

9
i

10
ni

10
n yWV       (5.3.11) 
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5.3.2 Neural Controller for finding out Crack Depth and Crack Location 

The inputs to the neural controller are relative first natural frequency; relative second natural 

frequency; relative third natural frequency; relative first mode shape difference; relative 

second mode shape difference and relative third mode shape difference. The outputs from the 

fuzzy controller are relative crack depth and relative crack location.  The neural network 

controller is trained with 800 patterns representing typical scenarios, out of which ten rules 

are depicted in Table5.3.1. 

 

 

 

Sl. 
no
.  

Input to the Neural Network Controller Desired output 
from the Neural 
Network 
Controller 

Relative 
first 
natural  
frequency  
 
“fnf” 

Relative 
second 
natural  
frequency  
 
“snf” 

Relative 
third 
natural  
frequency 
 
“tnf” 

Relative 
first 
mode 
shape 
difference 
“fmd” 

Relative 
second 
mode shape 
difference  
 
“smd” 

Relative 
third  
mode shape 
difference  
 
“tmd” 

Relative 
crack 
Location 
 
 
“rcl” 

Relative 
crack 
depth 
 
 
“rcd” 
 
 

1 0.9592 0.9616 0.9801 0. 4013 0. 8437 0. 4071 0.15 0.525 

2 0.9632 0.9886 0.9927 0. 2852 0. 4466 0. 3642 0.1 0.425 

3 0.9715 0.9903 0.9931 0. 2016 0. 3248 0.4127 0.175 0.4 

4 0.9728 0.9905 0.9938 0. 1917 0. 3186 0.4103 0.075 0.2 

5 0.9789 0.9931 0.9939 0. 1418 0. 2983 0.3937 0.275 0.55 

6 0.9831 0.9936 0.9947 0. 092 0. 2611 0.3872 0.225 0.25 

7 0.9839 0.9954 0.9968 0. 0702 0. 2439 0.3207 0.4 0.525 

8 0.9863 0.9961 0.9969 0. 0364 0. 0917 0.2639 0.425 0.5 

9 0.9902 0.9968 0.9982 0. 0294 0. 0598 0.1823 0.525 0.55 

10 0.9941 0.9990 0.9991 0. 0127 0. 0263 0.0698 0.5 0.45 

 
Table 5.3.1   Examples of the training patterns for training of the neural network controller 
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        Fig. 5.3.1 Multi layer neural network controller 
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5.4  Results of Neural Controller 

The feed forward neural network controller developed in the current research is a ten-layer 

perceptron. The artificial neural network controller is designed and is used to detect the 

relative crack location and relative crack depth. The results of the developed neural controller 

are compared (Table 5.3.2) with the fuzzy controller results of chapter-4, experimental and 

numerical results of chapter-3. In the Table 5.3.2, ten sets of inputs out of several hundred 

sets are taken. The inputs to different analyses made above are relative first three natural 

frequencies and relative first three mode shape differences and the out puts are relative crack 

location and relative crack depth. Corresponding ten set of outputs from the developed neural 

network controller, fuzzy controller, numerical analysis and experimental analysis are 

depicted in the Table 5.3.2. In the Table 5.3.2, the first column represents the relative 1st 

natural frequency (fnf), the second column represents the relative of 2nd natural frequency 

(snf), the third column represents the relative of 3rd natural frequency (tnf), the fourth column 

represents the relative 1st mode shape difference (fmd), the fifth column represents the 

relative 2nd mode shape difference (smd), the sixth column represents the relative 3rd mode 

shape difference (tmd) as inputs and the rest coloumns represents the outputs as relative 

crack location and relative crack depth obtained from different analyses. 

 
5.5   Discussions 
 
This section describes the application of artificial neural network controller for prediction of 

crack size and severity. The working principles of neural network technique (Fig.5.2.1) and 

activation function (Fig.5.2.2) have been depicted in section 5.2. The feed forward multi 

layer neural network trained by back propagation algorithm (Fig.5.2.5) has been used for 

designing the neural network controller. The ten layer feed forward controller and a 

schematic diagram of multi layer neural network controller for crack diagnosis are depicted 

in Fig.5.3.2 and Fig.5.3.1 respectively. These two figures express the complete architecture 

of the neural controller for crack detection. Few of the examples of training patterns out of 

several hundreds training patterns for neural network controller are given in the Table 5.3.1. 
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The Fig.5.3.2 represents a multi layer controller with ten set of rules for training with 1st 

three relative natural frequencies and 1st three relative mode shape differences as inputs and 

relative crack location and relative crack depth as outputs. The comparison of the results 

from neural controller, fuzzy controllers, numerical analysis and experimental analysis are 

expressed in Table 5.3.2.   It is evident from the Table 5.3.2 that the average percentage 

deviation of the results of neural network controller is 1%. 

 

5.6  Summary 
 
From the analysis mentioned above and discussions, the summaries drawn are depicted 

below. The neural network controller trained with eight hundred training patterns consist of 

different crack location and crack depth. The neural network gives out puts such as relative 

crack depth and relative crack location, very close to the experimental results. The ten layer 

perceptron neural network has different number of neurons in the ten layers for processing 

the input data like relative natural frequencies and mode shapes. It is observed that the error 

in the output of the controller is considerably reduced from the desired output by employing 

back propagation method. The developed controller predicts the crack location and its 

intensity very closely to the actual results. The result from the controller is compared with the 

output from numerical, fuzzy and experimental analysis for checking the robustness of the 

developed system. The data collected from the controller is used for training the hybrid 

technique such as fuzzy- neuro and MANFIS methods in next chapters for on line condition 

monitoring of dynamically vibrating structures with higher accuracy and less computational 

time. 

 
Publications 
 

• Das H.C. and Parhi D.R., Application of Neural network for fault diagnosis of cracked 

cantilever beam, IEEE International Symposium on Biologically Inspired Computing and 

Applications (BICA-2009), Bhubaneswar, India, December 21-22, 2009, 353-358. 
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Research on hybrid systems is one of the key issues of developing intelligent systems. It can 

be applied by hybridising artificial neural networks, fuzzy logic, knowledge-based systems, 

genetic algorithms and evolutionary computation. Neural network technology and fuzzy 

inference system are becoming well recognized tools of designing an identifier/controller 

capable of perceiving the operating environment and imitating a human operator with high 

performance. The motivation behind the use of fuzzy neuro approaches is based on the 

complexity of real life systems. In this respect, fuzzy neuro design approaches combine 

architectural and philosophical aspects of an expert resulting in an artificial brain which can 

be used as a controller. It is known that the fuzzy inference systems and neural networks are 

universal approximators. In the following section fuzzy inference technique and neural 

network hybridized together to produce fuzzy-neuro controller for fault diagnosis. 

 
6.1 Introduction 

Hybrid intelligent systems being the product of fuzzy logic and neural networks are 

computational machines with unique capabilities for dealing with both numerical data and 

linguistic knowledge (fuzzy) information. As the hybrid system refers to combinations of 

artificial neural networks and fuzzy logic it incorporates the capability of both fuzzy logic 

and neural network technique. This hybrid method can give better results than the 

independent techniques. Fuzzy systems make use of knowledge expressed in the form of 

linguistic rules, thus they offer the possibility of implementing expert human knowledge and 

experience. Neural network learning techniques automate this process, significantly reducing 

development time, and resulting in better performance. Fuzzy  neuro hybridization results in 

a hybrid intelligent system that synergizes these two techniques by combining the human-like 

reasoning style of fuzzy systems with the learning and connectionist structure of neural 

networks. Hence, this methodology can be effectively utilized for prediction of crack location 

and crack depth in engineering structures with the vibration signatures as in put parameters.  

Chapter 6 

ANALYSIS OF HYBRID FUZZY-NEURO SYSTEM 
FOR CRACK DETECTION 
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This current research addresses the fault detection of a cracked cantilever beam using hybrid 

fuzzy neuro intelligence technique. The fuzzy-neuro controller has two parts. The first part 

comprises of fuzzy controller and the second part addresses the neural controller.  The input 

parameters to the fuzzy controller are first three relative natural frequencies and first three 

mode shape differences. The output parameters of the fuzzy controller are initial relative 

crack depth and initial relative crack location. The input parameters to the neural segment of 

fuzzy-neuro controller are first three relative natural frequencies and first three mode shape 

differences along with the interim outputs of fuzzy controller. The output parameters of the 

fuzzy-neuro controller are final relative crack depth and final relative crack location.  For 

deriving the fuzzy rules and training patterns of natural frequencies, mode shapes, crack 

depths and crack locations, theoretical expressions have been developed. Several fuzzy rules 

and training patterns for the fuzzy segment and neural segment of fuzzy-neuro controller are 

derived respectively. Experiments have been conducted for verifying the robustness of the 

developed fuzzy-neuro controller. The results of the developed fuzzy-neuro controller and 

experimental method are in very good agreement. 

This chapter is divided into six sections. The section 6.1 briefs the hybrid intelligent system 

and its importance in advance computing. The analysis of the fuzzy-neuro controller, the 

mechanism of fuzzy controller and neural controller for crack detection are depicted in 

section 6.2. In section 6.3 the results of the hybrid intelligent controller are compared with 

the results of neural controller (chapter 5), fuzzy controller (chapter 4), experimental and 

numerical analysis (chapter 3) to demonstrate the effectiveness of the proposed methodology. 

Finally the discussions and summary are described in section 6.4 and 6.5 respectively.  

6.2 Analysis of Fuzzy-Neuro Controller 

In the current investigation damage analysis of dynamic structures has been addressed using 

inverse approach i.e. hybrid computational fuzzy neuro technique. This hybrid technique 

comprises of two parts; i.e. fuzzy controller and neural controller. The fuzzy controller has 

six input parameters and two output parameters. The input parameters to the fuzzy controller 

are first three relative natural frequencies and first three mode shape differences. The output 

parameters of the fuzzy controller are initial relative crack depth and relative crack location. 
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The input parameters to the neural segment of fuzzy-neuro controller are first three relative 

natural frequencies and first three mode shape differences. The output parameters of the 

fuzzy-neuro controller are final relative crack depth and relative crack location. Three types 

of membership functions i.e Triangular, Gaussian and Trapezoidal are used in the fuzzy-

neuro controller and accordingly three fuzzy-neuro controllers such as triangular membership 

function fuzzy-neuro controller (Fig.6.2.1), gaussian membership function fuzzy-neuro 

controller (Fig.6.2.2) and trapezoidal membership function fuzzy-neuro controller (Fig.6.2.3) 

are designed for prediction of crack location and crack depth. 

6.2.1 Analysis of the Fuzzy Segment of Fuzzy-Neuro Controller 

The fuzzy part of the developed fuzzy-neuro controller has got six input parameters and two 

output parameters. The linguistic terms used for the inputs in the fuzzy system of the fuzzy-

neuro controller   are as follows; 

Relative first natural frequency = “fnf”  

Relative second natural frequency = “snf”;  

Relative third natural frequency = “tnf”   

Relative first mode shape difference = “fmd”  

Relative second mode shape difference = “smd”  

Relative third mode shape difference = “tmd”. 

The linguistic term used for the outputs are as follows; 

Initial relative crack location = “rclinitial” and Initial relative crack depth = “rcdinitial” 

The membership functions used in the fuzzy segment of fuzzy-neuro controller are shown 

pictorially in Fig. 4.3.1, Fig. 4.3.2 and Fig. 4.3.3. The linguistic terms of membership 

functions used in the fuzzy segment of fuzzy-neuro controller are described in the Table 

4.3.1. The fuzzy controller mechanism for crack detection has been given in section 4.3.1 and 

4.3.2 of chapter 4. 
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6.2.2 Analysis of the Neural Segment of Fuzzy-Neuro Controller  

In the fuzzy-neuro controller, the fuzzy segment will be inherited from chapter four, section 

4.2.2. The fuzzy segment in the fuzzy-neuro controller will give the intermittent result for 

relative crack depth and relative crack location. The neural segment of the fuzzy-neuro 

controller has eight inputs such as intermittent relative crack depth and relative crack location 

obtained from the fuzzy segment along with first three relative natural frequencies and first 

three relative mode shape difference. The output from the fuzzy-neuro controller is the 

refined result for relative crack depth and relative crack location. The analysis of the neural 

network used in the fuzzy-neuro controller is given below.     

The neural segment of the fuzzy-neuro controller is a ten layer feed forward neural network 

trained by back propagation algorithm. The fuzzy-neuro controller has been developed for 

detection of the relative crack location and relative crack depth. The neural network has got 

eight input parameters and two output parameters.  

The inputs to the neural segment of the  fuzzy-neuro controller are as follows; 

Relative first natural frequency = “fnf”; Relative second natural frequency = “snf”;  

Relative third natural frequency = “tnf”; Relative first mode shape difference = “fmd”;  

Relative second mode shape difference = “smd” and  

Relative third mode shape difference = “tmd”. 

Initial relative crack depth(output of the fuzzy segment)= “rcdinitial” 

Initial relative crack location (output of the fuzzy segment)= “rclinitial” 

The final outputs from the fuzzy-neuro controller are;  

Final relative crack location = “rclfinal” and Final Relative crack depth = “rcdfinal”  

The back propagation neural network used in fuzzy-neuro controller has got ten layers (i.e. 

input layer, output layer and eight hidden layers). The neurons associated with the input and 

output layers are eight and two respectively. The neurons associated in the eight hidden 

layers are twelve, thirty-six, fifty, one hundred fifty, three hundred, one hundred fifty, fifty 

and eight respectively. The input layer neurons represent first three relative natural 

frequencies and first three relative mode shape difference along with the two interim outputs 

from the the fuzzy segment. The output layer neurons represent final relative crack location 
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and final relative crack depth. The neurons are taken in order to give the neural network a 

diamond shape. The neural controller mechanism for crack detection may be referred from 

section 5.3.1 and 5.3.2 of chapter 5. 

6.2.3 Results of Fuzzy-Neuro Controller 

The results obtained after analyzing the fuzzy segment and neural segment of fuzzy-neuro 

controller are given in Tables 6.2.1 and 6.2.2. A comparison of results between the triangular 

membership fuzzy-neuro controller, gaussian membership fuzzy-neuro controller, 

trapezoidal membership fuzzy-neuro controller, numerical analysis and experimental 

analysis is depicted in Table 6.2.1. Again the comparison of results between the three fuzzy-

neuro controllers, neural network controller, triangular, gaussian and trapezoidal fuzzy 

controller is presented in Table 6.2.2. Ten sets of random inputs out of several hundred sets 

are taken in all the above tables for comparison of accuracy of the results. The inputs to 

different analyses made above are first three relative natural frequencies and first three 

relative mode shape differences and the out puts are relative crack location and relative 

crack depth. Corresponding ten set of outputs from the developed fuzzy-neuro controllers, 

neural network controller, fuzzy controllers, numerical analysis and experimental analysis 

are presented in the Table 6.2.1 and Table 6.2.2. In the Tables 6.2.1 and 6.2.2 the first 

column represents the relative 1st natural frequency (fnf), the second column represents the 

relative 2nd natural frequency (snf), the third column represents the relative 3rd natural 

frequency (tnf), the fourth column represents the relative 1st mode shape difference (fmd), 

the fifth column represents the relative 2nd mode shape difference (smd), the sixth column 

represents the relative 3rd mode shape difference (tmd) as inputs and the rest coloumns 

represents the outputs (i.e. relative crack location and relative crack depth). It is observed 

from the Tables 6.2.1 and 6.2.2 that the average percentage deviation of the results of 

gaussian membership fuzzy-neuro controller is 0.55%. For the triangular membership fuzzy-

neuro controller and trapezoidal membership fuzzy-neuro controller the average percentage 

deviation of the results are 0.95% and 0.85% respectively. 
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6.3 Discussion 
Results obtained from the analysis of the developed fuzzy-neuro controller and their 

comparison with neural controller, fuzzy controllers, numerical and experimental analyses, 

following discussions are made.  

 Fig. 6.2.1, Fig. 6.2.2 and Fig. 6.2.3 represent the architecture of developed fuzzy-neural 

controllers with triangular, gaussian and trapezoidal membership functions respectively. 

These three controllers are used for prediction of crack location and crack depth. Table 6.2.1 

and Table 6.2.2 show the comparison of the results of triangular, Gaussian and trapezoidal 

fuzzy-neuro controllers with the numerical, experimental, neural controller and triangular, 

gaussian and trapezoidal fuzzy controller results.   

 
6.4 Summary 

The results and discussions made above, show that the crack location and its size can be 

predicted by the help of a fuzzy-neuro controller developed. The fuzzy-neuro controller is 

based on the natural frequencies and mode shape differences of the structures with crack. The 

predicted values of crack location and its size are compared with the numerical, 

experimental, neural and fuzzy controllers results and are found to be in well agreement. This 

fuzzy-neuro controller can be used as an effective tool for fault diagnosis of the vibrating 

structures.  

Publications 
 

• Das H.C. and Parhi D.R., Fuzzy-Neuro Controller for Smart Fault Detection of A Beam, 

International Journal of Acoustics and Vibration, 13(2), 2009, 55-66. 
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It has been established that dynamic behavior of a structure changes due to the presence of 

crack in the structure. The effect of crack on the vibration signatures of the structure depends 

mainly on the location and depth of the crack. To identify the location and depth of a crack in 

a structure, a new method is presented in this chapter which uses multiple adaptive neuro-

fuzzy-evolutionary technique (MANFIS). With this MANFIS, it is possible to formulate the 

inverse problem. MANFIS is used to obtain the outputs (the relative crack location and 

relative crack depth) from the inputs (the first three natural frequencies and first three mode 

shapes). This new method has been applied to diagnose fault on a cracked cantilever beam 

and the results are promising.  

In the MANFIS controller after the input layer there are five layers out of which three layers 

are fixed layers and two layers are adaptive layers. The adaptive neuro-fuzzy hybrid system 

combines the advantages of fuzzy logic system, which deal with explicit knowledge that can 

be explained and understood, and neural networks, which deal with implicit knowledge, 

which can be acquired by learning. The merger of neural networks and fuzzy logic led to the 

creation of neuro-fuzzy controllers which are currently one of the most popular research 

fields. The inputs to MANFIS are relative deviation of first three natural frequencies and 

relative values of percentage deviation for first three mode shapes and outputs are relative 

crack depth and relative crack location. A learning algorithm based on neural network 

technique has been developed to tune the parameters of fuzzy membership functions. The 

experimental results agree well with the MANFIS results, proves the authenticity of the 

theory developed.  

 
 

Chapter 7 

ANALYSIS OF MANFIS FOR CRACK DETECTION 
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7.1 Introduction 
 
Recently sophisticated vibration monitoring techniques have been available for monitoring 

and diagnosis of faulty vibrating structures. Among them, the artificial intelligence 

techniques such as neural networks, fuzzy logic, expert systems and so on are at the priority. 

One of the hybrid artificial intelligence techniques i.e. multiple adaptive neuro-fuzzy-

evolutionary technique have woken up a lot among the researchers in the recent years. The 

MANFIS approach is becoming one of the major areas of interest because it gets the benefits 

of neural networks as well as of fuzzy logic systems and it removes the individual 

disadvantages by combining them on the common features. 

 

In this chapter for diagnosis of the crack in the structure multiple adaptive neuro-fuzzy 

inference system methodology has been applied. The adaptive neuro-fuzzy controller has got 

input layer, hidden layers and out put layer. The input layer is the fuzzy layer. The other 

layers are neural layers. The inputs to the fuzzy layer are relative deviation of first three 

natural frequencies and relative values of percentage deviation for first three mode shapes. 

The final outputs of the MANFIS controller are relative crack depth and relative crack 

location.  Several hundreds fuzzy rules and neural network training patterns are derived using 

natural frequencies, mode shapes, crack depths and crack locations. Real results have been 

obtained using the experimental setup. Comparison between the simulation and experimental 

results, exhibits a good agreement between them. This methodology can be effectively used 

for condition monitoring of dynamic structures. 

This chapter is organised into five sections following the introduction; the entire analysis 

of MANFIS architecture has been discussed in section 7.2. The analysis of MANFIS used for 

crack detection has been discussed in section 7.3. The results of MANFIS controller are 

presented in section 7.4 and comparisons of results of MANFIS with other methods 

discussed previously are analyzed in section 7.5. Finally, the discussions and summary are 

given in section 7.6 and 7.7 respectively. 
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7.2 Analysis of Multiple Adaptive Neuro-Fuzzy Inference System for 

Crack Detection 
 

The multiple adaptive neuro fuzzy inference system is an integrated system of artificial 

neural network (ANN) and fuzzy inference system (FIS). The ANFIS controller used is a 

first order Takagi Sugeno Fuzzy Model [258]. In the current analysis, there are six inputs and 

two outputs. They are as follows: 

 

Relative first natural frequency (x1) =“fnf”; Relative second natural frequency (x2) = “snf”;  

Relative third natural frequency (x3)=“tnf” ;Relative first mode shape difference(x4)=“fmd”;  

Relative second mode shape difference (x5)=“smd”  

Relative third mode shape difference (x6)=“tmd”. 

 

The outputs are as follows; 

Relative crack location = “rcl” and Relative crack depth = “rcd” 

As in the current investigation there are two out puts, multiple ANFIS (MANFIS) 

architecture has been used (Fig. 7.2.1). 

The “if then” rules for the MANFIS architecture is defined as follows; 

IF x1 is Aj ,  x2 is Bk , x3 is Cm,  x4 is Dn , x5 is Eo ,  x6 is Fp 

THEN 

fe,i = pe,i x1 +  re,i x2 +  se,i x3 +  te,i x4 +  ue,i x5 +  ve,i x6 + ze,i   

Where; 

f1,i = rcli =   p1,i x1 +  r1,i x2 +  s1,i x3 +  t1,i x4 +  u1,i x5 +  v1,i x6 + z1,i     ;  

for relative crack length. 

f2,i = rcdi =   p2,i x1 +  r2,i x2 +  s2,i x3 +  t2,i x4 +  u2,i x5 +  v2,i x6 + z2,i    ;  

for relative crack depth. 

e = 1,2 ; j = 1 to q1 ; k = 1 to q2 ; m = 1 to q3 ; n = 1 to q4 ; o = 1 to q5 and p = 1 to q6 and 

i = 1 to q1.q2.q3.q4.q5.q6   

(7.2.1) 

(7.2.2) 
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A, B, C, D, E and F are the fuzzy membership sets defined for the input variables x1 (fnf), 

x2(snf), x3(tnf), x4(fmd), x5(smd) and x6(tmd). q1, q2, q3, q4, q5 and q6 are the number of 

member ship functions for the fuzzy systems of the inputs x1, x2, x3, x4, x5 and x6 

respectively.  

“rcl” and “rcd” are the linear consequent functions defined in terms of the inputs (x1, x2, x3, 

x4, x5 and x6) .  p1,i , r1,i, s1,i ,t1,i ,u1,i ,v1,i , z1,i,p2,i , r2,i, s2,i ,t2,i ,u2,i , v2,i and z2,i are the 

consequent parameters of the ANFIS fuzzy model. In the ANFIS model nodes of the same 

layer have similar functions. The output signals from the nodes of the previous layer are the 

input signals for the current layer. The output obtained with the help of the node function will 

be the input signals for the subsequent layer. 

Layer 1:  Every node in this layer is an adaptive node (square node) with a particular fuzzy 

membership function (node function) specifying the degrees to which the inputs satisfy the 

quantifier. For six inputs the outputs from nodes are given as follows; 

O1, g,e = μAg (x)    for g = 1, ……, q1                                              (for input x1) 

O1, g,e = μBg (x)    for g = q1+1, ……, q1+q2     (for input x2) 

O1, g,e = μCg (x)    for g = q1+q2+1, ……, q1+q2+q3    (for input x3) 

O1, g,e = μDg (x)    for g = q1+q2+q3+1, …, q1+q2+q3+q4   (for input x4) 

O1, g,e = μEg (x)    for g = q1+q2+q3+q4+1, …, q1+q2+q3+q4+q5   (for input x5) 

O1, g,e = μFg (x)    for g = q1+q2+q3+q4+q5+1, …, q1+q2+q3+q4+q5+q6 (for input x6) 

Here the membership functions for A, B, C, D, E and F considered are the bell shaped 

function.  

(7.2.3) 
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The membership function for A,B,C,D,E and F considered in “layer 1” are the bell shaped 

function (Fig. 7.2.1) and are defined as follows; 

 

 

 

 

μAg(x)= g b2

g

g

a
cx

1

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

;  g = 1, ……, q1        

μBg(x)= g b2

g

g

a
cx

1

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

;  g = q1+1, ……, q1+q2     

μCg(x)= g b2

g

g

a
cx

1

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

;  g = q1+q2+1, ……, q1+q2+q3    

μDg(x)= g b2

g
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;  g = q1+q2+q3+1, …, q1+q2+q3+q4    

0.0 

0.5 

0.1 
MF 

X 

2ag 

cg-ag cg+ag 

Slope=-b/2ag 

cg 

Fig. 7.2.1    Bell-shaped membership function 

(7.2.4 (i)) 

(7.2.4 (iv)) 

(7.2.4 (iii)) 

(7.2.4 (ii)) 
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μEg(x)= g b2
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;  g = q1+q2+q3+q4+1, ……, q1+q2+q3+q4+q5  

μFg(x)= g b2

g
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;  g = q1+q2+q3+q4+q5+1, ., q1+q2+q3+q4+q5+q6  

Where ag,bg and cg are the parameters for the fuzzy membership function. The ball-shaped 

function changes its pattern as per the change of the parameters. This change will give the 

various contour of bell shaped function as needed in accord with the data set for the problem 

considered.  

Layer 2: Every node in this layer is a fixed node (circular) labeled as “Π”. The out put 

denoted by  O2,i,e. The output is the product of all incoming signal. 

O2,i,e = wi ,e = μAg(x) μBg(x) μCg(x) μDg(x) μEg(x) μFg(x) ;     (7.2.5) 

for i = 1,…., q1.q2.q3.q4.q5.q6  and g = 1 ,….., q1+q2+q3+q4+q5+q6  

The output of each node of the second layer represents the firing strength ( degree of 

fulfillment) of the associated rule. The T-nom operator algebraic product { Tap(a,b) = ab}, 

has been used to obtain the firing strength (wi,e). 

Layer 3: Every node in this layer is a fixed node (circular) labeled as “N”. The output of the 

i th. node is calculated by taking the ratio of firing strength of i th. rule (wi,e) to the sum of all 

rules’ firing strength. 

(7.2.4 (v)) 

(7.2.4 (vi)) 
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 O3,i,e = 
∑

= = 4.q5.q6q1.q2.q3.qr

1-r
er,

ei,
e,i

w

w
  w        (7.2.6) 

This output gives a normalized firing strength. 

Layer 4:  Every node in this layer is an adaptive node (square node) with a node function. 

O4,i, e = e,iw  fe,i = e,iw  (pe,i x1 +  re,i x2 +  se,i x3 +  te,i x4 +  ue,i x5 +  ve,i x6 + ze,i )   (7.2.7)      

Where e,iw  is a normalized firing strength form (output) from layer 3 and  {pe,i , re,i , se,i , te,i, 

ue,i , ve,i , ze,i}is the parameter set for relative crack location(e=1) and relative crack depth 

(e=2). Parameters in this layer are referred to as consequent parameters.  

Layer 5: The single node in this layer is a fixed node (circular) labeled as “Σ”, which 

computes the overall output as the summation of all incoming signals.  

O5,1,e =  
∑

∑
=∑ =

=

=

4.q5.q6q1.q2.q3.qi

1-i
ei,

4.q5.q6q1.q2.q3.qi

1-i
ie,ei,4.q5.q6q1.q2.q3.qi

1-i
ie,ei,

  w

 f w
 f w           (7.2.8) 

In the current developed ANFIS structure there are six dimensional space partition and has  

“q1 x q2 x q3 x q4 x q5 x q6” regions. Each region is governed by a fuzzy if then rule. The first 

layer (consists of premise or antecedent parameters) of the ANFIS is dedicated to fuzzy sub 

space. The parameters of the fourth layer are referred as consequent parameters and are used 

to optimize the network. During the forward pass of the hybrid learning algorithm node 

outputs go forward until layer four and the consequent parameters are identified by least 

square method. In the backward pass, error signals propagate backwards and the premise 

parameters are updated by a gradient descent method. 
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Fig. 7.2.2   Multiple ANFIS (MANFIS) controller for crack detection 
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7.3 Results of MANFIS Controller 
 
The multiple adaptive neuro-fuzzy inference system is designed and developed to predict the 

relative crack location and relative crack depth. A comparison of results between the 

developed MANFIS, numerical analysis and experimental analysis is presented in Table 

7.3.1. Finally the comparisons of results between the developed MANFIS, triangular fuzzy-

neuro controller, gaussian fuzzy-neuro controller, trapezoidal fuzzy-neuro controller of 

chapter-6, neural controller of chapter-5 and triangular fuzzy controller, gaussian fuzzy 

controller and trapezoidal fuzzy controller of chapter-4 are presented in Table 7.3.2. In the 

Tables 7.3.1 and 7.3.2 ten sets of random inputs out of several hundred sets of inputs are 

taken. The inputs to different analyses described above, are relative first three natural 

frequencies and relative first three mode shape differences and the out puts are relative crack 

location and relative crack depth. Corresponding ten set of output results from the developed 

MANFIS controller, triangular fuzzy-neuro controller, gaussian fuzzy-neuro controller, 

trapezoidal fuzzy-neuro controller, neural controller, triangular fuzzy controller, gaussian 

fuzzy controller , trapezoidal fuzzy controller, numerical analysis and experimental analysis 

are given in the Table 7.3.1 and Table 7.3.2. In the Tables 7.3.1 and 7.3.2 the first column 

represents the relative 1st natural frequency (fnf), the second column represents the relative 

2nd natural frequency (snf), the third column represents the relative 3rd natural frequency 

(tnf), the fourth column represents the relative 1st mode shape difference (fmd), the fifth 

column represents the relative 2nd mode shape difference (smd), the sixth column represents 

the relative 3rd mode shape difference (tmd) as inputs and the rest coloumns represents the 

outputs of relative crack location and relative crack depth. 
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7.4 Discussions  

Results obtained for the fault diagnosis from the developed MANFIS, triangular fuzzy-neuro 

controller, gaussian fuzzy-neuro controller, trapezoidal fuzzy-neuro controller, neural 

controller , triangular fuzzy controller, gaussian fuzzy controller , trapezoidal fuzzy 

controller, numerical and experimental analysis, following discussions are drawn.  

Fig. 7.2.1 shows the   Bell shaped membership function used as membership functions in 

layer-1 of ANFIS controller. Fig. 7.2.2 represents Multiple ANFIS (MANFIS) architecture 

for crack detection. The architecture of ANFIS for crack detection is shown in Fig. 7.2.3. 

Table 7.3.1 shows the comparison of results between the developed MANFIS, numerical 

analysis and experimental analysis. Table 7.3.2 represents comparison of results between the 

developed MANFIS, triangular fuzzy-neuro controller, gaussian fuzzy-neuro controller, 

trapezoidal fuzzy-neuro controller, neural controller and triangular fuzzy controller, gaussian 

fuzzy controller and trapezoidal fuzzy controller analysis. It is evident from the Tables 7.3.1 

and 7.3.2 that the average percentage deviation of the results of MANFIS is 0.5%. 

 
7.5 Summary 
 

Following conclusions are drawn on the basis of analysis and results obtained from multiple 

adaptive neuro-fuzzy inference system;  

Using the above analysis and MANFIS methodology condition monitoring of dynamic 

structures can be addressed effectively.  The crack size and its location have got significant 

effect on the natural frequencies and mode shapes of the vibrating structures. MANFIS can 

predict the crack location and its size with the help of the natural frequencies and mode shape 

differences of the dynamic structures. The developed controller predicted the results are in 

close proximity with theoretical and experimental results.  

 

Publications 

• Parhi D.R. and Das H.C., Diagnosis of fault and condition monitoring of dynamic 

structures using MANFIS technique, Journal of Aerospace Engineering Proceedings of 

the Institution of Mechanical Engineers, Part G, Vol. 223, In Press. 
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In order to justify the validation of the theoretical analysis and numerical analysis discussed 

in chapter-3 and different artificial intelligence methodologies proposed for prediction of 

crack location and crack depth discussed in chapter-3 to chapter-7, experimental 

investigations have been carried out. For the experimental investigations an experimental set-

up has been developed in order to measure the dynamic response of the cantilever beam with 

a transverse crack. The details of the instruments used in the experimental set-up, test 

specimens and experimental procedure are presented in the subsequent sections. 

 
8.1 Description of Instruments used in the Experimental Analysis 
 
A (800 x 50 x 6mm) aluminum beam specimen is selected for the experimental 

investigations. The schematic block diagram of the whole experimental setup is shown in 

Fig. 3.3.1. It can be noted from the Fig. 3.3.1 that the electro-dynamic exciter is driven by a 

function generator connected to a signal amplifier. Vibration indicator connected to a 

vibration analyzer shows the vibration responses of cracked cantilever beam through the 

signal which comes from the accelerometer. The detailed specifications of the instruments 

used in this investigation are given below. 

 

1. Vibration pick-up  - Delta Tron Accelerometer     
(Accelerometer)    Type  :  4513-001 

Make  :  Bruel & kjaer 
                 Sensitivity :  10mv/g-500mv/g 

Frequency  
Range  :  1Hz-10KHz 
 
Supply voltage:  24volts 
 
Operating  
temperature  
Range  :  -500C to +1000c 

 

Chapter 8
ANALYSIS AND DESCRIPTION OF EXPERIMENTAL 

SETUP 
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2. Vibration Analyzer  - Type  :  3560L 
 
Product Name : Pocket front end 
     

 Make  :  Bruel & kjaer 
 

Frequency  
Range  : 7 Hz to 20 Khz 
 
ADC Bits : 16 
 
Simultaneous  
Channels  :     2 Inputs, 

         2 Tachometer 
       

Input Type : Direct/CCLD 
 

 
3. Vibration indicator  - PULSE LabShop Software Version 12  

                                              
Make  :  Bruel & kjaer 

 
4. Function Generator                 -  Model   : FG200K    

 
Frequency  
Range  :  0.2Hz to 200 KHz      

                                      
VCG IN connector for Sweep Generation          

                                      Sine, Triangle, Square, TTL outputs 
                                       

Output Attenuation up to 60dB      
                                       

Output Level :  15Vp-p into 600 ohms 
                                         Square Wave  

Rise/Fall Time :  <300nSec 
                                       

Make  :  Aplab  
 
5.  Power Amplifier  -  Type   : 2719  

 
Power  
Amplifier :  180VA 

 
                                   Make  :  Bruel & kjaer 
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6. Vibration Exciter  -   Type   : 4808 
 
Permanent Magnetic Vibration Exciter 

 
Force rating 112N (25 lbf) sine peak  
(187 N (42 lbf) with cooling) 

                                             
Frequency  
Range  :  5Hz to 10 kHz 

                                             
First axial  
resonance  : 10 kHz 

                                            
 Maximum bare table  
Acceleration :  700 m/s2 (71 g) 

 
                                               Continuous 12.7 mm (0.5 in)  

peak-to-peak displacement  
                                                                        with over travel stops 
                                             
    Two high-quality, 4-pin  
    Neutrik® Speakon® connectors 
                                             
    Make: Bruel & kjaer 
 
 
7.          Specimen   -  cantilever type cracked aluminum  

    beam specimen of dimension  
    (800 x 50 x 6mm)  
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

204 

8.2 Experimental Set-up 
 
A   cracked cantilever beam has been rigidly clamped to the concrete foundation base as 

shown in the Fig.8.1. The free end of the beam is excited with a vibration exciter. The 

vibration exciter is excited by the signal from the function generator. The signal is amplified 

by a power amplifier before being fed to the vibration exciter. The amplitude of vibration of 

the uncracked and cracked cantilever beam is taken by the accelerometer and is fed to the 

vibration indicator (PULSE LabShop Software Version 12) for vibration analysis. The 

vibration signatures are analyzed graphically by PULSE LabShop Software loaded in the 

laptop. The views of the instruments used in the experimental set-up are shown in Figs. 

8.2(a) - 8.2(g)  . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9 

1 

8 

7 
6 

2 

3 
4 

5 

        Fig. 8.1   View of complete assembly of the experimental set-up 



   

205 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8.2 (a) Concrete foundation with beam specimen 

Fig.8.2 (b) Vibration indicator (PULSE labShop  
software) with lap top 

Fig.8.2 (c) Vibration exciter 
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Fig.8.2 (d) Vibration pick-up (accelerometer) 

Fig.8.2 (f) Function generator 

Fig.8.2 (e) Vibration analyser 
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8.3 Experimental Procedure 
 
Several tests are conducted using the experimental setup (Fig. 8.1) on Aluminum beam 

specimens (800 x 50 x 6mm) with a transverse crack for determining the natural frequencies 

and mode shapes for different crack locations and crack depths. These specimens are set to 

vibrate under 1st, 2nd and 3rd mode of vibrations and the corresponding amplitudes are 

recorded in the vibration indicator.  Experimental results for amplitude of transverse 

vibration at various locations along the length of the beam are recorded by positioning the 

vibration pick-up and tuning the vibration generator at the corresponding resonant 

frequencies.  

 
 
 
 
 

Fig.8.2 (g) Power amplifier 

Fig.8.2  View of the instruments used in the experimental set-up 
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8.4 Experimental Results and Discussions  
 

The experimental results of relative amplitude for different relative crack locations (0.026, 

0.05128) and different crack locations (0.3, 0.4) for 1st,2nd and 3rd modes of vibration are 

presented graphically in Fig.3.3.2, Fig.3.3.3 and Fig.3.3.4 in section 3.3.1 of chapter 3. 

Corresponding results of numerical analysis are also presented in the same graph for cracked 

and uncracked beam for immediate comparison. The experimental results for relative crack 

location and relative crack depth are compared with the corresponding results of the 

triangular, gaussian and trapezoidal fuzzy controller in Table 4.3.6 of chapter-4 and are found 

to be in good agreement. The experimental results for relative crack location and relative 

crack depth are compared with the corresponding results of the back propagation neural 

controller in Table 5.3.4 of chapter-5 and are found to be in agreement. The experimental 

results for relative crack location and relative crack depth are also compared with the 

corresponding results of the triangular, gaussian and trapezoidal fuzzy-neuro controllers in 

Table 6.2.1 of chapter-6 and are found to be in good agreement. The experimental results for 

relative crack location and relative crack depth are also compared with the corresponding 

results of the multiple adaptive neuro-fuzzy controller in Table 7.2.1 of chapter-7 and are 

found to be in good agreement.  

 

 

 

 

 

 

 

 



   

209 

 

 

 

9.1  Introduction  

In this section the results obtained from different analyses performed on the cracked 

cantilever beam have been analyzed and discussed. The effects of crack parameters on the 

dynamic response of the structure have been elaborated.  

9.2  Discussions of Results 

The current research has been carried out in seven stages. The stages comprised of are 1) 

Literature survey. 2) Analysis of dynamic characteristics of beam with a transverse crack. 3) 

Analysis of fuzzy logic technique for crack detection. 4) Analysis of artificial neural network 

for crack detection. 5) Analysis of hybrid fuzzy neuro system for crack detection. 6) Analysis 

of MANFIS for crack detection 7) Analysis and description of experimental setup. These 

stages are presented in chapter forms from chapter two to chapter eight. The outcomes of 

results of different chapters during analysis are presented below systematically.  

Chapter two depicts the various methodologies adapted since last five decades for crack 

detection in damaged structures. Many condition monitoring tools used by authors for fault 

detection in different domain of engineering applications with the help of artificial 

intelligence techniques have been discussed. 

In chapter three theoretical analysis has been carried out on the cracked cantilever beam (Fig. 

3.2.1). During analysis it is observed that the crack position and crack depth have a 

considerable effect on the dynamic response of the beam. The variation of the mode shapes 

for the 1st three modes of vibration and the significant changes in the mode shapes at the 

crack location can be seen with magnifying views in Fig. 3.2.4 to Fig. 3.2.27. From the 

analysis it is found that with the increase in relative crack depth there is an increase in 

Chapter 9 

RESULTS AND DISCUSSIONS 
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dimensionless compliances (Fig. 3.2.2), which clearly shows the relationship between 

relative crack depth and vibration parameters of the structure. The results from the numerical 

analysis have been validated with the results obtained from the developed experimental set 

up (Fig. 3.3.1). The comparisons of results from theoretical and experimental analysis for the 

cracked and uncracked beam are presented in Fig.3.3.2 to Fig.3.3.4, which shows a close 

agreement. The variation of relative natural frequencies, relative mode shapes with respect to 

relative crack locations and relative crack depth in three dimensional forms, along with the 

contour plots are depicted in Fig.3.2.28 and Fig.3.2.29 respectively.  

Fuzzy controllers have been designed for prediction of crack location and its severity using 

three different types of membership functions such as triangular function (Fig. 4.2.1(a)), 

Gaussian function (Fig. 4.2.1(b)) and trapezoidal function (Fig. 4.2.1(c)) and are presented in 

chapter four. The fuzzy controllers developed here take the 1st three natural frequencies and 

mode shape differences as input parameters and relative crack depth and relative crack 

location as output parameters as shown in Fig. 4.2.2. Several fuzzy rules and fuzzy linguistic 

terms have been developed to design the fuzzy controller, some of them are described in 

Table 4.3.1 and Table 4.3.2. The complete architecture of triangular, Gaussian, trapezoidal 

fuzzy controller are presented in Fig. 4.3.1, Fig. 4.3.2 and Fig. 4.3.3 respectively. Fig. 4.3.4 

to Fig. 4.3.6 exhibits the fuzzy results after defuzzification when rule 1 and 19 of the Table 

4.3.2 are activated for triangular, Gaussian and trapezoidal membership function 

respectively. Table 4.3.3 gives the comparison among the results obtained from numerical, 

experimental, fuzzy controller with triangular membership function, fuzzy controller with 

gaussian membership function and fuzzy controller with trapezoidal membership functions. 

Results obtained from gaussian membership function fuzzy controller is more accurate in 

comparison to other two controllers and the computational time for crack prediction in 

considerably lower as compared to numerical analysis. The predicted results from fuzzy 

controllers for crack location and crack depth are compared with the theoretical and 

experimental results for cross verification. A close agreement between the results is found. 

Chapter five describes the design of neural network controller with back propagation method 

(Fig.5.2.5) for prediction of crack location and its size for the cracked cantilever beam. The 

details of neural network technique (Fig.5.2.1), reasons for using neural network, activation 
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function (Fig.5.2.2), modeling of multi layer perceptron have been depicted in section 5.2.   

Neural network approach has been used to develop the controller so as to take the advantage 

of neuron for high accuracy results and faster computation. The neural network controller has 

been trained with eight hundred patterns of data of different crack location and crack depth 

gives out put such as relative crack depth and relative crack location. Few of the examples of 

training patterns out of several hundreds to train the controller are given in the Table 5.3.1. 

The working principle of the ten layer feed forward controller and a schematic diagram of 

multi layer neural network controller is depicted in Fig.5.3.2 and Fig.5.3.1 respectively. The 

controller is made of ten layers with one input layer, eight numbers of hidden layer and one 

output layer. The input layer takes the relative natural frequencies and relative mode shapes 

as input parameters where as relative crack location and relative crack depth are the results 

from the output layer. The controller is designed in a diamond shape for convergence of 

results. It is observed that the error in the output of the controller is considerably reduced 

from the desired output by employing error back propagation method. The result from the 

controller is compared with the outputs from numerical, fuzzy and experimental analysis for 

checking the robustness of the developed system. The comparison of the results from neural 

controller, fuzzy controllers, numerical analysis and experimental analysis are expressed in 

Table 5.3.2.  The prediction of crack location and its intensity from the neural network 

controller is very close to the actual results.  

Fuzzy neuro controllers have been developed in chapter six by integrating the capabilities of 

fuzzy logic and neural network for prediction of crack in damaged structures. Fig. 6.2.1, Fig. 

6.2.2 and Fig. 6.2.3 represent the developed fuzzy-neural controllers with triangular, gaussian 

and trapezoidal membership functions respectively. These three controllers are used for 

prediction of crack location and crack depth.  The fuzzy-neuro controller is based on the 

natural frequencies and mode shape differences of the structures with crack.  Table 6.2.1 and 

Table 6.2.2 show the comparison of the results of triangular, gaussian and trapezoidal fuzzy-

neuro controllers with the results from numerical, experimental, neural controller and 

triangular, gaussian and trapezoidal fuzzy controllers. The predicted values from the 

designed hybrid controller of crack location and its size are compared with the numerical, 

experimental, neural and fuzzy controllers results and are found to be well in agreement. This 
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fuzzy-neuro controller can be used as an effective tool for fault diagnosis of vibrating 

structures.  

Multiple adaptive neuro fuzzy inference system (MANFIS) has been developed for effective 

condition monitoring in dynamically vibrating structures and is discussed in chapter seven. 

Bell shaped membership function has been adapted for designing the MANFIS controller.  

Fig. 7.2.1 shows the   Bell shaped membership function used in layer-1 of ANFIS controller. 

Relative natural frequencies and relative mode shapes are the input parameters for the 

controller and relative crack depth and relative crack location are the output parameters from 

the controller. Fig. 7.2.2 represents multiple ANFIS (MANFIS) controller for crack 

detection. The architecture of Adaptive neuro-fuzzy inference system (ANFIS) for crack 

detection is shown in Fig. 7.2.3. Table 7.3.1 shows the comparison of results between the 

developed MANFIS controller, numerical analysis and experimental analysis. From the 

comparison it is evident that the results from the MANFIS controller have higher accuracy 

with respect to numerical analysis. Table 7.3.2 represents comparison of results between the 

developed MANFIS controller, triangular fuzzy-neuro controller, gaussian fuzzy-neuro 

controller, trapezoidal fuzzy-neuro controller, neural controller and triangular fuzzy 

controller, gaussian fuzzy controller and trapezoidal fuzzy controller analysis. From the 

analysis of the Table 7.3.2 it is observed that the results obtained from the MANFIS 

technique yields better results with least amount of error as compared to the other methods 

cited in the Table 7.3.2.  

Chapter eight discusses on various instruments used in the experimental setup for carrying 

out the experimental analysis. The instruments used are 1. Concrete foundation with beam 

specimen 2. Vibration indicator (PULSE labShop software) with lap top 3. Vibration exciter   

4. Vibration pick-up (accelerometer) 5. Vibration analyzer 6. Function generator 7. Power 

amplifier and are given in Fig. 8.2(a) to Fig. 8.2(g) respectively. This chapter also discusses 

the experimental procedure in section 8.3. During experimental analysis care has been taken 

to reduce error and noise signal. 

The contributions, conclusions and scope for future work of the above analysis have been 

given in the next chapter. 
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The aim of this research has been to develop an efficient methodology for diagnosis of crack 

in a vibrating structure. To achieve the above objective a comprehensive investigation has 

been carried out to study the effect of crack on the vibration signatures of a dynamically 

vibrating uniform cracked cantilever beam. The vibration analysis has been carried out in 

several stages, such as theoretical, numerical, and experimental analysis. The influence of 

cracks on the dynamic behavior of the beam is found to be very sensitive in regards to crack 

location, crack depth and mode number. A number of inverse methods have been developed 

comprising of artificial intelligence techniques such as fuzzy logic, neural network, fuzzy 

neuro and MANFIS techniques for predicting the crack location and its severity based on 

changes in the vibration signatures (natural frequencies, mode shapes).  

On the basis of analyses and discussions done in previous chapters, the following 

contributions and conclusions of the research are drawn. 

10.1  Contributions 

Theoretical analysis of the cracked beam on the basis of strain energy release rate has been 

carried out to find out the effect of crack depth and crack location on vibration signatures of 

the beam. 

Numerical analysis has been carried out on the basis of above theoretical and experimental 

analysis for studying the influence of crack depth and crack location on the dynamic response 

of the cracked beam. Four inverse methods comprising of artificial intelligence techniques 

such as fuzzy logic, neural network, fuzzy neuro and MANFIS have been developed for 

diagnosis of crack depth and crack location. 

Chapter 10 

CONCLUSIONS AND FURTHER WORK
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10.2  Conclusions 

• Small crack depth ratios have little effects on the natural frequencies of the cracked 

cantilever beam. Deviations in mode shapes are noticeable due to presence of crack. 

Analysis of change in natural frequencies and mode shape in combination is effective 

for prediction of crack in beam structure containing small crack. 

• A clearcut deviation in the mode shapes and natural frequencies at the vicinity of 

crack location has been observed from the comparison of the results of the un cracked 

and cracked beam during the vibration analysis. 

• Unique changes have been observed in the natural frequencies and mode shapes with 

the change of crack depth and crack location. The changes in the vibration signatures 

become more prominent as the crack grows bigger. It is observed that the results from 

theoretical, numerical and experimental analysis are in good agreement. 

• Three types of fuzzy controllers have been designed with triangular, gaussian and 

trapezoidal membership functions to predict the crack location and its size with the 

help of natural frequencies and mode shape differences. During this design several 

rules are formed and are used with various membership functions.   

• It has been observed that the developed fuzzy controllers can predict the relative 

crack location, relative crack depth of the beam with a considerably less amount of 

computational time. 

• Comparisons of fuzzy controller results with the experimental results show the 

effectiveness of the proposed methods towards the identification of location and 

extent of damage in vibrating structures. Fuzzy controller with gaussian membership 

function is found to be more suitable. 

• The neural network controller has been developed using back propagation algorithm 

to predict the crack location and size by using relative deviation of first three natural 

frequencies and first three mode shapes as inputs. The neural network controller 

predicted results are reasonably acceptable and in agreement with the experimental 
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data. The successful detection of crack and it’s intensity in cantilever beam 

demonstrates that the new technique developed can be used as a smart fault detecting 

tool for different types of vibrating structures. 

• From the comparison of fuzzy and neural network controller results, the neural 

controller is found to deliver closer result with respect to actual result.  

• The fuzzy neuro hybrid intelligent systems have been designed with relative deviation 

of first three natural frequencies and first three mode shapes as input parameters and 

relative crack depth and relative crack location as output parameters. The predicted 

results are found to be of higher accuracy than the results obtained from independent 

fuzzy and neural controller. 

• The multiple adaptive neuro fuzzy inference system (MANFIS) has been designed 

and is used as an effective tool for diagnosis of crack in vibrating structures.  The 

results obtained from MANFIS controller are found to be of higher accuracy than 

fuzzy and neural controllers results. The developed MANFIS controller predicted 

results are in close proximity with theoretical and experimental results. 

• After analysis the errors obtained from various methodologies developed using 

artificial intelligence techniques, it can be stated that the fuzzy-neuro hybrid 

intelligence controller based on Gaussian membership function and the MANFIS 

controller are two most efficient controllers for fault diagnosis.  

10.3  Applications 

• The developed controllers can be used as effective tools for online condition 

monitoring of engineering systems. 

• The present study can be utilized for inverse engineering application/problems, and 

can also be used in biomedical engineering system for fault detection. 
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• The methodologies formulated using artificial intelligence techniques can be used for 

prediction of fatigue crack of offshore structure, flow lines, turbo machinery, nuclear 

plants, ship structures etc.      

10.4  Scope for Future Work    

• In this research fault diagnosis and structural health monitoring systems have been 

derived using vibration signatures. These developed techniques can be extended to 

predict the health of complex structures with multiple cracks.  

• Genetic algorithm can be hybridized with the current developed controller for design 

of more robust fault diagnosis system.  

• Systems can be developed for fault diagnosis of structures subjected to moving load. 
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Identification of Crack Location and Intensity in a Cracked Beam 
by Fuzzy Reasoning 
by Harish Das, Dayal Parhi  
Abstract: In this paper a soft-computing-fuzzy-logic approach for 
crack identification in cantilever beam has been considered. The fuzzy
controller consists of six input parameters and two output parameters
The input parameters are first three relative natural frequencies and 
first three relative mode shape differences in dimensionless forms. Th
output parameters are relative crack location and relative crack depth
Theoretical analyses have been done including the effects of crack 
depths and crack locations on natural frequencies and mode shapes. 
Several fuzzy rules are outlined for the fuzzy controller. Gaussian 
member ship functions are used for the fuzzy controller. The local 
stiffnesses at crack location of the beam have been calculated using 
strain energy release rate. The fuzzy rules are used to identify the 
location and depth of the crack. Finally the effectiveness of the 
developed fuzzy controller has been verified by results obtained from 
the developed experimental setup.  
Keywords: beam, vibration, crack, natural frequency, strain energy, 
mode shape, fuzzy gaussian controller 

The Design of H8 control methodology for Nonlinear Systems to
Guarantee the Tracking Behavior in the Sense of Input-Output 
Spheres 
by Shun-Min Wang  
Abstract: A general nonlinear system usually contains some  
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1.3.1.1.2 Abstract  

Premature failure of beam structure is observed due to presence of crack. In the current analysis a 
fuzzy inference system has been developed for detection of crack location and crack depth of a 
cracked cantilever beam structure. The six input parameters to the fuzzy member ship functions are 
percentage deviation of first three natural frequencies and first three mode shapes of the cantilever 
beam. The two output parameters of the fuzzy inference system are relative crack depth and relative 
crack location. Strain energy release rate at the crack section of the beam has been used for 
calculating its local stiffnesses. Different boundary conditions for the cracked beam structure are 
outlined during theoretical analysis for deriving the vibration signatures (mode shapes and natural 
frequencies). These signatures are subsequently used for deriving the fuzzy rules. Several fuzzy 
rules are derived and the Fuzzy inference system has been designed accordingly. Experimental 
setup has been developed for verifying the robustness of the developed fuzzy inference system. The 
developed fuzzy inference system can predict the location and depth of the crack in a close proximity 
to the real results. 
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International Journal of Computational Intelligence: Theory and Practice, Vol 3, No 
1 (2008) 

Smart Crack Detection of a Beam Using Fuzzy Logic 
Controller 

Dayal R. Parhi, Harish Ch. Das 

 

Abstract 

 

Smart detection method to find out the fault in a cracked beam is addressed here. In 
the present investigation a fuzzy logic approach is used. In the fuzzy inference 
system six input parameters and two output parameters are used. The input 
parameters to the fuzzy member ship functions are percentage deviation of first 
three natural frequencies and first three mode shapes. The output parameters of the 
fuzzy inference system are relative crack depth and relative crack location. For 
deriving the fuzzy rules for natural frequencies, mode shapes, crack depths and 
crack locations theoretical expressions have been developed. Strain energy release 
rate has been used for calculating the local stiffnesses of the beam. The local 
stiffnesses are dependent on the crack depth. Different boundary conditions are 
outlined which take into account the crack location. Several fuzzy rules are derived 
and the Fuzzy controller has been designed accordingly. An experimental setup has 
been developed for verifying the effectiveness of the developed fuzzy controller. The 
location and intensity of the crack can be predicted by the developed fuzzy inference 
system in a close proximity to the actual results. 
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