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Abstract 

Fatigue cracks have high potential to cause catastrophic failures in the rotor which can 

lead to catastrophic failure if undetected properly and in time. This fault may interrupt 

smooth, effective and efficient operation and performance of the machines. Thereby the 

importance of identification of crack in the rotor is not only for leading safe operation but 

also to prevent the loss of economy and lives.The condition monitoring of the engineering 

systems is attracted by the researchers and scientists very much to invent the automated 

fault diagnosis mechanism using the change in dynamic response before and after damage. 

When the rotor with transverse crack immersed in the viscous fluid, analysis of cracked 

rotor is difficult and complex. The analysis of cracked rotor partially submerged in the 

viscous fluid is widely used in various engineering systems such as long spinning shaft 

used drilling the seabed for the extracting the oil, high-speed turbine rotors, and analysis 

of centrifuges in a fluid medium. Therefore, dynamic analysis of cracked rotor partially 

submerged in the viscous medium have been presented in the current study. The 

theoretical analysis has been performed to measure the vibration signatures (Natural 

Frequencies and Amplitude) of multiple cracked mild steel rotor partially submerged in 

the viscous medium. The presence of the crack in rotor generates an additional flexibility. 

That is evaluated by strain energy release rate given by linear fracture mechanics. The 

additional flexibility alters the dynamic characteristics of cracked rotor in a viscous fluid. 

The local stiffness matrix has been calculated by the inverse of local dimensionless 

compliance matrix. The finite element analysis has been carried out to measure the 

vibration characteristics of cracked rotor partially submerged in the viscous medium using 

commercially available finite element software package ANSYS. It is observed from the 

current analysis, the various factors such as the viscosity of fluid, depth and position of the 

cracks affect the performance of the rotor and effectiveness of crack detection techniques. 

Various Artificial Intelligent (AI) techniques such as fuzzy logic, hybrid BPNN-RBFNN 

neural network, MANFIS and hybrid fuzzy-rule base controller based multiple faults 

diagnosis systems are developed using the dynamic response of rotating cracked rotor in a 

viscous medium to monitor the presence of crack. Experiments have been conducted to 

authenticate the performance and accuracy of proposed methods. Good agreement is 

observed between the results.  

 

Keywords: Rotor; Dynamic response; Viscous fluid; Dynamic response; Navier-Stokes 

equation; Fuzzy; Neural network.  
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Chapter 1 

Introduction 

The rotating device plays a significant role in many industries and several engineering 

fields. Not only it’s used in large machines such as pumps or turbines in power generation 

plants and large vehicles such as ships or airplanes, but it is also used in small machines in 

factories, automobiles, and computer hard drives. One of the dangerous components in the 

rotating machinery is the rotor since it is an important part that conveys power to the other 

device to do work on the machines. Cracks can arise on the rotor from a variety of causes, 

such as bending and torsion stresses. Accordingly machine failure due to cracked rotor can 

compromise the safety of human beings and also due to crack occurrence more 

maintenance and operating costs are required. The current chapter highlights the 

methodology that is being used for analysis of cracked rotor. The first section introduces 

the motivation in the area of analysis of dynamic behavior of faulty rotor. The final 

segment of the present chapter provides an outline of each chapter of the dissertation.  

1.1 Motivation of the Research Work 

The vibration analysis of the rotor has been given great significance in the area of 

vibration due to the frequent catastrophe of such rotor in engineering applications. The 

development of health monitoring techniques is most significant to avoid sudden and 

unexpected failure of the rotor systems. The rotor is one of the most important elements of 

the machines. Any distraction present in this rotor may lead to the loss of assets and also 

the loss of life. It is, therefore, most important to ensure the safe and sound performance of 

the rotor by periodic monitoring. In the literature survey, many methods are available for 

assessment of crack present in the rotor. But not reported in detailed for the analysis of 

rotating cracked rotor in the fluid medium. Furthermore, when a rotor rotates with 

transverse crack submerged in a viscous fluid medium, then it is very difficult and 

complicated to analyses the rotor. In the present analysis, an effort has been taken to 

develop a tool using the vibration response of non-cracked and cracked rotor with the help 

of theoretical analysis, experimental analysis, FE analysis and artificial intelligence 
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technique.The AI techniques are modeled with an objective of fast and accurate 

measurement of cracks present in the rotor. Fuzzy logic system (FLC), neural network 

model and multiple ANFIS models have been designed and analyzed in current research 

for prediction of multiple cracks present in the rotor partially submerged in the viscous 

medium to ensure the smooth and safe operation by arresting the vibration response. To 

develop experimental setup to perform the experimental exercises for validating the results 

obtained from the above mentioned soft computing techniques. 

1.2 Aims and Objectives of the Proposed Research Work 

It is essential that rotor must be safe and function properly throughout service life but 

cracks commence a breakdown in the rotor. The presence of crack is a crucial threat in the 

rotor. It is a well-known circumstance that vibration characteristics of the rotor change 

because of an existence of crack and viscous fluid. It has been noticed that the existence of 

the cracks in rotor leads to catastrophic failure, operative failure as well as early failure. 

The numbers of researches are reported on the dynamic analysis of rotor and mostly on the 

vibration analysis of cracked rotor. The vibration behaviour (i.e. Natural frequency and 

amplitude) of the rotor varies due to the occurrence of crack and viscosity of the fluid 

medium. The change in vibration response has been used by the investigator as one of the 

principles of the fault diagnosis for the rotor. In general, this technique can be very helpful 

for crack identification in the rotor partially submerged in the fluid medium. In the present 

examination, many literatures available so far have been studied and investigated.The 

aims and objectives for the research towards analysis of dynamic behaviour of rotor with 

multiple transverse cracks partially submerged in the viscous fluid are summarized below: 

 Theoretical investigations of the cantilever and fixed-fixed rotor with multiple 

transverse cracks partially submerged in the viscous fluid medium have been 

accomplished to evaluate the dynamic responses. 

 To measure the vibration signature of non-cracked and cracked cantilever rotor, 

influence coefficient strain energy method has been used. 

 To analyse the influence of fluid forces on the rotor, Navier-Stokes equation has 

been used. 

 Development of  the experimental test rig to perform experimental exercises to 

obtain the vibration behaviour (i.e. Natural frequency and amplitude) of the 
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cantilever rotor with multiple transverse cracks immersed in the different fluid 

medium. 

 Finite element analysis using ANSYS 14.0 tool to determine the dynamic responses 

of the non-cracked and cracked cantilever rotor partially submerged in the viscous 

fluid medium are to be applied. 

 Design and development of the fault diagnosis tool for multiple crack  identification 

in rotor using the intelligent expert systems such as fuzzy logic system, adaptive 

neural network, MANFIS and rule-base technique are to be carried out. 

1.3 Methodologies Applied for Proposed Research Work 

The methodologies with the particular steps applied for proposed research work is 

summarized as follows:  

 Study of  the various techniques applied to vibration analysis of rotor with transverse 

cracks in the literature survey is carried out. 

 Theoretical investigation of the cantilever and fixed-fixed rotor with multiple 

transverse cracks partially submerged in the viscous fluid medium has been 

accomplished to evaluate the dynamic responses in both transverse directions (i.e. 44 

and 55-direction) of crack in rotor. 

 Measuring the vibration signature of non-cracked and cracked cantilever rotor using 

Influence coefficient strain energy method. 

 Consideration at the variation of the crack orientation of the rotor to find out their 

effect on the dynamic characteristics of rotor immersed in the viscous fluid medium. 

 Analyse the influence of fluid forces on the rotor using Navier-Stokes equation. 

 Determination of the local flexibility at the vicinity of crack positions in rotor using 

the stiffness matrix. 

 Application of Finite element analysis using ANSYS 14.0 tool to determine the 

dynamic responses of the non-cracked and cracked cantilever rotor partially 

submerged in the viscous fluid medium.  

 Development of the Mamdani fuzzy and Takagi-Sugeno fuzzy architecture for finding 

the multiple cracks in the rotor. 

 Hybridization of the Mamdani fuzzy and Takagi-Sugeno fuzzy to adjust and tune the 

input/output membership function parameters of the fuzzy controller. This developed 
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hybrid fuzzy system improves the performance of fault diagnosis tool for finding the 

multiple cracks in rotor in viscous fluid. 

 Design of an adaptive neural network (i.e. BPNN and RBFNN) architecture for 

identify the multiple crack in rotor. 

  Development of  the MANFIS controller for detecting the cracks in rotor. 

 Integration of the fuzzy controller model with the rule-base technique called as hybrid 

fuzzy-rule base technique for detecting the multiple crack locations and depths in 

cantilever rotor. 

 Building an experimental setup for performing the experiments to evaluate the 

vibration behaviour of cracked cantilever rotor submerged in the viscous medium. 

 The obtained results from the proposed techniques which cited above are to be 

authenticated with the developed experimental setup.  

1.4 Novelty of Proposed Research Work  

In literature survey, it is found that the most of the researchers have applied the various 

methods for vibration analysis of the static or dynamic behaviour of the rotor with 

transverse crack in air medium. However, few researchers have reported the vibration 

analysis of damaged structures in viscous fluid medium in dynamic condition and have not 

considered the artificial intelligence system for fault diagnosis of rotating structures. 

The novelty of this dissertation is dynamic analysis of rotor with multiple transverse 

cracks partially submerged in the viscous medium.The artificial intelligence technique 

such as fuzzy logic system (FLC), adaptive neural networks, multiple adaptive neuro 

fuzzy inference system (MANFIS) and rule-base technique have been design and 

developed for the identification of multiple cracks using the dynamic response of rotating 

multiple cracked rotor system in the viscous fluid medium.  

In this research work, the application of hybrid fuzzy technique and rule-base technique 

for the diagnosis of multiple cracks in rotor has been carried out. Beside, this rule-base 

controller is integrated with the fuzzy controller to adjust and optimize the antecedent and 

consequent parameters of the fuzzy membership function and it is not found during the 

literature survey. 
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1.5 Outline of the Research Work 

In this thesis outline of the research work is distributed into eleven chapters. The analysis 

carried out in the current research for investigation of the effect of multiple crack locations 

and depths on the mechanical impedance of the rotor partially submerged in the viscous 

fluid medium are depicted chapter wise as follows. 

 Chapter 1 presents the influence of transverse crack on the rotor in different 

engineering or industrial applications. It also discusses the methods actually 

implemented by the engineering and scientists to examine the faults or damages in 

various engineering or industrial applications. This chapter also describes the 

motivations and objectives of the investigation along with the prominence of the 

proposed research. 

 Chapter 2 introduces the literature review of the vibration analysis of rotor with 

transverse cracks, partially submerged in the viscous fluid medium using different 

methodology, FEM, and Artificial intelligent techniques. This chapter also carries the 

classification of methodologies in the area of vibration analysis of rotor with different 

type of crack (i.e. transverse and breathing crack) 

 Chapter 3 investigates the vibration behaviours of cantilever and fixed-fixed rotor 

with multiple transverse cracks, partially submerged in the viscous fluid medium 

using the influence coefficient method and the strain energy release rate. The Navier-

Stokes equation is used to analyse the external fluid forces. The presence of crack 

generates local flexibility at the vicinity of crack.Vibration analysis has been 

accomplished to evaluate the dynamic behaviour of the non-cracked and cracked rotor 

submerged in the different viscous medium. The results and discussion have been also 

presented in this segment. Finally, the theoretical and experimental analysis results 

have been compared with the results from theoretical investigation for authentication.  

 Chapter 4 introduces the FE analysis of the cantilever rotor carrying multiple 

transverse cracks partially submerged in the viscous fluid medium using ANSYS 14.0 

tool to measure the dynamic response. The results of FE analysis are compared with 

the obtained results of theoretical and experimental analysis for authentication. 

 Chapter 5 discuses the theory of the fuzzy logic system using the Mamdani, Takagi-

Sugeno fuzzy  and hybrid fuzzy controller system for prediction the relative crack 

depth and locations.  Triangular, Trapezoidal and Gaussian membership functions 
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based intelligent system with detail design are briefly discussed. The obtained results 

of fuzzy controller are compared with the results from the experimental investigation. 

 Chapter 6 introduces the hybrid BPNN-RBFNN neural network methodologies for 

multiple crack identification in rotor. The results of the BPNN, RBFNN and hybrid 

BPNN-RBFNN neural network are discussed in detail.  

 Chapter 7 introduces the ANFIS method for forecasting of relative crack locations 

and depths by means of dynamic response of multiple cracked rotor.The obtained 

results from the fuzzy logic system, neural network, MANFIS, theoretical and 

experimental investigation have been reported. 

 Chapter 8 discusses the hybrid fuzzy-rule base technique for the detection of crack 

locations and crack depths in rotor.  

 Chapter 9 presents the details of the experimental procedure along with the 

developed experimental setup for the vibration analysis. Finally, the experimental 

analysis results have been obtained and discussed in detail.  

 Chapter 10 presents a comprehensive review and analysis of outcomes obtained from 

various proposed methods cited in the proposed investigation. 

 Chapter 11 depicts the conclusions obtained from the investigation carried out in the 

present research and recommendations for the future scope of research work in the 

similar field. 
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Chapter 2 

Literature Review 

This chapter presents the review of research work associated with the analysis of dynamic 

behavior of the cracked structure (i.e. rotor, beam, plate) and the progress of crack 

identification tool in damaged structures. In the last few decades, improvement has been 

made in the field of crack diagnosis of rotor partially submerged in a viscous medium has 

been described. Finally, the applications of artificial intelligence techniques for crack 

identification and prediction are discussed from the past and recent developments. 

2.1 Introduction 

The literature review section introduces the investigation of the available research work 

constrained to the field of  damage detection and characterization approach and model 

testing  for  engineering structure. The review commences with the depiction of altered  

dynamic analysis technique employed for identification of crack. Subsequently, vibration  

analysis of rotating cracked rotor, damage detection approaches to develop fault diagnosis  

tool utilizing the classical method, finite element method, Hilbert-Huang transform 

method and wavelet techniques are discussed. The artificial intelligence techniques (i.e. 

Fuzzy logic system, neural network, MANFIS, rule base technique and hybrid technique) 

can be designed and developed for the crack identification of the vibrating structure(i.e. 

rotor, plate, and beam).  

The main goal of the current research is to propose an artificial intelligence 

methodologies, which is able to predict the existence of multi-crack in the rotor with 

considerably high precision and less computational time.The potential directions for 

investigation can be acquired from the exploration of the literatures mentioned in current 

chapter. From the available research works, it is perceived that the knowledge related  to 

crack identification in various systems differs extensively.In spite of all, there is an 

extensive discrepancy in the enhancement of crack detection technique. 
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2.2 Analysis of Differnent Methodologies for Crack 

Identification in Rotor 

2.2.1 Classical Methods for Identification of Crack  

The enhancement of methodology for crack identification in real world establishes the 

most significant inclination in the present research work on crack identification. 

Investigators have concentrated on many methods based on the vibration analysis for 

detection of damage in several sectors of engineering structure which is efficiently used 

for health monitoring in a faulty system.The recent methods adapted for fault diagnosis 

are outlined below.Dimarogonas [1] has presented a review article on several fault 

detection techniques reported by the researcher (1971-1993).Doebling et al. [2] have 

presented the detailed review of vibration based damage identification and structural 

health diagnosis methods up to 1996. Kastsikadelis and Tsiatas [3] have done the 

nonlinear dynamic analysis of the bernouli-eular beam with variable stiffness undergoing 

large deflections and nonlinear boundary conditions.They have derived the governing 

equations in both deformed, and undeformed configuration and error of the two 

approaches are studied.Gams et al.[4] have presented the vibration analysis of highly 

flexible elastic planar beams using finite element analysis. They have developed the 

equation of motion from the Hamilton principle including only strain variable, and 

Galerkin type finite element discretization is applied.  

Chung and Yoo [5]  have discussed the vibration based analysis of a cantilever beam using 

the finite element formulation. They have applied the stretched  deformation instead of the 

conventional axial deformation based upon the dynamic modelling and obtained the three 

differential  equation using the Hamilton’s principle.Cai et al. [6] have applied the 

Hamilton theory and Finite element method for the  vibration based analysis of a flexible 

hub beam system carrying a mass at the tip of free end..Chang and Liu [7] have employed 

the finite element analysis with consideration of effect of longitudinal deflection and 

inertia for  analysis of  vibration characteristics  of  non-linear beam subjected to moving 

load.Coupled equation of longitudinal and transverse deflection calculated based on the 

Bernoulli-Euler hypothesis. Galerkin method with the finite element method is used to 

calculate the statical dynamic response of beam. They have used implicit direct integration 

method for calculating the non-linear system differential equation.Li et al. [8] have 

developed a finite element formulation with generalized degree of freedom for the 
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dynamic analysis of plates and beam with varying cross-section in a continuous or 

discontinuous manner. They have simplified the derivations of finite element or finite strip 

formulation applying the second order polynomial. The local displacement and global 

displacement field of an element are modeled using interpolating polynomials and 

quadratic B-spline respectively.Fedeliński [9] has reported the analysis of cracked 

structure using boundary element method. However, the crack growth of structure with 

variable and constant velocity, which is depends upon the fracture condition of model. 

Orhan [10] has developed the free and forced vibration based analysis method to finding 

the crack position and crack depth in the cracked beam. Natural frequencies are obtained 

from the free vibration analysis.Harmonic response has been obtained on the force 

appliance point.The changes in the natural frequency and harmonic responses 

corresponding to changes in crack depth and location. Ghoneam [11] has  reported  the 

numerical  and experimental  methodologies for the  analysis of dynamic behavior of the 

cracked laminated composite beam.They have considered crack location, crack depth, 

various number  laminates and boundary conditions as main variable parameters.  

Lin [12] has reported the vibration based analysis of multiple span beam carrying a  

different  concentrated  element using the numerical assembly method. He has derived the 

coefficient matrices for the pinned support, intermediate concentrated elements, applied 

force, right-end and left-end support of a beam. Lin and Wu [13] have discussed an Eigen 

analysis problem regarding planar closed frame structure which is dynamically analyzed 

by applying the hybrid numerical method.This is useful for numerical execution of a 

transfer matrix solution to the analytical equation of motion. Eigen value can be calculated 

by the continuation of the non-trivial solution and considered for the correlation between 

the first section and the last section of the closed structure. Fotouhi [14] has studied the 

vibration analysis of uniform cantilever beam with large deflection using the Finite 

Element approach. He has set the three objectives for this investigation. The first objective 

was to detail the behavior of the problem as it converts the linear to a nonlinear problem 

and the Second objective was to implement the finite element code for the particular 

problem. The third objective was to investigate the stability of particular evenness position 

with the help of a nonlinear dynamic analysis.They have evaluated the stresses, strains, 

forces and time varying displacements in the flexible beam due to transient, harmonic and 

static load. Banerjee [15] has presented the proposed the dynamic stiffness method, for 

vibration based analysis of beam moving mass system and combined the stiffness dynamic 

matrix and spring mass element of the beam, which is used to prepare the eigen value 
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problem for free vibration analysis. He has determined the vibration response (i.e.natural 

frequencies and mode shape) of a  cantilever beam attached with spring-mass at the tip of 

free end using the wittrick-Williams algorithm for.Xiang et al.[16] have proposed the 

combination of wavelet based element and genetic algorithm(GA) method to identified the 

crack in the shaft. The cracked shaft is modeled using the wavelet based element to 

acquire a definite frequencies. They have used the three definite measured frequencies to 

identify the crack location and crack depth with the help of a genetic algorithm. For the 

inverse problem analysis, GA is used to rectify the error in  frequencies which  is obtained 

by the numerical and experimental analysis. El-saeidy [17] has employed the finite 

element formulation for vibration based analysis of a spinning shaft with or without non-

linear boundary condition subjected to a moving mass load. The equation of motion is 

derived by utilizing the Lagrange's equations, which is sequentially decoupled using 

modal analysis articulate in the normal co-ordinate representation.  

Fu et al. [18] have investigated the non-linear dynamic stability of a spinning cracked 

shaft carrying a  disk in mid span. The standard unstable region is established by Floquet 

theory and Runge-Kutta method.They found that by increasing the thickness of the disc, 

the critical speed of shaft and area of an unsteady region are slightly decreased. Sekhar 

and Prasad [19] have studied the vibration behavior of the rotor-bearing system with slant 

crack using the finite element analysis. They have developed the stiffness matrix of a slant 

cracked element. It is successfully utilized in the Finite Element Method analysis of the 

rotor bearing system. Jun [20] has reported the vibration based analysis of rotor with 

transverse crack subjected to bending moment at crack location. Complex transfer matrix 

is used to expresses the equation of motion. The additional slope is considered as an 

excitation source.  The dynamic and gravity–induced static bending moment are 

systematically articulated as the function of the additional slope at the crack. Han and Chu 

[21] have employed the Bolotin’s and Harmonic balance method to investigate the steady-

state response and instability of a rotating shaft including an elliptical front crack. In this 

article the breathing effect on the crack shaft studied. They have developed the local 

flexibility matrix on the crack of the shaft and the equation of motion of cracked shaft 

system formulated using the assumed mode method.Rajab and Al-Sabeeh [22] have 

investigated the vibration behavior of the crack Timoshenko shaft. They have developed 

the analytical expressions by crack  modelling as shear load  and bending moment 

agreements of incremental strain energy using J-integral concept from fracture mechanics. 

They have computed  the  vibration response of  the shaft having transverse crack  using 
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characteristics equation of the  cracked shaft. Tsai and wang [23] have proposed a novel 

methodology to detect the position and size of the stationary cracked shaft. They have 

employed the transfer matrix method which is solved based on the Timoshenko beam 

theory to determine the dynamic response of the shaft and predicted the crack from the 

difference of the fundamental modes between the uncracked and cracked shaft. 

Additionally, the size of crack is recognisesd from the deviations of the crossponding  

natural frequency. Singh and Tiwari [24] have discussed the transverse frequency 

response function for investigating a multi-cracked shaft system.They have developed 

two-stage identification method which recognizes a number of cracks, sizes of crack and 

their location in the shaft. The finite element methods based on the Timoshenko beam 

theory are utilized to analyze the transverse forced vibrations of a non-rotating cracked 

shaft in two orthogonal planes.  

Papadopoulos and Dimarogonas [25] have studied a coupling of longitudinal and bending 

vibration of a rotating shaft carrying a transverse surface crack. Nerantzaki and 

katsikadelis [26] have discussed the nonlinear vibration based analysis of round plates 

with changeable thickness with large deflection using boundary element technique.This 

technique is based upon the theory of analog equation which changes the principal 

coupled non-linear equation with flexible constant. Hashemi et al. [27] have presented a  

vibration based dynamic analysis of spinning thick plate using the  FEM formulation and 

also used the Mindlin plate theory and second order strain displacement combined for 

modeling the plate.They have derived the non-linear governing equation of motion by the 

Kane dynamic method which includes Coriolis effect and coupling between in plane and 

out of plane deformation.  

Si et al. [28] have suggested the Rayleigh-Ritz technique for analysis of dynamic behavior 

of baffled rectangular cracked plate subjected to an infinite water region. Displacement 

trail function is expressed by adding mass density which is found by using the Green 

function approach. Hsu [29] has proposed the differential quadrature method to developed 

the equation of motion for a Bernoulli's Euler beam with a single transverse crack under 

condition of axial loading. Jun et al.[30] have reported the dynamic analysis of rotor with 

breathing crack. The equation of motion is developed for breathing cracked rotor based 

upon the fracture mechanics. The circumstances for crack opening and  closing are derived 

with the help of switching crack model. They have estimated the cross-coupled stiffness’s 

and direct stiffness using the concept of fracture mechanics by considering the partial 

opening and closing behavior of a breathing crack. Darpe et al.[31] have presented an 
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analysis of the  Jeffcott rotor carrying two transverse cracks. Based on the concepts of 

fracture mechanics stiffness of the rotor is determined. They have studied the influence of 

the interface of the two transverse cracks on the and on the unbalance response and 

breathing behavior of the rotor.Takahasi [32] has applied the transfer matrix approach for 

the vibration and instability  analysis of a  cracked non-uniform Timosinko shaft subjected  

tangential force which is concentrated over the center line with an axial force. They have 

determined the natural frequency, critical flutter load considers the effect of varying cross-

section, crack depth, crack position and stiffness of the cantilever cracked beam. 

Buśkiewicz [33] has presented the dynamic analysis of the beam with moving boundary 

conditions using the Finite Difference Method. Also, they have studied the transfer of 

energy between the vibrating beam and moving support under assumption zero slopes of 

the elastic beam line at the moving support. Hamilton’s principle are used to express the 

equation of motion to depict the interaction between elements the system. Nahvi and 

Jabbari [34] have developed a method to identify the crack position in the beams based on 

experimental modal analysis results.The finite element model of the beam was updated 

using the obtained result of experimental analysis.They have formulated the stiffness 

matrix of a cracked beam element consideration of bending and shearing forces.  

Hwang and Kim [35] have proposed the frequency response method to detect the locations 

and intensity of crack.This method detects the position and severities of crack by reducing 

the difference between the test and analytical FRFs. Binici [36] has proposed the novel 

method for determining the Eigen frequency and mode shapes of multiple cracked beams, 

which subjected to axial force.Çam et al.[37] have reported the vibration based analysis of 

the cracked beam structure. They have determined the position and depth of cracks with 

the help of analyzing the vibration signal.Also, they have used the ANSYS software to 

simulate the problem. Jun and Gadala [38] have examined the dynamic characteristics of 

the rotor carrying breathing crack. The additional slop is used to consider the breathing 

crack and equation of motion as one of the input to create the bending moment at the crack 

position. They have evaluated the additional slope by integration on the crack position 

based on the concept of fracture mechanics and transfer matrix method is employed to 

obtain the response of the crack rotor.  

Prokić and Lukić [39] have proposed the Benscoter’s theory for analyzing the dynamic 

response of thin-walled beam of the closed cross-section. They have derived the 

differential equation of motion considering the virtual work due to variation in 

displacement. Saavedra and Cuitino [40] have established an innovative element stiffness 
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matrix  on the crack element using the theory of linear fracture mechanics for the analysis 

of the cracked multi-beam system. The function of  Strain energy density is employed to 

determine the flexibility that the crack generates in its area.They have used the  Hilbert,-

Hughes -Taylors (HHT)integration technique for deriving the equation of motion. Chen 

and Chen  [41] have investigated the instability of cracked rotor subjected to an axial 

compressive force the and also, considered the influence of the crack on the whirling 

speeds of the shaft. They have employed  Finite element method (FEM) to achieve the 

numerical results.Qian et al. [42] have suggested the finite element formulation for  

analysis the dynamic behavior of the cracked beam. They have used stress intensity factor 

to developed the element stiffness matrix of a  cracked beam.  

Sinou et al.[43] have discussed the effect of transverse breathing crack on the nonlineaner 

behavior of rotating shaft using the alternate frequency /time domain technique. They have 

determined the non-linear behavior of cracked rotor by modelling the crack with truncated 

Fourier series. Song et al.[44] have applied the scaled boundary finite element method to 

determine the transient response of finite biomaterial plates with interface crack.They have 

determined the complex dynamic stress intensity factor from the crack opening  

displacements of the singular stress term. Arruda and Castro[45] have proposed a hybrid–

mixed stress finite element model for the linear dynamic analysis of structure. HMS model 

has considered two independent approximations for the stress and the displacement in the 

region of each element. Time integration techniques are used to perform the linear 

dynamic analysis.Eshmatow et al. [46] have presented the effect of properties of structure 

material (i.e. viscoelastic and in homogenous) on the stability of the plate.They have 

determined the results by applying the bubnow-galerkin procedure combined with a 

numerical method based on the quadrature formulas.  

Cheng and Hatam [47] have presented the vibration analysis of the point coupled structure 

using the finite element method. Also, they have studied the effect of biased compliance 

measurement on the accuracy of the prediction. Patil and Maiti [48] have suggested a 

technique for fault recognition in a slender Euler-Bernoulli beam using frequency 

measurement and the transfer matrix method. They have considered cracks as rotating 

springs in the analytical method for identification of cracks.Ebersbach and Peng [49] have 

proposed an enhance technique for the condition monitoring of fixed plant machinery, 

using proven industry method. They have observed that developed system can be used to 

detect failure with high precision using the dynamic response of the system.Finite element 

methods and wavelets transform method are used to find the size and severity of 
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cracks.Cerri et al. [50] have presented theoretical analysis for the vibration based analysis 

of a circular arc in both faulty and non-faulty models to design a damage detection 

method. They have compered the obtained results of  theoretical analysis with the  results 

of experimental analysis for   validation. They have used the mode shapes and natural 

frequencies to develop the damage detection model with the assumption, the arch act as a 

torsion spring on the cracked section. Humar et al. [51] have presented a survey on some 

of the common vibration base crack detection techniques and discovered the drawbacks in 

them. The presence of cracks in the structure has badly affected the modal response, 

stiffness, and damping.They have found that the vibration-based damage detection 

techniques, fail to perform when applied to real structures due to the inherent 

complications.  

He et al. [52] have presented a method to determine the local flexibility matrix and stress 

intensity factor of cracked beam to formulate a technique for crack dection. Zou et al. [53] 

have reported a developed method of the local flexibility of a cracked rotor system. They 

have examined  the vibration characteristics of the rotor with transverse crack to design for 

forward application as a crack diagnostic model. Patel and Drape [54]  have dicussed  the  

analysis of nonlinear dynamic behaviour of the shaft containing breathing crack. They 

have proposed the response–dependent breathing crack model and  switching crack model 

to investigated the  nonlinear dynamic  analysis of cracked rotor. Bachschmid et al. [55] 

have  invstigated accuratly the breathing crack mechanism  in rotating shaft  with the help 

of  the 3D non-linear models. Also  invatigated  the effect of crack on the  cross section of 

the  rotor due to mutual  action of the  torsion and bending.They have developed the 

model, which consider the  linear stress and strain allocations for established the breathing 

mechanism.  

Sawicki et al. [56] have presented the  analysis of  dynamic behavior of  rotor of machines 

with transverse breathing crack that is open and closed due to self-weight. They have 

applied auxiliary magnetic bearing (AMB) for detection of crack in the rotor. Xiao-feng et 

al. [57] have presented the nonlinear vibration analysis  of the cracked rotor with or 

without whirling.Authors have found distinct differences in bifurcation, orbit and 

amplitude while carrying on this comparision.Zhu [58] has analyzed  theoretically the 

vibration based analysis of a cracked rotor with an active magnatic bearing. He has 

discussed the  influence of crack on the stability of the active control system. 

Bovsunovskii [59] has analyzed the influence of crack depth and location on the vibration 

behavior of the cantilever beam by considering the changes in the cross-section. Rayleigh 
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method is used to obtained  the frequency  of the first mode of cantilever beam with 

breathing crack(i.e. open and close crack) due to vibration of longitudinal and bending 

loading.Müller et al.[60] have discussed the vibartion based nonlinear dynamic analysis of 

the rotating cracked shaft.  Theory of lyapunov exponents is developed for  the nonlinear  

dynamical systems, chaotic motions and strange attractors in the case of a faulty 

rotor.They have used Model-based technique to crack dection in shaft. Zhou et al. [61] 

have investigated the vibration based nonlinear  dynamic behaviour of the cracked rotor 

by numerical  and experimental analysis. The eccentricity, depth of crack and angle of 

crack are taken as an influence parameters for the analysis of cracked rotor.  

Ishida et al.[62] have  proposed the method to identify the crack in the rotor based on the 

nonlinear vibration diagnosis by means of harmonic excitation force. They have employed 

piecewise linear function for modeling the  open and close crack mechanism.Qin et al. 

[63] have  proposed a  Piecewise linear function employed  to model the cracked rotor for 

vibration based nonlinear  dynamic analysis of a cracked rotor. They have developed the 

differential equations of motion for the non-smooth system.Sinha [64] has investigated the 

nonlinear dynamic behavior of the mechanical system  for detecting the presence of higher 

harmonics spectra in a signals obtained from the system applying  higher order spectra 

tools. He has found the misaligned axis of rotation of the shaft and crack exhibits a 

nonlinear behavior because of  the existence of greater harmonics spectra in the indicator. 

According to  author, the higher order spectra tool  in indicator can be actually utilized for 

monitoring condition of rotatory mechanical arrangements.  

Babu et al. [65] have discussed the transient analysis of a cracked rotor system with 

transverse breathing crack for the flexural vibrations using Hilbert hung transform  

method. Guo and Peng [66] have suggested the Hilbert hung transform (HHT) method for 

analysis  the  non-linear response of the cracked rotor. They have applied the FEM and 

dimarogonas methods to develop the model of rotor with a growth crack. Han et al. [67] 

have discussed the dynamic behaviour of a geared rotor- bearing system carrying a  

breathing crack. They have developed the slant crack  geared-rotor model using the FEM 

and also used the stress intensity factor based on fracture mechanics  for calculating  the  

flexibility matrix for the slant crack. Khanlo et al. [68] have investigated the effect of 

lateral torsional coupling on the dynamic characteristics of the a spinning shaft-disk 

system. They have used Rayleigh beam theory to develop the equation of motion. Guo et 

al. [69] have reported the analysis of dynamic behaviour of the Jeffcot rotor carrying 

transverse  breathing crack.They have employed the Floquet theory for evaluating the 
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stability of the rotor system considering the spinning speed and crack depth. Auciello and 

Nole [70] have presented the vibration analysis of the cantilever beams containing a mass 

at the free end. In this study authors have assumed two different  calculation methods. 

First is an exact method which has solved the problem using the Bessel function, and  

another one is Rayleigh-Ritz method using orthogonal polynomials as test functions. 

Caddemi et al. [71] have investigated the non-linear dynamic behavior of the beam with 

multiple concentrated switching cracks (i.e. cracks are either fully open or fully closed). 

They have developed crack model employing Dirac’c deltas which permit the closed-form 

estimation of the mode shape of the beam for general crack configuration. Presas et al. 

[72] have analyzed the effect of the rotation on the vibration response (i.e.natural 

frequencies and amplitude)  of the imeresed-confined disc in the fluid filled container by 

analytically, experimentally and numerically.Thin plate theory are used for modelling the 

disc, and   Laplace equation are used for the fluid flow velocities on the lower and upper 

parts of the disc.Computation fluid dynamic (CFD) simulation has been done for  the fluid 

flow inside the container in order to evaluate the average speed of water on the lower and 

upper area of the disc for changed velocities. 

2.2.2 Finite Element Method used for Identification of Crack 

Darpe et al. [73] have proposed the transient anlaysis of the dynamics of bowed rotor 

carrying a transverse crack. They  have analysed the  transient response of the transversed 

cracked rotor considered  with and without gravity. Also investigated the  effect of bow on 

the open and closed crack mechanism of the rotor for the different  intensity value of bow. 

Georgantzinos and Anifantis [74] have proposed a nonlinear finite element method for  

simulation of quasi-static crack breathing mechanism in rotating shaft. This process can 

predict successfully  the contact between the crack surfaces by means of the  anagle of 

crack rotation. Bachschmid and Tanzi [75] have presented the analysis of circular cross 

section cracked  beam with  different  crack depths  subjected to shear, axial and torsion 

loads. Sekhar [76] has investigated the dynamic behavior of the rotor carrying double 

transverse crack using developed finite element modeling of a rotor-bearing system. He 

has determined the changes in stability and  eigen frequencies with  parameters of crack 

for shaft parameters such as slenderness ratio.  

Chasalevris and Papadopoulos [77] have presented the vibration based analysis of a beam 

with doubled transverse crack. They have considered the crack location, crack depth, and 

relative crack angle as a variable parameter for this analysis. The compliance matrix  is 
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calculated using the integration method of strain energy density function on the open crack 

area. Nandi [78] has proposed an  effective analysis of rotor instability. They have used 

the  standaraed method  of assumed solution for solving the above rotor stability analysis. 

Mohamed et al. [79] have  reported  the analysis of vibration characteristics of rotor with 

two different types of crack, a notch cut to changeable depths and actual crack growth 

from a pre-crack. The vibration based condition health monitoring technique is employed  

to evaluate and monitored the begning  of fatigue crack and propagation in a pre-cracked 

of  high carbon steel  rotor. Baviskar and Tungikar [80] have proposed the inverse 

technique for fault detection in moving parts. The model of beam is developed with the 

help of finite element method.  

Hossain et al. [81] have developed the experimental test rig for the vibration analysis  of a 

cantilever beam partially immersed in air and fluid medium and vibration response is 

measured with the help of  Polytech scanning vibrometer. Also, they have used the finite 

element analysis (FEA) method to forecast the dynamic response of the same beam.The 

alteration in the vibration response of the beam such as frequency, amplitude and resonant 

frequency are compared as functions of the rheological properties of viscous fluid. 

Georgantzinos and Anifantis [82] have examined the effect of the breathing crack  

mechanism on  the  rotating crack shaft  assuming the quasi-static approximation. The 

nonlinear contact–FEM method are used for the analysis of circular cross-sectional 

cracked cantilever beam  subjected to torsion load. Kerboua et al.[83] have reported the 

analysis of the vibration characteristic of the rectangular plates coupled with the 

fluid.They have developed the mathematical model of the plate using the Sander’s shell 

theory and finite element method. The fluid pressure is analyzed with the help of velocity 

potential and Bernoulli's equation. Darpe [84,85,86] has proposed innovative  technique to 

identify the crack size and location in the rotating shaft carrying the breathing crack 

subjected the transient torsional excitation. Author has  determined the  instability 

behavior of the  rotor with slant crack  using the  nonlinear breathing crack model.  He has 

considered the finite element model of the disc rotor containing the six degrees of freedom 

per node for the cracked area and formulated the stiffness matrix turns into account all the 

coupling phenomenon (i.e.Longitudinal-torsion,bending-torsion,bending-longitudinal) that 

occurs in the area of crack on the rotor. 

Silania et al. [87] have reported the vibration based analysis of dynamic behavior of 

rotating shaft system with breathing crack. Modified integration method is used to 

compute the stiffness matrix of cracked element. They have employed the Finite element 
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formulation for breathing crack modelling and frequency/time domain methods are used to 

calculate the vibration characteristic of the rotor with breathing crack. Kulesza [88] have 

suggested a technique for identification of crack in the rotor using a multisine technique. 

Authors have employed the finite element analysis for the flexible spinning shaft 

modelling. Sekhar and Prasad [89] have reported the flexural vibration based analysis of 

the rotor-bearing system with a  cracked shaft using Finite element method. They have 

developed the flexibility matrix and stiffness matrix of a crack element to be employed in 

the FEM investigation of the rotor bearing system. 

2.2.3 Wavelet Transform and Wavelet Finite Element  Method used for 

Identification of Crack  

Nguyen and Tran [90] have repoerted a novel technique for crack  identification of  the 

structure based on the wavelet transform of the vibration response obtained from a moving 

vehicle.Ren et al. [91] have investigated the vibration behaviour of the rotor with 

transverse crack using wavelate scalogram method based on the 3-D water fall 

spectrum.Yang et al.[92] have examined  the non-linear dynamic behaviour of model-

based rotor with transverse crack using wavelet based algorithm that is efficiently 

identifying the mechanical chaotic response.Xiang et al. [93] have proposed a novel  

methodology for recognizing  the crack size and crack location in the rotor using  finite 

element method  of B-spline wavelet on the interval (FEM BSWI). They have  developed 

the disc and slender shaft model using BSWI Rayleigh-Timosinko beam element and 

BSWI Rayleigh–Euler beam element respectively.  

Jibing  et al. [94] have suggested the harmonic wavelet transform (HWT)  and  Poincare 

map  technique  for identifying the  various types of motion of  the existing system due to 

change in  parameters of  nonlinear  vibration system. The HWT is useful to recognize the 

quasiperiod from chaos and Poincare map method is used to recognize the periodic motion 

of the system. Ma et al. [95] have proposed the new wavelet based beam element method  

for  analyzing  the complicated beam such as those with uneven cross section, local load. 

They have  developed Wavelet based beam element method  using  the daubechies scaling 

element functions.Li et al. [96] have proposed a wavelet Finite element method (FEM) to 

recognized  crack size and crack location in beam. They have discretized the beam into the 

a set of wavelet finite element to correctly determined the vibration response (i.e. natural 

frequency) of the beam with different crack size and crack location. Gómez et al. [97] 
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have reported  the wavelet  transform theory (WTT) for crack identification in jeffcot rotor 

of the  rotating machinery.  

2.2.4 Other Approaches are used for Identification of Crack 

Gasch [98] has investigated the dynamic behaviour of a cracked rotor carrying a disc in 

the mid span. He has  formulated  the non-linear equation of motion for the crack rotor 

model and only concentrated on the lateral vibration. Floquets method are used for the 

stability analysis of the rotor. Sino et al. [99] have presented the vibration based  anlaysis  

of dynamic behaviour of  rotating  composite shaft with internal damping. They have 

estimated the natural frequency and instability thresholds using the Homogenized finite 

element beam model with considering the internal damping and also compared the 

urbanized  simplified homogenized beam theory with the equivalent beam modulus theory 

(EMBT).Wang et al. [100] have presented the vibration analysis of the horizontal axis 

wind turbine using the  thin walled structure theory. Stress-displacement field, dynamic  

displacement and stress distribution of the wind tower blade rotor  are estimated from the 

forced response analysis.  

Szolc et al.[101] have suggested the stochastic method for crack identifying cracks in the 

rotating shaft of the machines.This method is based on the Monte Carlo simulation of the 

rotor torsional-lateral-longitudinal vibration with open crack at arbitrarily selected 

locations and depths on the shaft. Gomez-Mancilla et al. [102] have invetigated the effect 

of transverse crack in a orbital position of cracked rotating shaft. Shulzhenko and 

Ovcharova [103]   have presented the numerical analysis for the influence of the break of 

the elastic axis of rotor with transverse crack on its vibrational. Dong et al. [104] have 

proposed a wavelet finite element model and high precision model parameter 

identification method for identifying the crack location and crack depth in rotor carrying 

transverse crack. Simultaneously a new method Laplace wavelet based and empirical 

mode decomposition is developed to obtain the high precision model parameters, which is 

employed to progress the accuracy of crack recognition.Stoisser and Audebert [105] have 

discussed  theoretically the three-dimensional beam model with transverse crack and also 

presented the numerical and experimental approach for crack identification in rotating 

machinery of power plant.  

Mueller et al.[106] have studied the different methods for estimating the initiation of creep 

crack.They have compared the two Criteria Diagram (2CD), Nikbin-Smith-Webster 

(NSW) model and Time Dependent Failure Assessment Diagram (TDFAD)  method for 
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predicting  the creep crack commencement.Chen et al. [107] have reported a  novel 

approach for investigating the nonlinear behavior of a cracked rotor system including an 

effect of crack size.  Mass of the rotating shaft  carrying a disc in mid-span, the 

nonlinearity of the rotor and  additional displacement of the rotor due to the presence of 

transverse crack are considered for establishing the method.Also, they have investigated 

the dynamic stability of rotor system. Pennacchi and Vania [108] have discussed  the  

model based analysis  of the gasturbine  shaft (100MW) because of the propagation of 

transverse crack with coupling load. Shahgholi et al. [109] have discussed the   analysis of 

the dynamic behaviour of a nonlinear spinning  simply supported shaft.They have 

considered the rotary inertia and gyroscopic effect for the modelling of the system. 

Extended Hamilton principle is used to formulate the equation of motion of the system. 

Phan et al. [110] have discussed the vibration analysis of rectangular cross sectional 

cantilever beam partially submerged in a viscous fluid medium under harmonic base 

excitation.The interaction between fluid and structure  (i.e.cantilever beam) are developed 

using a complex hydrodynamic function.  

Curadelli et al.[111] have presented the experimental and numerical investigation of the 

vibration behavior of spherical tanks under horizontal motion.The main aim is to find the 

natural frequencies of the modes which contribute to the dynamic behavior of this certain 

structure.Chouksey et. Al [112] have discussed the model analysis of rotor with 

consideration the effect of internal damping of rotor material and the fluid-film 

forces.They have formulated the equation of motion using the 2-noded finite Rayleigh 

beam elements. Liang et al.[113] have proposed a methodology to define the vibration 

mode shapes and frequencies of cantilever plates which are submerged in the fluid 

medium on the basis of empirical added mass formulation. Uscilowska and Kołodziej 

[114] have reported the  vibration based analysis of an offshore structure.The structure is 

modelled as a uniform Bernoulli- Euler cantilever beam fixed at the bottom end with an 

intense mass at the top. Arruda and Castro [115] have proposed an FE model of hybrid-

mixed stress for the vibration based analysis of the dynamic behavior of the structure 

assuming a geometrically and physically linear manner. They have used time integration 

technique to accomplish the linear dynamic analysis.  

Singh and Tiwari [116] have presented experimental analysis to validated the multi-crack 

detection and localization (MCDLA) algorithm for the multi-crack identification and 

localization of the simply supported shaft. The performance of the algorithm is totally 

based on the identification of slope discountinuity. Rubio et al.[117] have discussed the 
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static analysis of the vibration response of the shaft in bending with elliptical shape of 

crack at a different position of the shaft by using the polynomial expressions of the 

flexibility. Vaziri and Nayeb-Hashemi [118] have determined the effective third mode 

stress intensity factor for multi-cracked  circular shaft subjected to torsional  load using 

the asperity-interlocking mechanism.Gubran and Sinha [119] have investigated 

experimentally  the dynamic behaviour of the bladed disc due to instantaneous angular 

speed which is transmitted to the shaft as a  torsional vibration. Eftekharnejad  et al. [120]  

have employed the many techniques such as motor current signature analysis, acoustic 

emission and vibration analysis for the identification of existing crack in the pinion shaft 

of a gear box.  

Liong and Proppe [121] have developed the cohesive zone model (CZM) for calculating 

the the  stiffness losses in a rotor carrying transverse breathing crack.The breathing crack 

is modelled by a parabolic shape. Also they have analyzed the effect of breathing 

transverse crack mechanism on the rotor system which is performed because of self-

weight and inertia forces. Abuzeid and Dado [122] have presented the analysis of the shaft 

with the transverse  crack under pure bending considering the irregular surface at the crack 

position. Cheng et al. [123] have studied the  effect of  breathing crack and imbalance 

orientation angle on the dynamic behavior of the critical speed of the jeffcot rotor. 

Yadykin et al. [124] have presented the numerical study of cantilever plate with additional 

mass submerged in the fluid region. They have used the Airfoil Theory  for analysis  of  an 

incompressible fluid  flow forces. Fu and Price [125] have reported the vibration analysis 

of the cantilever plate which is partially or fully immersed inside the fluid. They have used 

the hydro-elastic theory for performing the interaction  analysis between the  vibrating the 

cantilever plate and fluid.  

2.2.5 Artificial Intelligence Technique used for  Identification of Crack 

In this current section introduces the various types of Artificial intelligence techniques 

(ANN) used in the field of identification of fault in present in faulty  structure (i.e. rotor, 

beam, plate) have been described. 

2.2.5.1  Fuzzy Logic  Technique 

Wada and oka [126] have presented a fuzzy logic technique with the triangular 

membership functions for the image processing the governor level of granular inside the 

hopper. Ganguli [127] has developed a fuzzy logic system for ground-based structural 
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health monitoring  system to detect the fault  in helicopter for measuring rotating and non-

rotating frequency in the vacuum. De Miguel and Blázquez [128] have proposed a fuzzy 

system based on prediction module for damage detection application. Chen [129] have 

presented Takagi-Sugeno (T-S) Fuzzy Models for the stability condition and controller 

design of the structural and mechanical system.They have designed the fuzzy logic 

controller by using the design procedure of the controller and parallel-distributed 

compensation. Boutros and Liang [130] have developed the fault identification technique 

using efficient fuzzy fusion method based on the Sugeno inference engine.They have 

validated the fuzzy-based method in two different approaches (i.e. Bearing condition 

valuation and milling tool conditioning monitoring of milling operation).  

Zhang et al. [131] have proposed mechanical fault diagnosis technology based on the 

fuzzy grey optimizing prediction method with multi-dimensional fault characteristics 

parameter model for the rotating parts of the machines.Kim et al. [132] have proposed a 

fault identification system for reinforced concrete structures using the fuzzy system. The 

environmental condition, numeric data of concrete and symptoms of crack are considered 

as an input parameter in the fuzzy inference system. Angelov et al. [133] have suggested 

two novel methodologies (i.e. eClass and FLEXFIS) for progress the performance of on 

line fuzzy classifier. The eClass methods have a multi-input and multi-output with 

multiple hyper planes to build the fuzzy rule. Chandrashekhar et al. [134] have studied the 

measurement uncertainty and geometric for damage identification.They have studied the 

variation in the fault indication because of the ambiguity in the geometric properties of the 

structure using Monte Carlo simulation technique, and these simulation results are used 

for developing the fuzzy inference system. 

Saravanan et al. [135] have reported a vibration signal based methodology for condition 

monitoring of remote moving parts in the machines. The decision tree and fuzzy classifier 

to form the rules automatically are used to design the suggested method.Wu and Law 

[136] have discussed wavelet function based fuzzy robust wavelet support vector classifier 

(FRWSVC) and established an adaptive gaussian particle swarm optimization algorithm to 

pursue the peak unidentified parameter for the FRWSVC. Experimental results are 

validated with the obtained results of  hybrid model. Parhi and Choudhury [137] have 

investigated  a transverse crack of beam using the fuzzy logic system and finite element 

method. They have used hybrid membership function (i.e. combination of the trapezoidal, 

triangular and gaussain) as an input parameter and trapezoidal membership functions as an 

output parameter in the  fuzzy controller system.Choi and Jung [138] have proposed the 
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Takagi-Sugeno fuzzy method  based on fuzzy speed controller for an analyzing permanent 

magnet synchronous motor. They have formulated  existence conditions in term of Linear 

Matrix inequalities (LMI) for designing the T-S Fuzzy speed controller. Hasanzadeh et al. 

[139] have proposed a non-phenomenological technique to resolve the inverse problems, 

particularly for the electromagnetic alternative current field measurement method to 

recognize the metal surface crack.They have shown that the combination of technique of 

adaption and fuzzy inference method for altered crack natures delivers adequate means as 

a previous observed information for the training system. Sugumaran and Ramachandran 

[140] have used the decision tree  for picking  the  bin ranges  which will  distinguish the  

faulty  circumstance of the bearing  system from a  definite train models and rules forms 

from the decision tree. The vibration signal  receives from the piezoelectric transducer for 

various kinds of  earing fault conditioning is used to form the fuzzy rules. Mohanta et al. 

[141] have established a model of fuzzy Markov for the captive power plant maintenance 

planning  taking into account the several parameters that develops the disaster repair cycle. 

Parhi [142] has described a mobile robot path planning control system based on fuzzy 

inference system.  

2.2.5.2  Artificial Neural Network Technique 

In curent segment altered types of Artificial Neural Network (ANN) based techniques 

used for crack detection are described. ANN is used as a capable technique for fault 

identification. This segment describes the different types of Neural Network technique 

used for the identification of crack. The ANN  has been used as an auspicious 

methodology  in the field of an inverse problem for crack dectection. Liu et al. [143] have 

proposed an inverse analysis to simulate scan ultrasonic nondestructive testing using the 

back propagation neural network (BPNN) and computational mechanics combining the 

finite element method with boundary integration equation.The trained neural networks are 

utilized for the classification and identification of the crack in the medium to evaluate the 

type, position, and length of the crack. 

Fang et al. [144] have presented structural fault diagnosis method by using  FRFs as an 

input data to train the BPNN.They have studied the effect of three various algorithms; 

FSD, TSD and DSD in neural network training. Mehrjoo et al. [145] have established an 

inverse algorithm for crack identification to evaluate the  severity and location of the 

damages in combined truss and  bridge structure using the BPNN approach. Mode shapes 

and natural frequencies are used as a input parameters.Wu et al. [146] have presented the 
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fault identification method for IC engine using the artificial neural network and discrete 

wavelet transform. Just-Agosto et al. [147] have proposed neural network method with a 

permutation of thermal and vibration damage identification signature to established a fault 

detection device.Authors have developed the method for the crack detection on the 

sandwich composite. 

Wu et al. [148] have discussed a fault dectction technique for gears of rotating machinery 

applying the neural network and wavelet transform technique. Gears sound emissions are 

used along with the continuous wavelet transform method and the assortment of the 

feature of energy spectrum to develop the fault identification tool based on neural network 

method. Ghate et al.[149] have proposed a multi-layer neural network technique for 

identification of damages  in induction motor. They have utilized numerical parameters as 

an input  to  trained the neural network controller. Fan et al. [150] have discussed a fault 

diagnosis and detection approach for air handling division. Their methods comprise two 

phases which are the related to fault detection stages. In first stage, they have used the 

neural network fault detection model for producing the sensors values, and it is compared 

to actual value to generate remaining values. The mentioned fault detection neural 

network controller has been trained using the historical data of the HAVC system. Wang 

et al. [151] have presented a novel fault identification method based on BPNN. The results 

obtained by them are compared by the three different methods, which contain the variation 

of the autoregressive coefficient with BPNN and the distance of autoregressive coefficient 

technique for several samples. They have obtained that the variation of autoregressive 

coefficients with the BPNN was greater then the autoregressive coefficient with BPNN 

and distance of autoregressive coefficient method. 

Saravanan et al. [152] have discussed a wavelet-based technique for fault diagnosis of 

gearbox using proximal support vector machine and ANN. The J48 algorithms are used to 

classified the statistical feature vectors from the Morlet wavelet coefficients.The main 

features are used as an input for the proximal support vector signature and 

ANN.Paviglianiti et al. [153] have developed an arrangement for identifying and isolating 

sensor faults in manipulators of an industrial robot. They have implemented a Radial basis 

function method  to improve the dynamics of the proposed arrangement. Schlechtingen 

and Santos [154] have studied a comparison of results between the two artificial neural 

network based methodologies and the regression-based model. For conditioning 

monitoring of bearing in a wind turbine used an auto-aggressive normal behavior model. 

Eski et al. [155] have reported the experimental analysis of the robot manipulator using 
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the artificial neural network for investigating the joints vibration.They have established  an 

experimental test rig  to accumulate the associated values which have six degrees of 

freedom.The obtained results indication that the suggested Radial Basis Neural Network is 

used to analyzed the acceleration of joints of manipulators because of a given trajectory. 

Thatoi and Jena [156] have discussed the analysis of dynamic response of a cracked shaft 

with the help of experimental analysis and ANN system.The obtained experimental 

analysis data are used as an input parameter to feed in BPNN system. Oberholster and 

Heyns [157] have proposed a method for online structure health monitoring of axial flow 

for blades using ANN system. Extracted vibration characteristic from the experimental 

test of the structure is used as an input parameter for train the ANN. Rakideh et al. [158] 

have developed and design the BPNN technique for condition monitoring of cracked 

beam.They have extracted the natural frequencies of the beam using the analytical method 

and fed these natural frequencies to BPNN model to forecast the size and location of the 

crack. According to them, the neural network is a powerful way to determine the crack 

size and depth. Also, the capability of prediction has increased with increasing the 

numbers of the natural frequencies.  

Kao and Hung [159] have  presented structural condition monitoring using a supervised 

learning type of Neural System Identification Networks (NSINs).They first identified the 

uncracked and cracked conditions of a structural system using NSINs then trained NSINs 

has been used to develop free vibration responses with the same condition of 

structures.Quteishat and Lim [160] have proposed a Fuzzy Min-Max (FMM) network 

structure, which is a trained Neural network controller that construct hyper-boxes for 

prediction  the  problems. This method is applied to the removal of rule set from the Fuzzy 

Min-Max to permit the predicted results. The outputs of  FMM  are compared with results 

measured from a plant of power generation for fault recognition with the help of sensors. 

Hajnayeb et al. [161] have designed and developed  a feature selection based network 

system to diagnose the various types of faults in the gearbox. The authenticity of the 

proposed method is verified by experimental analysis. The results of feature selection 

method are compared with genetic algorithm results. They have found a close proximity to 

the results.Samanta [162] has presented a study on gear fault identification using  ANNs 

and Support Vector Machines (SMVs). The vibration parameters of a rotating machine 

with damage and non-damage gears are sort out for extraction of features. He has used 

extracted features from damage and non-damage gears as an inputs to both classifiers (i.e. 

ANNs and SVMs) for the state recognition of gear box. Haykin [163] has defined that the 
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neural network has associated processing units called neurons, which can adopt the 

knowledge from available information and to make it available for use.Samanta et al. 

[164] have presented a comparative study of the performance of the bearing fault 

recognition techniques using two classifiers namely ANNs and SVMs. The vibration 

analysis performed to get the vibration signal of a spinning machine with defective and 

non-defective bearing processes for extraction of features. The extracted features from 

original and processed signals are used as an inputs to the classifier for two senses ( i.e. 

normal and fault) detection. The nodes of in hidden layers of ANN and width of radial 

basis function (RBFN) along with selected input features are optimized using a genetic 

algorithm. 

2.2.5.3  Adaptive  Neuro-Fuzzy  Interference  System (ANFIS) 

In curent section different types of  Adaptive neuro fuzzy interference system (ANFIS) 

based techniques used for fault identification  are described. ANFIS is used as a capable 

technique for damage detaction.Wang et al. [165] have reported the assessment of the 

execution of the two different damage  identification method that is neuro-fuzzy and 

recurrent neural network systems using the two standard time series data sets. According 

to them, it is observed that the neural network fault identification system is less authentic 

for health condition monitoring of machine then the neuro-fuzzy predictive system.  

Kuo and Chang [166] have suggested damage dignosis method  based on fuzzy neural 

diagnosis approach for identification of damages in propeller shaft of marine propulsion. 

They have conducted experiment an analysis the fault behavior of the propeller shaft 

system. The results obtained from the experimentation have been used as training data and 

input/output rule generation of fuzzy neural network.Ye et al. [167] have described a 

novel online diagnosis process to evaluate the mechanical problem of the electrical 

mechanism using Adaptive Neuro-Fuzzy Inference System (ANFIS) and wavelet packet 

decomposition. Zio and Gola [168] have proposed a fault identification technique using 

fuzzy neuro approach. Authors have applied this technique for the determination of a great 

rate of exact categorisation and to find the explainable classified model. 

Yang et al. [169] have proposed ANFIS based  fault identification technique incorporated 

with the decision tree for the induction motor. They have used the hybrid of square 

algorithm and back propagation to train the membership function. The data set found   

from the current signals and vibration signals of the induction motors.Eslamaloueyan 

[170] has proposed hierarchical neural network method  for separating the damages  of the 
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Tennessee Eastman Process being accomplished  through the Eastman chemical company 

to offer an industrialized development for achieve monitoring and process planning 

control technique.They have used Fuzzy clustering algorithm to split the fault patterns 

space into a sub spaces. Salahshoor et al. [171] have proposed an advanced damage 

detection method based on the distributed arrangement of  three  ANFIS classifier for the 

steam turbine power plant (i.e. 440MW power generation capacity). A suitable choice of 

four calculated variable has been organized to provide  in each ANFIS classifier with the 

greatest significant diagnostic data. Sadeghian and Fatehi [172] have proposed a fault 

dignosis method for forecasting the faulty progression of cement rotary kiln in the White 

Saveh cement factory. The authors have employed the Linear neuro-fuzzy (LNF) based 

model trained by the LOLIMOT algorithm for identifying the several operation points in 

the kiln. 

Beena and Ganguli [173] have proposed an innovative algorithm based on the  fuzzy logic 

and artificial neural network approach for fault detection in structure. Authors have used 

the finite element analysis to calculate the natural frequencies due to fault in structure. The 

deviations are measured because of the damage are fuzzified and designed to a set of the 

fault using fuzzy cognitive map. The frequency deviation is used as an input parameter 

and damage locations of the beam are used as output parameters for the fuzzy cognitive 

map. Zhu et al. [174] have discussed a fault identification method based on the combine 

ANFIS, interval modelling method and wavelet real time filtering algorithm to process 

signals of structural behavior and excitation data. Here ANFIS was used to model 

structural response, wavelet transform algorithm to strain the arbitrary noise and interval 

modelling method to quantify damage index precisely.  

Chen et al. [175] have proposed ANFIS based on the prior knowledge for the wind turbine 

fault diagnosis.They have used the data of the 6 known WT pitch faults to train the model 

with prior information integrated.Bachi et al. [176] have reported  an ANFIS  technique 

for predicting the vibration  behaviour of beam due to the effect of large displacements 

and axial forces. They have used the finite element method and experimental analysis for 

calculating nonlinear vibration responses of the single and multiple- stepped beam. Al-

Shammari et al. [177] have investigated the efficient approach to obtain the wake wind 

speed at any location of the wing farm using ANFIS.They have developed the Simulink 

model using the MATLAB with the ANFIS network to the estimation of wake wind 

speed.Petkovic et al. [178] have investigated new methodology based on the ANFIS for 

achieving the contact position of the proposed tactile sensing structure.They have used the 
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experimentally obtained results as a testing and trained data for the ANFIS network. 

Zhang et al. [179] have been proposed a bearing fault identification technique based on the 

ANFIS and multi-scale entropy to evaluate the nonlinearity existing in bearing 

system.They have used the experimental data to arrange and train the ANFIS structure for 

fault diagnosis.  

Boyacioglu and Avci [180] have presented  an ANFIS  based mechanism for predicting 

the stock price index return of the Istanbul Stock Exchange (ISE). They have concluded 

that the economists can be apply ANFIS successfully for forecasting the return of stock 

price index. Zhang et al. [181] have investigated a forecasting the continuation of chaotic 

signals in time-based on the delay co-ordinate embedding technique by using the multi-

input and multi-output ANFIS controller.Gradient descent algorithms have been used to 

trained the MANFIS method. They have used back-propagation algorithm to generate the 

set of the membership functions with the embedded phase space vector. Hinojosa and 

Doménech-Asensi [182] have presented modeling method of microwave devices based on 

the space mapping (SM) methodology by using the multiple neuro-fuzzy inference system 

(MANFIS). Authors have used the micro-genetic algorithm to find the nonlinear multi-

dimensional mapping functions.  

Lei et al. [183] have proposed a novel methodology based on the static  analysis, improved 

distance evaluation technique, empirical mode decomposition (EMD) and MANFIS for 

intelligent fault identification of rotating machinery.Doménech-Asensi et al. [184] have 

developed an accurate analog circuit macro model sizing using a fuzzy logic system. 

According to them, the suggested technique forecast the performance characteristics (i.e. 

bandwidth and gain) of a differential telescopic trans-conductance amplifier (OTA) based 

on the MANFIS. Güneri et al. [185] have presented a novel approach based on ANFIS for 

overcoming the problem of supplier selection. They have minimized the problem using the 

ANFIS input selection technique. Dash and Parhi [186] have developed a novel tool to 

identifying the multi-crack in the dynamic structures using MANFIS. They have 

considered the difference of the first three average relative mode shapes, first three natural 

frequencies as input parameters and crack depths and crack locations are used as output 

parameters for the fuzzy and neural controllers of the MANFIS model.  

Ghaffari et al. [187] have proposed the new prediction models based on the multiple 

adaptive neuro-fuzzy systems (MANFIS) for an overtaking behavior of human.They have 

used kinematic features of driver vehicle units (DVUs) such as acceleration, velocity, and 

distance. Field data are used as inputs and outputs of MANFIS to be models. The result 
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obtained  are compared and validated with the actual traffic data sets and found that very 

closer. Saeed et al. [188] have proposed the fault identification method in Francis turbine 

using different Artificial intelligence technique, MANFIS and multiple ANNs.They have 

used the changes in vibration characteristics as inputs and position, the size of fault in the 

runner as output parameters to train the proposed artificial intelligence technique for 

evaluating the turbine operating conditions.  

Linh and Long [189] have proposed a hybrid approach using the MANFIS and Fuzzy 

clustering method  (FCM) to recover the compression ratio of the state of the art 

compression algorithm-DCRA. They have found the coefficient of nonlinear transform for 

sliding window using the MANFIS. Subhi Al-batah et al. [190] have proposed an 

intelligent computer system for the classification of cervical cancer. The proposed  

Intelligent system consists of two main stages. The first stage is based on the automatic 

features extraction (AEF) algorithm and in the second stage, MANFIS is used for the 

identification process. 

2.2.5.4  Rule Base Technique 

This section discusses the literatures related to rule base technique used for various 

problems. Takagi et el. [191] have reported the rule base technique to design and develop 

mobile robot to carry a rectangle from one place to another place. Authors have addressed 

a classified architecture in rules. These rules are used to achieve the angle among the box 

and robot. They used total 120 rules in their experiment. Gaeta et al. [192] have presented 

the rule base technique for finding the age groups. They have proposed that there is an age 

related decline in the effectiveness of incorporating several sources in a single auditory 

sense. De Souze et al. [193] have discussed the reusable structure for rule base technique 

pronounced using design patterns. The design patterns are used to  organize a catalog of 

design that can be  used by designers to recognize  and  generate novel rule base methods, 

thus  endorsing reuse in this systems. Dietrich et al. [194]  have reported a  typical 

structure for rule based agents and clarified the technique to  understand the  navigation  

mechanism  using semantic web languages.  

Tunstel et al. [195] have described the functional safety and health condition monitoring 

of complex matters of self- governing mobile robots. Mc Intosh et al.[196] have  proposed 

a simple theory of rule base method. Authors have implemented a method to provide 

systematic management-oriented modelling of vegetated landscapes. Pfeiffer et al. 

[197,198,199] have used a rule base visual language to control a small LEGO mobile 
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robot. Fei et al.[200]  have introduces the  rule base method for adapting an environmental 

condition. Gilmore et al. [201] have reported a rule base method to forecast the dynamic 

characteristics of operations of feeders and manipulator. Bonner et al. [202,203,204] have 

applied rules which are based on the free space cell, to determine the sustaining accident 

free paths in an organized environment for mobile robot navigation. 

2.3 Summary 

From the above-described literature survey, it is found that the dynamic response of the 

cracked rotor partially immersed in the viscous medium is determined by the strain energy 

release rate. Different Artificial intelligence technique may be employed for fault 

diagnosis of many engineering structure applications. It is observed from the literature 

survey that the artificial intelligence technique is not applied potentially for fault diagnosis 

of the rotating cracked rotor. So, in the present research, an organized effort has been 

made to develop  artificial intelligent based system for health condition monitoring of 

spinning rotor with multiple transeverse crack  partially submerged in the viscous medium 

using fuzzy system, neural network, MANFIS and rule base method. The parameters are 

necessary to design and train the artificial intelligence model using the data from 

theoretical, finite element and experimental analysis of the multiple cracked rotor. 
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Chapter 3 

Theoretical Analysis of DynamicResponse 

of Rotor with Multiple Transverse Crack 

Partially Submerged in Viscous Medium 

The presence of the crack in structures or machine component is a serious threat to the 

integrity of structures as well the safety of human life. Throughout the world, many 

researchers are working on structural dynamics and particularly on dynamic characteristics 

of structure with multiple transverse cracks. Numerous techniques are available in 

literature to detect the crack at the primary stage of final failure of structures. The 

vibration-based methods are effectively applied for crack identification in structures (i.e. 

rotor, beam and plate). It is observed that dynamic response, e.g. natural frequencies and 

amplitude of vibration changes due to presence of crack in structure. 

3.1 Introduction 

Vibration analysis of spinning rotor is playing a vital role in the area of vibration due to 

the frequent catastrophe of such rotors in engineering applications.The vibration analysis 

of the spinning rotor with transverse crack has been investigated successfully by several 

researchers with the help different methodologies. The vibration response is very sensitive 

to crack location and its intensity. The researchers and scientists have analyzed that effect 

of cracks on vibration responses of the cracked rotor.These changes in vibration responses 

can be efficiently utilized for developing the crack detection technique. When a rotor 

rotates in a viscous medium with crack on it, the dynamic analysis of such system 

becomes more complex and difficult. The investigations done so far on the vibration 

behavior  of rotor with transverse crack are presented in the literature survey in detail. Still 

there is no detailed research has been described the performance of the spinning rotor  

with transverse crack partially submerged in the viscous fluid medium.In this chapter a 

systematic theoretical approach is used to investigate the influence of multiple cracks on 
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vibration responses of rotor partially submerged in the viscous medium. This analysis has 

been divided into two parts first part contains the analysis for solid rotor without any crack 

rotating in viscous medium. Whereas second part deals with the rotor with crack rotating 

in viscous fluid. The dynamic response of multiple cracked rotor partially submerged in 

the viscous medium with attached extra mass (i.e. Disc) has been calculated by using 

influence coefficient method. The external fluid forces on the rotor are calculated by the 

Navier-Stokes equation. The strain energy release rate at the crack section of the rotor has 

been used for evaluating the local stiffness and is dependent on the crack depth. The 

Simpson’s 1/3 rule is used in the theoretical analysis. Finally, the proposed theoretical 

model  results have been compared with results of the experimental analysis for the 

authentication.  

The present investigation  for  rotating rotor partially submerged in viscous medium with 

multiple transverse crack can have extensive applications in industries such as, condition  

monitoring  of rotating shafts in various  machineries  with detection  of crack, design of  

high speed  rotors used in centrifuges, boring machines as well as rotors  used for 

extracting oil from sea bed etc. 

3.2 Theoretical Analysis of Spinning Rotor with 

Transverse Crack Submerged in Viscous Medium  

This segment introduces  the methodology employed to devlop the proposed  theoretical 

model for calculating the vibration response (i.e. natural frequency and amplitude) of non- 

cracked rotor  and  multiple transverse cracked rotor partially submerged in viscous 

medium for different relative crack positions and depths. From the analysis of theoretical 

results, it is found  that a visible change in the natural frequency and amplitude have been 

marked due to an existence of crack and viscosity of the viscous fluid. 

3.2.1 Dynamic Analysis of Rotating Non-cracked Cantilever Rotor with 

Additional Mass Partially Submerged in the Viscous Medium 

For theoretical analysis a cantilever rotor with a disc at its free end rotating in viscous 

medium is considered.  
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3.2.1.1  Equation of Fluid Velocites 

Figure 3.1 shows the whirling speed of the rotor. The length shaft ‘L’ and radius ‘R1’ 

rotates at the center indicated by ‘O’ with the rotating speed ‘ω’.Whirling radius and speed 

of the shaft indicated by ‘δ’ and ‘Ω’ signifies respectively. 

 

Figure 3.1: Representation of whirling position of cantilever rotor 

The polar coordinates of the Navier-Strokes equation can be expressed as 
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2 2 2 2 2

1 1 1 2u p u u u u v

t r r r r r r r


  

 
 
 

     
      

     
                                              (3.1a) 

2 2

2 2 2 2 2

1 1 1 2v p v v v v u

t r r r r r r r


   

 
 
 

     
      

     
                                                      (3.1b) 

In the above equation ‘u’ and ‘v’ denote the fluid flow velocity in radial and tangential  

direction respectively  and  ‘P’ is the  fluid pressure  with  the help of stream function 

 , ,r t   and  eliminating the pressure term, the above equation can be written as; 

 4 21
0

t
 



 
 
 


   


                                                                                                                               (3.2) 

Where 

2 2
2

2 2 2

1 1

r r r r 

  
   

  
 

Equation 2 can be divided into two parts i.e. 

2 2 1
0,  0

v t


 

  
      

  
                                                                                                         (3.3) 

The solution of equation (3.2) can be given by  
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1 2     

Where  1  and 2  are solution of equation (3.3) 

The radial and tangential component of flow velocity at point ‘A’ in Figure 3.1 are; 

1 sin sin( )Au R a t                                                                                                               (3.4a) 

1 cos cos( )A R a t                                                                                                              (3.4b) 

Where ‘A’ is the angle between O’A and OA 

   1sin / sina R t      and  cos 1a     for  1R    

For 1r R   the equation (3.4) can be rewritten as; 

       

1
sin Re

j t

r Ru t j e


    
 


       
 

                                                             (3.5a) 

   

1 1 1cos Re
j t

r Rv t R e R


    
 


       
 

                                                                        (3.5b) 

Where j = 1  and  Re . denotes a real part of  . . 

For a special  (i.e.  For synchronous whirl, which is used in practice) case    equation 

(3.5) is reduced to  

1

0r Ru    

1 1Re
j t

r Rv e R
 

 



  
 

                                                                                                      (3.6) 

When the rotor is immersed in an infinitely extending fluid region, the boundary condition 

for r   are; 

0r ru v                                                                                                                                                 (3.7)   

When the rotor  is immersed  in a finite  extending  fluid  region  the boundary conditions  

for r = 2R  (i.e. the container radius  is taken as R2 ) are taken as; 

2 2
0r R r Ru v                                                                                                                                               (3.8)   

Under these conditions, non-stationary components of   the solution 1  and 2  can be 

expressed as; 

     
1 1, ,

j t
r t F r e

 
 


                                                                                                                               (3.9a)   

     
2 2, ,

j t
r t F r e

 
 


                                                                                                                             (3.9b)   

From  equation (3.9a and 3.9b) and equation (3.3) we obtain; 

      
2

2 ( )

1 12 2

1 1 i ti tF r e F r e
r r r r

  



    
    

   
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           
2 2

1 1

12 2 2

1 1
0

i t i t i tF r F r
e e F r e

r r r r

        
   

 
 

   
 

2

1 1

12 2

1 1
0

d F r dF r
F r

dr r dr r

 
    

 
                                                                                     (3.10a)                                                         

and  

        
2

2

2 22 2

1 1 1 1i t i t
F r e F r e

v t r r r r v t

   



       
       

       
 

               
2

2 2 2

2 22 2

1 1
0

i t i t i t i tF r F r
e e F r e K F r e

r r r r

           
    

 
 

   
 

2

2 2 2

22 2

1 1
0

d F r dF r
K F r

dr r dr r

   
       

  
                                                                     (3.10b)  

Where 
j

k
v

 
  

 
  

Since equation (3.10a) is a Euler’s equation and equation.(3.10b) is  Bessel’s equation, the 

general  solution  of these  equations  are easily derived as; 

 
2

1
1

AR
F r Br

r


 
  

 
,                                                                                                                            (3.11a) 

      2 1F r R CI Kr DK Kr                                                                                              (3.11b) 

Where A, B, C and D are arbitrary constants, and  1I Kr  and  1K Kr modified Bessel 

functions of the 1
st
 and 2

nd
 kinds, respectively. Thus the non-stationary components of 

flow velocities induced by the whirling motion of a rotor are given as follows: 

         2

1 1 1 1

1 1 i t

r q q q qu R r B r R C I Kr D K Kr e
r r

 
 

 

 
       

 
 

     
2

1 1 1
1 1

i t

q q q q

R R R
i A B C I Kr D K Kr e

r r r

 



  

     
   

                                             (3.12a) 

         2

1 1 1 1
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r q q q qV R r B r R C I Kr D K Kr e
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 
 



 
     
 

 

   

   

2

1 1
1 1 0

1
1 1 0

q q q

q

R R
A B C I Kr KR I Kr

r r

R
D K Kr KR K Kr

r



    
        

    
  
    

  

                                                  (3.12b) 
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3.2.1.2   Analysis of Fluid Forces 

Substituting the flow velocities given by equation (3.12) into the equation (3.1), the non-

stationary component of pressure p  can be written as; 

2 2 ( )

1

i tp A
p R Br e

r

  


  
    

  
                                                                                              (3.13) 

Normal stress 
rr

  and tangential stress r  due to flow can be obtained as, 

2
rr

iu
p

r
 


  


  and 

1i i
r

u
r

r r r



 



    
   

   
                                                                        (3.14) 

Fluid forces acting on the surfaces (i.e. r R ) per unit length of the rotor in the x and y-

axis direction are obtained. 

      
2

2

1 1 1

0

cos sin i t

x rr rF R d m A B CI DK e




                                     (3.15a) 

      
2

2

1 1 1

0

sin cos i t

y rr rF R d im A B CI DK e




                                 (3.15b) 

Where 2

1 1kR m R    

Only the real part of equation (3.15) is meaning full, so Fx and Fy after simplification can 

be expressed as; 

        2 Re cos Im sinxF m H t H t                                                                           (3.16a) 

        2 Re sin Im cosyF m H t H t                                                                          (3.16b) 

Where    1 1H A B CI DK       and  Re H ,  Im H denotes the real and imaginary 

part of H . The coordinates of the center of the rotor (as shown in the Figure 3.1) is 

x cos t    and sin t    . 

   
2

2
Re Imx

d x dx
F m H m H

dt dt
                                                                                                      (3.17a) 

   
2

2
Re Imy

d y dx
F m H m H

dt dt
                                                                                                    (3.17b)    

In equation  mRe H  denotes the virtual or added mass to the inertia force of the rotor 

and  m Im H   symbolizes the viscous damping coefficient. In equation (3.17) 

 mRe H denotes the virtual or added mass of the fluid relating to the inertia force of the 

rotor and  m Im H  . 
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3.2.1.3   Dynamic Response of the Spinning Rotor System  

In order  to avoid  mathematical complicacy , the  spinning cantilever rotor attached disc 

at the tip  of free end has been considered  as a  lumped  system with mass of  the disc  as 

well as  equivalent  mass  of the  rotor  lumped at its free end. For  the analysis  of  

dynamic  response  of the above system, mass  of the disc is considered as 1Ms  which is  

attached  at the free end  of the rotor. 

The mass of rotor is considered as 2Ms . Equivalent mass at the free end of the above  

rotor system which will produce  same  natural frequency as that of the original system 

may be  considered  as,   

1 2eqMs Ms Ms   

Where 
2

2

eq

Ks

Ms



  

Ks and   are stiffness and natural frequency of the rotor (without disc) respectively. 

The equation of the motion of the equivalent lumped system rotating in fluid medium is 

given by; 

 2

2

cos
s s x

d x t
M K x F

t

 
 


                                                                                                    (3.18a) 

 2

2

sin
s s y

d y t
M K y F

t

 
 


                                                                                                    (3.18b) 

The fluid forces from equation (3.17) can be written as; 

   
2

2
Rex

d x dx
F m H m lm H

dt dt
                                                                                             (3.19a) 

   
2

2
Rey

d y dy
F m H m lm H

dt dt
                                                                                            (3.19b) 

Where;  

     

     

1 2 2

1 1 2 2

1 2

Re Re Re

Re

eq

eq

eq

M H M H M H

M H M lm H M lm H

M M M







  


  


  

          (3.20) 

Where 1M and 2M mass of the fluid displaced by the rotor and disc respectively. 

From equation (3.18) and (3.19) we have; 

   
2

2

2
Re coss s s

d x dx
M M H M lm H K x M t

dt dt
  

 
    

 
                                          (3.21a)    
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   
2

2

2
Re sins s s

d y dy
M M H M lm H K y M t

dt dt
  

 
    

 
                                         (3.21b) 

  Equation (3.21) in dimensionless from can be written as 

       
2

2
* * * * * *

2
1 Re cos

d d
M H M lm H t

d dt

 
    



 
    

 
                                      (3.22a) 

       
2

2
* * * * * *

2
1 Re sin

d d
M H M lm H t

d dt

 
    



 
    

 
                                      (3.22b) 

Where 
1

x

R
  ,

1

y

R
  , *

0r





 , *

1R


  , *

s

M
M

M
 ,

0r  or 0
s

s

K
r

M
   

The steady  state  solution  of the  above  equation can be  obtain  in dimensionless  form 

as; 

 * *cos                                                                                                                                  (3.23) 

Where *

1R


   and                                                                                                                           (3.24a) 

    

*

2
2 2

* *

A

K C



 



 

,                                                                                                     (3.24b) 

 

*
1

2
*

tan
c

K








 
 
 
 

,                                                                                                                     (3.24c) 

 

* *

*

( )

1 Re

M lm H
C

M H


 


,                                                                                                                       (3.24d) 

 *

1

1 Re
K

M H
 


,                                                                                                                       (3.24e) 

 
 

2
* *

*1 Re
A

M H

 



                                                                                                                            (3.24f) 

Where;  = Maximum dimensionless amplitude  

Figure 3.1 shows the whirling motion of the cantilever rotor with attached disc during 

rotating condition, in a magnified view. Theoretical analysis for the rotor system is carried 

out taking the data mentioned above into account using the expression (3.1 to 3.23) with 

the help of computer programming (i.e. MATLAB). The “Simpson’s 1/3 rule for 

integration algorithm” is used in numerical analysis. 
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The results obtained from the theoretical analysis for various aspects (i.e. Frequency ratio 

vs. non-dimensional amplitude ratio, Virtual mass effect, Gap ratio) are plotted in Figures 

3.2 to 3.6 for finite region and Figures 3.7 to 3.10 for an infinite region. The effects of 

rotating speed on the amplitude of vibration are presented in Figures 3.2 and 3.3 in non-

dimensional form. It is observed that as the viscosity of the external fluid increases, there 

is a shift in critical speed and decreases in amplitude of vibration. When to increase the 

length of the rotor, decrease the amplitude of vibration.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=1.0m, q=12, RD=0.055m,TD= 0.020m, 

MD = 1.0kg for finite region. 

0.9 0.93 0.96 0.99 1.02 1.05 1.08
0

25

50

75

100

125

150

175

200

Frequency Ratio

N
o
n
d
im

e
n
s
io

n
a
l A

m
p
lit

u
d
e
 R

a
tio

 

 

     2.9     0.143

  0.541    0.136

0.0633    0.127

            v(Stokes)     M*



Chapter 3                        Theoretical Analysis of DynamicResponse of Rotor with Multiple 

Transverse Crack Partially Submerged in Viscous Medium 

 

40 

 

Figure 3.4 shows the  effect of gap ration on the amplitude of  vibration. When to increase 

the radius of the container,decrease the amplitude of vibration.  

 

Figure 3.3: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD=0.055m, 

TD=0.020m, MD=1.0kg for finite region.  
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Figure 3.4: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, RD=0.055m, TD=0.020m, 

MD=1.0kg for finite region. 
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The effect of virtual mass and damping can be observed from Figures 3.5 and 3.6. From 

Figure 3.5 is noticed that with the increase in virtual mass effect   Rem H at a fixed 

damping. The critical speed of the rotor system decreases and the corresponding 

dimensionless amplitude of vibration also decrease. Due to damping effect for a fixed 

virtual mass. The dimensionless amplitude is affected in a more prominent way. Due to 

increase in damping effect amplitude of vibration for the corresponding system decreases, 

which can be observed from Figure 3.6. 

 

 

Figure 3.5: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m,L=0.8m,q=12,ν=0.541stokes & M*=0.136, 

MD1 = 1.0kg, MD2=0.75kg , MD3=0.50kg  for finite region.  
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Figures 3.7 and 3 .8 shows the non-dimensional amplitude of vibration with respect to 

frequency ratio in different viscous medium. It is observed that as the viscosity of the fluid 

increases the amplitude of vibration and resonant frequency decreases. A peculiar effect is 

observed from the comparison of Figures 3.7 and 3.8 for a particular viscous fluid when 

two different length of rotor are considered. It is found that the dimensionless amplitude is 

smaller in case larger rotor. The above phenomenon can be attributed for the higher value 

of virtual mass coefficient  and damping coefficient  for longer rotor system. The increase 

in virtual mass effect  at a fixed damping decreases the critical speed and also decrease the 

amplitude of vibration. 

 

 

Figure 3.6: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m,L=0.8m,q =12,ν=0.0633,0.541, 2.9 

stokes & M*=0.127, 0.136, 0.146,  RD = 0.055m,TD= 0.020m, MD = 1.0kg  

for finite region. 
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This effect can be visualized from Figure 3.9. From Figure 3.10, it is observed that the 

damping effect  at a fixed virtual mass is responsible for reducing the amplitude of 

vibration without shifting the critical speed to the noticeable extent. 

Figure 3.7: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m,L=1.0m,q=12, RD=0.055m,TD= 0.020m, 

MD = 1.0kg for infinite region. 
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Figure 3.8: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD = 0.055m,TD= 

0.020m, MD = 1.0kg,  for infinite region. 
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Table 3.1 shows the physical properties of  cantilever rotor. Table 3.2 represented the 

properties of  three  different  type of  viscous fluid.  

 

Figure 3.9: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, ν=0.541stokes & M*=0.136, 

MD1 = 1.0kg, MD2=0.75kg, MD3=0.50kg  for infinite region. 
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Figure 3.10: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD=0.055m, TD=0.020m, 

MD=1.0kg, for infinite region.   
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Table 3.1: Physical properties of cantilever rotor  

Sl. No. Parameters Values (unit) 

1 Material of cantilever rotor  Mild  steel 

2 Modulus of elasticity (E) 200GPa 

3 Length of rotor  (L) 0.8/1.0m 

4 Material Density of  rotor ƍ=7800kg/m
3
 

5 Radius of  rotor (R1) 0.01m 

6 Radius of disc  (RD) RD1 =0.04m; RD2 =0.05m; RD3 =0.055m 

7 Thickness of disc (TD) TD1=0.01m;TD2=0.015m;TD3=0.020m 

8 Mass of disc (MD) MD1=0.50kg; MD2=0.75kg; MD3=1.0kg 

9 Inside radius of vessel(R2) 0.13m 

10 Eccentricity (ɛ) 1.14x10
-5

cm 

11 Gap Ratio (i.e. container to rotor 

ratio) (q) 

q1,2,3,4=4,8,12,20 

12 Operating condition temperature 25
0
C 

13 Relative crack  depth of  rotor 

(β) 

β1,2,3,4=0.125,0.175,0.225,0.275 

14 Relative  Crack position of 

rotor(α) 

α1,2=0.313,0.563 

 

Table 3.2: Properties of three different type of viscous fluid  

Sl. No. Fluid Name Kinematic viscosity ν(Stokes) Ratio of density(M*) 

1 Lubricant oil 2T 2.9 0.158 

2 Palm oil 0.541 0.153 

3 Water (Sea) 0.0633 0.144 

 

3.2.2 Dynamic Analysis of Rotating Multiple Cracked Cantilever Rotor 

Partially Submerged in the Viscous Medium 

3.2.2.1 Determination of the Local Flexibility and Local Stiffness Matrix of a   

Cracked   Rotor under Axial and Bending Loading 

A multi cracked rotor of radius ' R1’ shown in Figure 3.11 is considered for the analysis. 

The release rate of strain energy can be calculated using the Equation (3.25). 

2 2 2
6 6 6

1 1 1

1
 =  +   +   m

E
Ii IIi IIIi

i i i

J K K K
  

      
              
                                                       (3.25) 
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21 1- 1
Where;   = 

E E

              1  is the Poisson's Ratio

              E is the Young's Modulus of Elasticity





  

The strain energy ui can be calculated using Equation
  
(3.26).  

t

i

 U
 = 

 P
iu




                                                                                                                                              (3.26) 

Local flexibility (Cij) due to crack per unit width can be written as, 

i

j

 u
 = 

 P
ijC




                                                                                                                                             (3.27) 

From Tada et al. [205] it can be written  

 4 0.5

I4 4 1 IK  = 4P  x/( R )  (  a3)  F (a3/h1)                                                                                       (3.28) 

 

X 

   +b 

(b) 
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Figure 3.11: (a) Geometry of a cantilever rotor with crack element (b) Cross section of crack 

element (c) Coupling force on the crack element. 
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 4 0.5

II6 6 1 IIK  = 2P  x/( R )  (  a3)  F (a3/h1)                                                                                      (3.29) 

 2 0.5

III2 2 1 IIIK  = P x/( R )  (  a3)  F (a3/h1)                                                                                       (3.30) 

 2 2 0.5 4 0.5

III6 6 1 1 IIIK  = 2P  (R - x ) /( R )  (  a3)  F (a3/h1)                                                                (3.31) 

where  

0.5 3

I

a3 a3
F  = (tanl / ) 0.752 + 2.02  + 0.37(1- sin ) /(cos )

h1 h1
   

   
   
   

                                          (3.32) 

2 3 0.5

II

a3 a3 a3 a3 a3
F  = 1.122+ 0.561  + 0.085  + 0.18 / 1-  

h1 h1 h1 h1 h1

        
        

         

                                 (3.33) 

0.5

III

a3
F  = (tan / )  

h1
 

 
 
 

                                                                                                                        (3.34) 

From the above equations the non-dimensional compliance can be written as 

h1

b2
21 22

22 III2

h1 0
-a3

2

ER C
C  =  = 4 y F (h1) dx dy

1- 1



                                                                                       (3.35) 

h1

b3 2
21 44

44 I2

h1 0
-a3

2

ER C
C  =  = 64 x y F (h1) dx dy

1- 1



                                                                                 (3.36) 

 

h1

b2 2
0.5

2 21 62
62 III2

h1 0
-a3

2

pER C
C  =  = 8 1- x y F (h1) dx dy

1- 1                                                                   (3.37) 

 1,2 4

h1

b3 2

1 66
66 2

h1 0
-a3

2

ER C
C  =  = 16 a  + ma  dx dy

1- 1



                                                                                (3.38) 

Where 1,2 4

2 2 2 2

II III
11

x y  a3
 a = x yF (h1),  a = (1- x )yF (h1) and x = , y = , =

R R 2 h1


  

 4

0.5
2 2

1

1 1 1

h1 b a3 h1
h1= , b = , a3= , a3= - a , h1= 2 R - x

R R R 2
 

The dimensionless compliance matrix can be written as; 

22 26

ij 62 66

44

C C 0

C = C C 0  

0 0 C

 
 
 
 
 

                                                                                                                     (3.39) 
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The local stiffness matrix can be obtained by taking the inversion of the compliance 

matrix, i.e. 

-1

22 26 22 26

62 66 62 66

44 44

K K 0 C C 0

K = K K 0  = C C 0

0 0 K 0 0 C

  
  
  
     

                                                                               (3.40) 

In the proposed theoretical analysis a lumped mass at  the free end  of the rotating 

cantilever rotor  partially  immersed  in the  infinite  fluid  region is considered. To make 

the analysis easier the system is treated as a lumped system. In the first step the equivalent 

lumped mass of the cracked rotor is calculated and then the disc mass is added to it to find 

out the total lumped mass.Equivalent lumped masses of a spining cracked rotor are given 

by 2

55 55K   and 2

44 44K   (in two directions as shown in Figure 3.11a)  

Where 55K , 44K  and 55 , 44  are the stiffness’s and fundamental natural frequencies in 

those direction respectively. 44-direction and 55-direction coincide with x and y-axis 

direction respectively. 44 and 55  can be derived from Chapter 3. 44K and 55K  can also be 

derived with the help of global stiffness matrix [Kg] and Chapter 3. 

The global stiffness matrix [Kg] can be written as [205,206]; 

     
55 54 51

1

45 44 41 1 2

15 14 11

g cr s

K K K

K K K K G C G C

K K K



 
          
  

                                                              (3.41) 

Where   1 1 1, ,1G diag L L ,                                                                                                           (3.42a)                     

              2 1 1, ,1G diag L L L L   ,                                                                                              (3.42b)                     

            
3 3

1

, ,
3 3

s

L L L
C diag

EI EI EA

 
  

 
and                                                                                      (3.42c)                     

           

55 54
51

1 1

45 44
41

0 1 1

11
15 14

1

1
1cr

C C
C

R R

C C
C C

F R R

C
C C

R

 
 
 
 
 
 
 
 
  

                                                                                            (3.42d)                     

Where 1
0 2

11

A E
F

V



, diag[.......] diagonal matrix  
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The ratios of the equivalent lumped mass to the total mass of the rotor in two main 

directions are given by the expressions; 

44
1 2

44 2

eq

s

K

M



                                                                                                                  (3.43a) 

55
2 2

55 2

eq

s

K

M



                                                                                                                                     (3.43b) 

Where 2sM  is the mass of the rotor 

If a disc with mass 1sM  is attached at the tip of the rotor, a total lumped mass of the rotor 

in 44 & 55- direction become. 

1 1 1 2s s eq sM M M M   and 2 1 2 2s s eq sM M M M                                                                  (3.44) 

The equation of motion of an equivalent single degree of freedom system of the whirling 

multiple cracked rotor in fluid is reduced to in the form of equation (3.43a) and (3.43b). 

 2

1 442

cos
s x

d x t
M M K x F

dt

 
                                                                                              (3.45a) 

 2

2 552

sin
s y

d y t
M M K y F

dt

 
                                                                                             (3.45b) 

The fluid forces from equation (3.17) can be written as  

   
2

1 12
Rex

d x dx
F M M H M M lm H

dt dt
                                                                                (3.46a) 

   
2

2 22
Rey

d y dy
F M M H M M lm H

dt dt
                                                                              (3.46b) 

     

     

     

     

1 1 1 1 2 2

2 1 1 2 2 2

1 1 1 1 2 2

2 1 1 2 2 2

1 1 1 2 2 1 2 2

Whe Re Re Re

            Re Re Re

           

          

          and 

re;  eq

eq

eq

eq

eq eq

M M H M H M H

M M H M H M H

M Mlm H M lm H M lm H

M Mlm H M lm H M lm H

M M M M M M M M









 

  


  


  


  
    

       (3.47) 

Where M1 and M2 mass of the fluid displaced by the disc and rotor respectively. Taking 

the eccentricity 1 (perpendicular to the crack, i.e. along 44- direction) and 2 (along the 

crack, i.e. along 55- direction). The analysis for amplitude is down. First 1  is taken and 

the contribution in x and y-axis direction are found out in the following procedure. 

From equation (3.45) and (3.46), we get; 
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   
2

2

1 1 1 44 1 12
Re coss s

d x dx
M M M M H M M lm H K X M M t

dt dt
                           (3.48a) 

   
2

2

2 2 2 55 2 22
Re sins s

d y dy
M M M M H M M lm H K Y M M t

dt dt
                           (3.48b) 

The equation (3.48) in dimensionless form can be written as; 

       
2

2
* * * * * *2

1 1 1 1 1 1 1

1 1

1 Re cos
d d

M H M lm H
d d

 
     

 

 
    

 
                              (3.49a) 

       
2

2
* * * * * *2

2 2 2 2 2 2 2

2 2

1 Re sin
d d

M H M lm H
d d

 
     

 

 
    

 
                          (3.49b) 

The steady state solution of the above equation can be obtained in dimensionless form as 

 * *

1 1 1 1cos       and  * *

2 2 2 2sin                                                                      (3.50) 

Where 
1

x

R
  ,

1

y

R
  ,

1

z

R
  , *

1

01





 , *

2

02





 , * 1

1

1R


  , * 2

2

1R


  , * 1

1

1 s

M M
M

M M
 , 

* 2
2

2 s

M M
M

M M
 ,

1 01t  ,
2 02t  , *

1

n
n

R


  , 44

01

1 s

K

M M
  , 55

02

2 s

K

M M
  , 

      

 

   

 
 

*
* 1

22 *2 2
* *

2
* ** *

1

* * *

, tan

1
, ,

1 Re 1 Re 1 Re

n

n n n

n

n n
n n n n

nn n

n n n

n n n

A C

K
K C

M lm H
C K A

M H M H M H





 

 




 
  
 

   




   
   

        (3.51) 

For n=1 and 2 

When the 44-direction coincide with x- axis the amplitude contribution of 
1  in x and y-

axis direction are;   

 *

44 1 ncos      in x-axis direction;                                                                        (3.52a) 

 * *

44 2 2 2 nsin                                                                                                    (3.52b) 

When 
*

2 1 0    in Y-axis direction; 

Similarly the expression for   and   due to the eccentricity. 2 (Eccentricity in the 

direction of the crack 55-direction) can be found out adopting above procedure. When the 

55-direction coincide with y-axis.The amplitude contribution of 1  in x and y- axis 

direction are 55  and 55  respectively.   
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 The total dimensionless deflection in x and y-axis direction. When the 44-direction 

(perpendicular to crack) and 55-direction (along the crack) coincide with x and y- axis 

respectively are; 

* *

1 44 44 55n        along the x-axis direction                                                         (3.53a) 

* *

2 55 44 55n        along the y-axis direction                                                         (3.53b)
 

 * *

1 44   and  * *

2 55   is the dimensionless amplitude of the rotor.  

When 44-direction and 55-direction
 
coincide with x and y-axis respectively. 

Figure 3.11(a) describes the full detail of the cantilever rotor with crack element taken for 

theoretical analysis. Figure 3.11(b) deals with the cross-sectional view of the cracked 

shaft. This figure also shows the depth of crack, width of the crack. Figure 3.11(c) shows 

the coupling forces on the crack element. The theoretical analysis is carried out for finding 

out for finding out the effect of multiple crack depths and multiple crack positions on the 

natural frequency of the cracked rotor on both   transverse directions (i.e. 44-direction and 

55-direction).  

Figures 3.12 and 3.13 shows that the vibration response of multi cracked rotor in two 

transverse directions of crack (i.e.44-direction and 55-direction)
 
with the different viscous 

fluid medium. It is observed that as the density and viscosity of the fluid increases, the 

amplitude as well as whirling speed decreases of the rotor. Also, it is seen that the due to 

increasing the multiple crack depth on the multiple crack location, the amplitude and 

frequency of the rotor decrease under same viscous medium.  
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Figure 3.12: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m,L=0.8m,q=12,L1/L=0.313, L2/L=0.563, 

RD=0.055m,TD = 0.020m, MD = 1.0kg for 44-Direction. 
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Figure 3.13: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m,L=0.8m,q=12,L1/L=0.313, L2/L=0.563,  

RD =0.055m,TD = 0.020m, MD=1.0kg for 55-Direction. 
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It is observed that the amplitude of vibration fall down by increasing the viscosity of fluid. 

In addition, it is found that the depth of cracks increases the fundamental natural  

frequency From Figure 3.14 it is observed that the cracked  cantilever rotor at the 55- 

dierction (i.e. along the crack) ensure the less stiffness as compare to crack rotor at the 44-

direction (i.e. Perpendicular to the crack).The cracked rotor stiffness are lesser than the 

non-cracked rotor. Because of whirling speed, the damping coefficient of cracked rotor 

system is increased for which the amplitude of the cracked shaft is minimized and it is 

maximum for the non-cracked rotor in the same fluid medium. 

 

 

Figure 3.15 show the effect of gap ratio on the non-dimensional amplitude of the system 

on two main direction (i.e. 44- direction and 55-direction).It is observed that as the gap 

ratio increases (i.e. fluid container radius increases) the amplitude of vibration also 

increases.  

 

Figure 3.14: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, L1/L= 0.313, L2/L=0.563, 

RD = 0.055m, TD= 0.020m, MD = 1.0kg. 
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From Figure 3.16 it is observed that as the virtual mass effect increases the amplitude of 

vibration decreases  and the resonance frequency for the rotor is shifted towards left. From 

Figure 3.16 it is observed that as the virtual mass effect increases the amplitude of 

vibration decreases  and the resonance frequency for the rotor is shifted towards left.  

 

Figure 3.15: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, a1/D=0.125, a2/D=0.150, 

L1/L=0.313, L2/L=0.563, RD=0.055m,TD=0.020m, MD=1.0kg for 44-Direction. 
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For theoretical analysis is also carried out for finding out the effect of crack depth and 

crack position on the natural frequency of cracked rotor in two main directions (44-

direction and 55-direction). They are presented in Figures 3.17 and 3.18. 

Figure 3.16: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.125, a2/D=0.150, 

L1/L=0.313, L2/L=0.563, ν=0.541stokes & M*=0.136,MD1=1.0kg,MD2=0.75kg, 

MD3=0.50kg. 
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Figure 3.17: Relative Crack Position Vs Natural Frequency Mild Steel Rotor 

R1=0.01m, L=0.8m, Relative crack depths a1/D=0.225, a2/D=0.250, RD= 

0.055m,TD= 0.020m, MD = 1.0kg. 
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Figure 3.18: Relative Crack Depth Vs Natural Frequency, Mild Steel Rotor 

R1=0.01m, L=0.8m, Relative crack location L1/L= 0.313, L2/L= 0.563, RD = 

0.055m,TD= 0.020m, MD = 1.0kg. 

0.05 0.15 0.25 0.35 0.45 0.55 0.65
20

40

60

80

100

120

Frequency Ratio

N
a
tu

ra
l F

re
q
u
e
n
c
y

 

 

55-Direction

44-Direction



Chapter 3                        Theoretical Analysis of DynamicResponse of Rotor with Multiple 

Transverse Crack Partially Submerged in Viscous Medium 

 

57 

3.2.3 Dynamic Response of Rotating Fixed-Fixed Rotor with  Additional 

Mass at Mid Span Submerged in the Viscous Medium 

3.2.3.1  Analysis of  Rotating Non-cracked Fixed-Fixed Rotor 

 

 

A fixed-fixed  uniform  spinning  rotor immersed  in a  finite  fluid region  is  considered  

in  this  analysis.For equation of motion and analysis of fluid forces the section 3.2.1.1 and 

3.2.1.2 can be referred.  

The equation of motion for the rotor having uniformly distributed mass and stiffness are; 

 2 4

2 4

cos
s x

d x t d x
M EI F

dt dz

 
                                                                                              (3.54a) 

 2 4

2 4

sin
s y

d x t d y
M EI F

dt dz

 
                                                                                               (3.54b) 

Where; sM = Mass of the rotor per unit length 

M= Fluid mass displaced by the rotor per unit length. 

EI= Bending stiffness of the rotor. 

From equation (3.54) and equation (3.17) we obtain; 

    
2 4

2

2 4
Re coss s

d x dx d x
m m H m lm H EI m t

dt dt dz
                                                (3.55a) 

X 

Y 

Z 

o 

Figure 3.19: Full view of  fixed-fixed  rotor. 
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    
2 4

2

2 4
Re sins s

d y dy d y
m m H m lm H EI m t

dt dt dz
                                                (3.55b) 

Equation (3.55) can be written in dimensionless form as; 

        
42 * 4

2
* * * * * *

2 4 4
1 Re cos

d d L d
m H m lm H

d d d

  
    

   
                                (3.56a) 

        
42 * 4

2
* * * * * *

2 4 4
1 Re sin

d d L d
m H m lm H

d d d

  
    

   
                                 (3.56b) 

Where;
1

x

R
  ,

1

y

R
  ,

1

z

R
  ,

*

0r





 ,

*

1R


  ,

*

s

m
M

m
 , 0r  ,

*

1

L
L

R
 , 

0.5

2

0 4

s

EI

m L
 

 
  

 
 

0 is the fundamental natural frequency of the rotor. 

Applying the Fourier transformation to both sides of equation (3.56a and 3.56b), we 

obtain; 

   *

0 cosv v v v vX C X K X A                                                                                                 (3.57) 

Where      
*

1 1*

0

sin

L

v

v
X d

L


    

 
  

 
     (v=1, 2, ----------)                                             (3.58a) 

 

* *

0 *

( )

1 Re

M lm H
C

M H


 


 ,                                                                                                                    (3.58b) 

 

4

*1 Re
v

v
K

M H



 ,                                                                                                                        (3.58c) 

 

 

2
* * * 2

*

2
sin

2

1 Rev

v
L

v
A

M H


 



 
 
 


                                                                                                      (3.58d) 

and  
2

2
0

d

d





   for *0, L   (boundary condition at two ends of the rotor) 

The steady state solution of equation (3.55) is easily obtained as; 

 * *1
cos

2
v v vX    

 
  
 

        (For v=1, 2, ----------)                                                   (3.59) 

Where;   

    

*

2
2 2

* *

0

2 v
v

v

A

K C



 



 

 ,                                                                                 (3.60a) 
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 

*
1 0

2
*

tanv

v

C

K








 
 
 
 

                                                                                                                   (3.60b) 

Taking the inverse Fourier transform of vX  we get; 

    *
1

, 2 sinv

v

v
X

L


   





 
  

 
   * *

*
1

cos sinv v

v

v

L


   





 
   

 
                                        (3.61) 

From the above equation the whirling fundamental bending mode at the rotor mid span 

can be written as; 

 
*

* *

1 1, cos
2

L
     
 

  
 

                                                                                                             (3.62) 

Where;   
 

          

2
* * *

*

1
2 2

2 2
* * * *

4

1 1 Re

L
v

m H m lm H

 


 



  

,                                   (3.63a)                                          

              
   

    

2

* *

1

1 2
* *

tan
1 1 Re

m lm H

m H








 


 
    

                                                                           (3.63b)                                                                                      

*

1
*




 is the maximum dimensionless  amplitude  that the rotor  exhibits in fundamental  

mode. 

The results obtained from numerical analysis using the expression 3.53 with the help of   

MATLAB program are plotted graph between frequency ratio and non-dimensional 

amplitude ratio in Figure 3.20 to 3.24 to illustrate the effect of various parameters (i.e. 

kinematic viscosities of different fluid, virtual mass effect, damping coefficient effect and 

gap ratio). Figures 3.20 and 3 .21 shows the non-dimensional amplitude of vibration with 

respect to frequency ratio in different viscous medium. It is observed that as the viscosity 

of the fluid increases the amplitude of vibration and critical speed of rotor decreases. A 

peculiar effect is observed from the comparison of Figures 3.20 and 3.21 for a particular 

viscous fluid when two different length of rotor are considered. It is found that the 

dimensionless amplitude is smaller in case larger rotor. 

 



Chapter 3                        Theoretical Analysis of DynamicResponse of Rotor with Multiple 

Transverse Crack Partially Submerged in Viscous Medium 

 

60 

 

 

 

The effect of gap ratio is presented in Figure 3.22. It is observed that the increase in fluid 

container radius the corresponding non-dimensional amplitude increase. 

Figure 3.20: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=1.0m, q=12, RD = 0.055m,TD= 0.020m, 

MD = 1.0kg. 
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Figure 3.21: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD=0.055m,TD=0.020m, 

MD=1.0kg. 
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The effect of virtual mass and damping coefficient can be seen in Figure 3.23 and 3.24. 

From Figure 3.23 it is observed that the with the increase in virtual mass 

effect   Rem H  at affixed damping the critical speed of the rotor decreases and the 

corresponding dimensionless amplitude  of vibration also decreases  due to damping effect 

at affixed virtual mass, the dimensionless amplitude  is affected in a more prominent way. 

With the increase in damping effect, amplitude of vibration for the corresponding system 

decreases, which can be observed from Figure 3.24. 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.22: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, RD = 0.055m,TD= 0.020m, MD 

= 1.0kg. 
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Figure 3.24: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, ν=0.0633, 0.541, 2.9 stokes & 

M*=0.127, 0.136,0.146,   RD=0.055m, TD= 0.020m, MD=1.0kg. 
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Figure 3.23: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, ν=0.541stokes & 

M*=0.136,MD1=1.0kg,MD2=0.75kg, MD3=0.60kg, MD4=0.50kg. 
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3.2.3.2  Analysis of Rotating Multiple Cracked Fixed-Fixed Rotor  

A rotating multiple cracked fixed-fixed  rotor submerged in fluid region is considered. 

 

 2 4

2 4

cos
s x

d x t d x
M EI F

dt dz

 
                                                                                                (3.64a) 

 2 4

2 4

sin
s y

d x t d y
M EI F

dt dz

 
                                                                                                (3.64b) 

Where; 
sm = Mass of the rotor per unit length 

m= Fluid mass displaced by the shaft per unit length. 

EI= Bending stiffness of the shaft. 

From equation (3.64) and equation (3.17) we obtain; 

    
2 4

2

2 4
Re coss s

d x dx d x
m m H m lm H EI m t

dt dt dz
                                                (3.65a) 

    
2 4

2

2 4
Re sins s

d y dy d y
m m H m lm H EI m t

dt dt dz
                                               (3.65b) 

Taking the eccentricity 1 ( perpendicular to the crack, i.e.along 44-direction) and 2 (along 

the crack, i.e. along 55- direction). 

Figure 3.25: Schematic representation of multiple cracked fixed-fixed rotor submerged in 

the viscous fluid. 
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The analysis for amplitude is drawn. At first 
1  is taken and its contribution in x and y-

axis direction are found out in the following procedures. 

Introducing dimensionless quantities;  

Where 
1

x

R
  , 

1

y

R
  , 

1

z

R
  , *

1

xx





 , *

2

yy





 , * 1

1

1R


  , *

s

m
M

m
 , 

1 xxt  , 

2 yyt  , *

1

L
L

R
  , 

2

0
1

xx

F




 
  
 

, 

2

0
2

yy

F




 
   
 

, *

s

m
m

m
  

xx , yy  are the fundamental natural frequency in x and y-axis direction respectively of 

the cracked rotor as shown in Figure 3.25. 

Where as 
0  is the fundamental natural frequency of the non-cracked rotor 

0 =   
0.5

2 4

sEI M L  

        
42 * 4

2
* * * * * *

1 1 1 1 12 4 4

1

1 Re cos
d d L d

m H m lm H F
d d d

  
    

   
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        
42 * 4

2
* * * * * *

2 2 1 2 2 22 4 4

2 2

1 Re sin
d d L d

m H m lm H F
d d d

  
    

   
                    (3.66b)                       

Applying the Fourier transform to both side of equation (3.66), we obtain; 

   *

1 01 1 1 1 1cosv v v v vX C X K X A                                                                                        (3.67a) 

   *

2 02 2 2 2 2cosv v v v vY C Y K Y A                                                                                          (3.67b) 

Where; 

 

* *

0 *
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n n
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M lm H
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M H


 
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,   

 *1 Re

n
vn
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M H
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,                                                                    (3.68a)   
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
 ,                                                                                                  (3.68b)   

 
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1 Rev
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v
A

M H
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
                                                                                                   (3.68c)                                                                                                                                                                                        

[For n=1 &2 & V=1, 2, ------------] 

Fn =F1 or F2   for   n=1 or 2 

The steady state solution of equation is easily obtained as; 
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   * *

1 1 11 2 cosv vX                                                                                                                (3.69a)                                                                                                                                                                                        

   * *

2 2 21 2 cosv vY                                                                                                               (3.69b)                                                                                                                                                                                        

For v=1, 2 

Where   
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2
2 2
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K C



 



 

,    

 

*
1 0

2
*

tan n n
vn

vn n

C

K








 
 
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 

                       (3.70)                                                                                                                                                                                        

For V=1, 2, -------------------; n=1&2 

Taking the inverse fourier transform of Xv, we get; 

   1 1 *
1

 2 sin
v

v

v

X
L


   



 
  

 
                                                                                                      (3.71)                                                                                                                                                                                        

Similarly for Yv it can be done   

From the above equation the whirling motion for fundamental bending mode in X and Y-

axis direction can be written respectively as; 

 
*

* *

1 11 1 1 11, cos
2

L
     
 

  
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                                                                                                    (3.72a) 

 
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* *

2 12 2 2 12, sin
2

L
     
 

  
 

                                                                                                   (3.72b) 

 and    are the dimensionless deflection in x and y-axis direction respectively due to 

eccentricity 1  ( Eccentricity in the direction  perpendicular to the  crack , 44- direction ) 

when  the 44- directin  axis  coincides  with x-axis direction  the amplitude  contribution 

of 1  in x and y-axis direction  are ;   

 
*

*

44 1 11 11, cos
2

L
   

 
  

 
   in x-axis direction                                                          (3.73a) 
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     

 
  

 
  in y- axis direction                                                (3.73b)                                                     

 Similarly the expression for
*

1,
2

L
 
 
 
 

and
*

2,
2

L
 
 
 
 

 due to eccentricity 
2   (Eccentricity 

in the direction of crack, 55- direction) can be found out adopting above procedure.When 

the 55- direction coincide with y- axis the amplitude contribution of 
1  in x and y 

direction are 
*

55 1,
2

L
 

 
 
 

 and 
*

55 2,
2

L
 

 
 
 

 respectively. 
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The total dimensionless deflection in x and y-axis direction. When the 44-direction
 

(Perpendicular  to the crack ) and  55-direction 
 
(along the  crack ) coincide  with x and y-

axis  respectively are; 

* *
* *

1 44 44 1 55 1, ,
2 2

L L
     

   
     

   
 along the x-axis direction (44- direction)         (3.74a)                                                    

 

* *
* *

2 55 55 1 55 1, ,
2 2

L L
     

   
     

   
 along the y-axis direction (55- direction)        (3.74b)                                                     

* *

1 44( )   and 
* *

2 55( )   are the dimensionless amplitude of the cracked rotor. When 

44-direction and 55-direction 
 
coincide with x-axis and y-axis respectively. 

Figures 3.26 and 3.27 shows that the vibration response of multi cracked rotor in two 

transverse directions of crack (i.e.44-direction and 55-direction)
 
with the different viscous 

fluid medium. It is observed that as the density and viscosity of the fluid increases, the 

amplitude as well as whirling speed decreases of the rotor. Also, it is seen that the due to 

increasing the multiple crack depth on the multiple crack location, the amplitude and 

frequency of the rotor decrease under same viscous medium.  

 

 

Figure 3.26: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, L1/L=0.313, L2/L=0.563, 

RD=0.055m,TD=0.020m, MD=1.0kg  for 44-Direction. 

0.3 0.38 0.46 0.54 0.62 0.7 0.78 0.86 0.94
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Frequency Ratio

N
o
n
d
im

e
n
s
io

n
a
l A

m
p
lit

u
d
e
 R

a
tio

a1/D=0.225
a2/D=0.250

a1/D=0.150
a2/D=0.225

a1/D=0.125
a2/D=0.150

             v(Stokes)        M*
+++++       2.9          0.143
oooooo     0.541       0.136
********   0.0633       0.127



Chapter 3                        Theoretical Analysis of DynamicResponse of Rotor with Multiple 

Transverse Crack Partially Submerged in Viscous Medium 

 

67 

 

Figure 3.28 shows that the comparison between the both transverse directions of crack 

with the non-cracked rotor. It is found that the amplitude of vibration at 44- direction is 

higher than the 55- direction. But it is lesser than the amplitude of the non- cracked rotor 

under the same parameters. From Figure 3.29 it is evident that as the virtual mass effect 

increase the critical speed decreases remarkably as compared to that of amplitude of 

vibration. 

 

 

Figure 3.27: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, L1/L=0.313, L2/L=0.563, 

RD=0.055m, TD=0.020m, MD=1.0kg for 55-Direction. 
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Figure 3.28: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, L1/L=0.313, L2/L=0.563, 

RD = 0.055m, TD= 0.020m, MD = 1.0kg. 
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Figure 3.29: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.125, a2/D=0.150, 

L1/L=0.313, L2/L=0.563, ν=0.541Stokes, M*=0.136, RD=0.055m, TD=0.020m, 

MD=1.0kg. 
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3.3 Eavaluation and Comparison of Experimental and 

Theoretical Analysis Results of the Cantilever Rotor 

System  

The rotating multiple cracked cantilever rotor partially submerged in the viscous medium 

has been considered in analysis for evaluation of vibration response. The numbers of 

experiments have been conducted on mild steel rotor in three different viscous fluids with 

different relative crack depths and relative crack locations for measuring the 

corresponding relative natural frequencies and relative amplitude of vibration. Figure 3.30 

illustrates  the schematic block diagram of experimental setup. 

 

The performance of the theoretical model has been verified by experimental test, 

performed on the rotating cracked cantilever rotor with attached disk at free end 

submerged in the viscous medium. The results derived from theoretical and experimental 

observation are displayed in graphical  form with changed viscosity of fluid, radius of the 

container and relative crack location and relative crack depth in both transverse direction 

(i.e. 44-direction and 55-direction) in the Figure 3.31 to 3.41 for non-cracked and multi 

Figure 3.30: Schematic block diagram representation of experimental set up 

1. Cracked Cantilever Rotor  

2. Disk  

3. Fluid filled container  

4. Arduino Micro-controller for   

recorded the amplitude in 

the computer system  

5. Power supply  

6. Variac  

7. Power motor  

8. 3-Ultrasonic Sensors. 
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cracked cantilever rotor partially submerged in  viscous  medium. Figure 3.31 and 3.32 

shows the comparison of theoretical and experimental result for effect of change in 

viscosity of fluid on the non-cracked and cracked cantilever rotor partially submerged in 

the viscous medium respectively. 

 

 

 

 

 

 

 

Figure 3.31: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD=0.055m, TD=0.020m, MD =1.0kg.  

for non-cracked rotor. 
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Figure 3.33 and 3.34 illustrate the comparison of theoretical and experimental result for 

effect of change in radius of fluid filled container on the un-crack and cracked rotor 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD= 0.0.55m, TD= 0.020m, MD = 1.0kg, 

For non-crack rotor . 
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Figure 3.33: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD=0.55m,TD=0.020m, MD 

= 1.0kg for non-cracked rotor. 
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Figure 3.35 demonstrate the comparison of theoretical and experimental result for virtual 

mass effect on the un-cracked and cracked cantilever rotor partially submerged in the 

viscous medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D= 0.125, a2/D=0.150, 

L1/L= 0.313, L2/L=0.563 RD = 0.055m,TD= 0.020m, MD = 1.0kg for 44-

Direction. 
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Figure 3.35: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D= 0.125, a2/D=0.150, L1/L= 0.313, 

L2/L=0.563, RD = 0.055m, TD= 0.020m, MD = 1.0kg.   

0.85 0.88 0.91 0.94 0.97 1 1.03 1.06
0

20

40

60

80

100

120

Frequency Ratio

N
o
n
d
im

e
n
s
io

n
a
l A

m
p
lit

u
d
e
 R

a
tio

 

 

Theoretical Result

Experimental Result

v (Stokes)      M*
  0.541         0.136

 



Chapter 3                        Theoretical Analysis of DynamicResponse of Rotor with Multiple 

Transverse Crack Partially Submerged in Viscous Medium 

 

73 

Figure 3.36, 3.37, and 3.38   shows the comparison of theoretical and experimental result 

for the effect of different multiple cracks in crack location at transverse crack direction 

(i.e. 44-direction) of cantilever rotor which rotated in the same viscous medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.36: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.250, a2/D=0.225, 

L1/L=0.313, L2/L=0.563, RD=0.055m, TD=0.020m, MD=1.0kg for 44- Direction. 
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Figure 3.37: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q =12,a1/D=0.225,a2/D=0.150, L1/L=0.313, 

L2/L=0.563, RD=0.055m, TD=0.020m, MD =1.0kg for 44- Direction. 
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Figure 3.39, 3.40, and 3.41 shows the comparison of theoretical and experimental result 

for the effect of different multiple cracks in crack location at transverse crack direction 

(i.e. 55-direction) of cantilever rotor which rotated in the same viscous medium. As can be 

seen, the results obtained using the theoretically show well agreement with the 

experimental results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.150, a2/D=0.125, L1/L=0.313, 

L2/L=0.563, RD=0.055m, TD=0.020m, MD=1.0kg for 44- Direction. 
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Figure 3.39: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.250, a2/D=0.225, L1/L=0.313, 

L2/L=0.563, RD=0.055m, TD= 0.020m, MD=1.0kg for 55- Direction. 
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Figure 3.41: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.150, a2/D=0.125, 

L1/L=0.313, L2/L=0.563, RD=0.055m, TD=0.020m, MD =1.0kg for 55-Direction. 
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Figure 3.40: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q =12, a1/D=0.225, a2/D=0.150, L1/L=0.313, 

L2/L=0.563, RD=0.055m, TD=0.020m, MD = 1.0kg for 55- Direction. 
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3.4 Comparision and Authentication of Theoretical and 

Experimental Analysis Results 

The fidelity and performance of the theoretical model has been verified by experimental 

test, performed on the rotating cracked cantilever rotor with   attached disk at free end 

submerged in the viscous medium. The results obtained from theoretical and experimental 

analysis are compared for multiple cracked cantilever rotor in viscous medium is shown in 

Figures 3.31 to 3.41. The theoretical analysis results and experimental investigation results 

are compared in this section, only three results (i.e. Maximum amplitude ratio value) taken 

from the available data is represented in Tables 3.3 to 3.8 for cracked cantilever rotor. The 

relative natural frequency and relative amplitude of vibration employed in the 

investigation can be defined as;  

0

Rotating speed of cracked rotor
Relative natural frequency( )

Fundamental Natural frequency of non-cracked rotor 
    

* * Whirling radius of rotor
Relative Amplitude ( ) 

    Eccentricity of  rotor shaft
     

Table 3.3 shows the comparison of theoretical and experimental result for effect of change 

in viscosity of fluid on the non-cracked cantilever rotor. 

Table 3.3: Comparison between numerical and experimental results for effect of different 

viscous medium 

Tables 3.4 and 3.5 demonstrate the comparison of theoretical and experimental result for 

virtual mass effect on the un-cracked and cracked cantilever rotor partially submerged in 

the viscous medium respectively. 

 

 

 

Sl. No. Viscosity of 

fluid  

(ν) in Stokes 

Theoretical 

analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Experimental 

Analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Error in 

Percentage 

 (%) 

1 0.0633 176.920 186.19 4.97 

2 0.5410 58.947 61.792 4.60 

3 2.9000 20.533 21.491 4.45 
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Table 3.4: Comparison between theoretical and experimental results for ν=0.541stokes &  

M*=0.136, for virtual mass effect (non-cracked rotor) 

Sl. No. Mass of 

disc 

(MD) in kg 

Theoretical analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Experimental Analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Error in 

Percentage 

(%) 

1 1.00 117.583 123.40 4.71 

2 0.75 102.032 107.34 4.94 

3 0.50 75.46 79.044 4.53 

Table 3.5: Comparison between theoretical and experimental results for ν=0.541 stokes, 

M*=0.0.136, L1/L=0.313,L2/L=0.563, a1/D=0.125, a2/D=0.150, for virtual mass effect.  
Sl. No. Mass of 

disc(MD) 

kg 

Theoretical analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Experimental Analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Error in 

Percentage 

(%) 

1 1.00 103.03 107.92 4.53 

2 0.75 91.218 96.144 5.12 

3 0.50 75.463 79.195 4.71 

Tables 3.6 and 3.7 illustrate the comparison of theoretical and experimental result for 

effect of change in radius of fluid filled container on the uncrack and cracked rotor 

respectively. 

Table 3.6: Comparison between theoretical and experimental results for v=0.541stokes, 

M*=0.136, for non-Cracked rotor.  
Sl. No. Gap Ratio 

(q) 

Theoretical analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Experimental 

Analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Error in 

Percentage 

(%) 

1 q1 42.5346 44.286 3.95 

2 q2 66.999 70.576 5.06 

3 q3 73.582 76.790 4.17 

4 q4 78.069 80.910 3.51 

Table 3.7: Comparison between theoretical and experimental results for crack position 

L1/L = 0.313, L2/L=0.563, a1/D= 0.125, a2/D=0.150, v=0.541stokes, M*=0.136, for 44- 

Direction. 
Sl. No. Gap 

Ratio(q) 

Theoretical analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Experimental Analysis 

(Non-dimensional 

Amplitude (δ*/ɛ*)) 

Error in 

Percentage (%) 

1 4 32.9397 34.625 4.86 

2 8 51.7353 54.151 4.46 

3 12 56.4638 58.924 4.17 

4 20 60.9867 63.815 4.43 

 

Table 3.8 shows the comparison of theoretical and experimental result for the effect of 

multiple cracks in crack location at both transverse crack direction (i.e. 44-direction and 

55-direction) of cantilever rotor which rotated in the different viscous medium. As can be 
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seen, the results obtained using the theoretically show well agreement with the 

experimental results. 

Table 3.8: Comparison between theoretical and experimental results for crack position 

L1/L = 0.313, L2/L=0.563.  

 

Relative 

crack 

depth(β) 

44-Direction 55-Direction 

Viscosity of fluid 

(ν) Stokes 

Viscosity of fluid 

(ν) Stokes 

0.0633 0.541 2.9 0.0633 0.541 2.9 

Theoretical 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

β1=0.250 

β2=0.225 
89.791 29.073 10.528 75.463 24.521 8.855 

β1=0.225 

β2=0.150 
110.98 37.943 13.535 89.791 29.073 10.528 

β1=0.150 

β2=0.225 
176.92 58.947 20.531 141.24 46.105 15.561 

Experiment

al Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

β1=0.250 

β2=0.225 
94.127 30.224 10.978 78.496 25.533 9.303 

β1=0.225 

β2=0.150 
116.79 39.749 14.148 94.083 30.648 11.009 

β1=0.150 

β2=0.225 
185.07 61.297 21.594 148.18 48.258 16.172 

Error in  

Percentage 

(%) 

 

β1=0.250 

β2=0.225 
4.46 3.80 4.09 3.48 3.96 4.81 

β1=0.225 

β2=0.150 
4.97 4.54 4.33 4.56 5.13 4.36 

β1=0.150 

β2=0.225 
4.40 3.83 4.92 4.68 4.46 3.77 

 

3.5 Discussion 

This section is subjected to discussion on analysis of results derived during the theoretical 

and experimental evaluation.This chapter presents the theoretical analysis of cantilever 

rotor with multiple transverse crack which partially submerged in the viscous medium 

then its experimental validation. Figure 3.30 presents schematic block diagram of 

experiment setup for the cantilever cracked rotor submerged in the viscous fluid.  

Comparison and verification of the results derived from theoretical model are plotted with 

results of experimental examination and are plotted in Figures 3.31 to 3.41.The results 

derived from theoretical and experimental observation are displayed in tabular form with 

changed viscosity of fluid, mass of disc, radius of the cantainer and relative crack location 

and relative crack depth in both transverse direction (i.e. 44-direction and 55-direction) in 

the Tables 3.3 to 3.8 for non-cracked and multi cracked cantilever rotor partially 
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submerged in  viscous  medium.Table 3.3 shows the comparison of theoretical and 

experimental result for effect of change in viscosity of fluid on the non-cracked cantilever 

rotor. Tables 3.4 and 3.5 demonstrate the comparison of theoretical and experimental 

result for virtual mass effect on the un-cracked and cracked cantilever rotor partially 

submerged in the viscous medium respectively. Tables 3.6 and 3.7 illustrate the 

comparison of theoretical and experimental result for effect of change in radius of fluid 

filled container on the uncrack and cracked rotor respectively.Table 3.8 shows the 

comparison of theoretical and experimental result for the effect of multiple cracks in crack 

location at both transverse crack direction (i.e. 44-direction and 55-direction) of cantilever 

rotor which rotated in the different viscous medium. As can be seen, the results obtained 

using the theoretically show well agreement with the experimental results. 

3.6 Summary 

The summary is outlined are drawn in this section based on the results derived from 

theoretical and experimental examination in this chapter. The vibration response (i.e. 

natural frequencies and amplitude) are changed due to altered viscosity of fluid, mass of 

disc, radius of fluid filled container and presence of transverse crack in the cantilever 

rotor.The vibration responses derived from theoretical analysis have been verified with the 

obtained results of experimental investigation and a close proximity is found. The 

percentage of error between the theoretical and experimental analysis is found within 

5%.The error in the dynamic behavior of the rotor can be used as the factor for diagnosis 

of the crack. The proposed method can be successfully applied for the design of smart 

artificial intelligent techniques for online measurement of the crack present in the rotor 

partially submerged in viscous medium. In the successive chapters various artificial 

intelligent based techniques have been discussed for identification of multiple cracks 

present in rotor system. 
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Chapter 4 

Finite Element Analysis of Multiple 

Cracked Cantilever Rotor Partially 

Submerged in Fluid Medium for 

Measurement of Dynamic Response 

The presence of cracks in the rotor, beam and structural components is a serious risk to the 

integrity of the system. This may be because of destruction and collapse of the structures. 

The detection of the crack in the early stage of the system is beneficial. In the last two 

decades, many researchers and engineers have developed several methods and presented 

many models for the prediction of cracks, based on vibrational behaviors of cracked 

structures. The techniques based on vibration are used for identification of damage; given 

some benifits over other conventional methodologies. These technique can help to detect 

crack depth and location  using vibrational data, obtained from the cracked structure. The 

presence of the crack in structures generates flexibility at the vicinity of crack which 

causes the reduction of natural frequencies and amplitude. Hence it may be possible to 

detect crack location and intensity by measuring the change in vibration parameters. The 

current  chapter introduces the  finite element analysis for detection the multiple cracks in 

the cantilever rotor partially submerged in the viscous fluid medium. The results of finite 

element analysis have been compared with the results of  theoretical analysis and 

experimental analysis to secure the consistance of proposed numerical method. Finally it 

is concluded that proposed finite element method can be successfully applied for 

identification of  multiple crack in structures(i.e. Rotor, beam,plates etc).  

4.1 Introduction 

Mechanism of damage detection techniques in different engineering system can be 

characterized as a organized methodology to predict and compute the damage existing in 
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the system. The concerned of the failure analysis of faulty beam structure is to secure the 

overall safety and performance of the system. The vibration characteristics of faulty 

structural members can be effectively used to seize the damage feature such as crack 

location and crack depth. The researchers have proposed various damage detection 

methods based on thermal radiation, energy, discreet wavelet and numerical methods such 

as artificial intelligent and finite element methods. In the past few decades, scientists have 

developed a model for single crack structure based on the finite element method and found 

that the enactment of finite element method is enhanced as compared to the theoretical 

model designed for identification of crack. Hence, this method can be employed to detect 

the crack parameters such as location and depth of crack in the system using the modal 

response of the system. In the present section finite element method has been used to find 

crack locations and depths for multiple cracked composites and structural steel beams. It is 

found that the presence of cracks in the beam structure potentially affect the dynamic 

behavior of the beam. The finite element result has been compared to that of theoretical 

and experimental analysis results and close proximity between the results is found. 

4.2 Analysis of Finite Element Method using ANSYS 

The finite element method is a powerful finite element method that can be used to solve 

the complex problem using interpolation or approximation method.  The finite element 

method is a systematic approach for solving the complicated problems. So the finite 

element method can be applied in vibrating structures with different boundary conditions 

to get the exact solution. In the finite element analysis, the whole structure is first divided 

into small parts in various shapes. These small parts known as elements and method 

employed to split the structures in small parts is called discretization and generation of the 

regular shape pattern in the structure are called meshing. The efficiency of finite element 

method is dependent on the quality of the mesh. Convergence test is considered for 

choosing the appropriate size of mesh element. Each element of finite element model has 

corner points that connect to another element called nodes. Each finite element associated 

with the equation of motion and that can be easily interpolated. The solutions of each 

finite element are combined to get global mass and stiffness matrices, which describes the 

vibration response of the structure. The global mass and stiffness matrices can be analyzed 

to get vibrational parameters of the structure. The finite element analysis of cantilever 
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beam has been done using ANSYS software. ANSYS is commercially available finite 

element analysis software with capacity of solving wide range of complex problems. The 

application of ANSYS is spread over many fields of engineering and technology such as 

structural, thermal, mechanical, electromagnetic and computational fluid dynamics. The 

modelling and simulation of mild steel cantilever rotor submerged in the viscous medium 

has been done in ANSYS using multi-physics platform. The natural frequencies and 

relevant amplitude at both transverse direction (i.e. 44 and 55-axis) have been extracted 

from block lanczos. ANSYS involves the following steps in order to solve the problem: 

(1) Preprocessing Phase: This section of the ANSYS involves the selection of type of the 

element with respect to problem types. The ANSYS also provides the CAD modelling 

facility. Meshing process is the most important feature of FE analysis. Convergence test is 

conducted to evaluate the suitable size of mesh element.  

(2) Solution Phase: Applying the boundary conditions and load on the structural 

component are the most significant feature of this section. ANSYS then attempts to solve 

the equation of motion of the system element. The block lanczos method is taken in the 

present investigation. 

(3) Post processing phase: This section allows the review of the results. The post 

processing is most significant tool for viewing the results after the solution phase. These 

results may be in form of color contour plot and graphical representation of the stress, 

thermal, buckling, electromagnetic, vibration and computation fluid dynamics analysis etc. 

4.3 Analysis of Finite Element Analysis of Rotor with 

Transverse  Cracks Partially Submerged in the Viscous 

Fluid  

The finite element analysis is performed for studying the modal response of a rotating 

cracked rotor.The natural frequencies and amplitude are the most important parameters in 

designing a structure under the dynamic and complex loading conditions.  The finite 

element analysis is performed using the ANSYS software in the frequency domain to find 

change in behaviors of vibration parameters. The presence of damage in the form of crack 

and different viscous fluid medium parameters alters the vibration indices. The change in 
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behavior of vibration characteristics can be applied to develop the structural health 

monitoring techniques. 

4.3.1 Description of SOLID187 Element used for Solid Rotor 

The selection of elements is important in the ANSYS. A higher order 3-D, 10 node 

element (Specified as SOLID187 in ANSYS) with three degree of freedom at each node: 

translation in the nodal x, y, and z directions are selected and used throughout the analysis. 

The SOLID187 has plasticity, hyper-plasticity, creep, stress stiffening, large deflection, 

and large strain capabilities.it also has mixed formulation capabilities for simulating 

deformations of nearly incompressible elastoplastic materials, and fully incompressible 

hyperplastic materials. The geometry, node locations, and the coordinate system for the 

element are shown in Figure 4.1. 
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Figure 4.1: Geometry of SOLID187 element. 

 

Assumptions and Restrictions 

 The element must not have a zero volume. 

 Elements may be numbered either as shown in Figure 4.1or may have node L below 

the I, J, K plane. 

 An edge with a removed mid side node implies that the displacement varies linearly, 

rather than parabolically, along that edge.  
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 When mixed formulation is used (KEYOPT (6) = 1 or 2), no mid side nodes can be 

missed. 

 If you use the mixed formulation (KEYOPT (6) = 1 or 2), the damped eigen solver is 

not supported. You must use the sparse solver (default). 

 Stress stiffening is always included in geometrically nonlinear analysis.   

4.3.2 Description of  FLUID30 Element used for Fluid Medium 

FLUID30 is used for modeling the fluid medium and the interface in fluid/structure 

interaction problems. Typical applications include sound wave propagation and 

submerged structural dynamics. The governing equation of acoustics, namely the 3-D 

wave equation, has been discretized taking into account the coupling of acoustic pressure 

and structural motion at the Interface. The element has 8-corner nodes with four degree of 

freedom per node: translations in the x, y and z directions and pressure. The translation, 

however, are applicable only at nodes that are on the interface. The element has the 

capability to include damping of sound absorbing material at the interface. The element 

can be used with other 3-D structural elements to perform unsymmetric or damped modal, 

full harmonic response and full transient method analysis. When there is no structural 

motion, the element is also applicable to static, modal and reduced harmonic response 

analysis. 
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Figure 4.2: Geometry of FLUID30 (3-D acoustic fluid) element. 
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Assumptions and Restrictions 

The element must not have a zero volume. Element nodes may be numbered either as 

shown in Figure 4.2 or may have planes IJKL and MNOP interchanged. Also, the element 

may not be twisted such that it has two separate volumes. This occurs usually when the 

element nodes are not in the correct sequence. All elements must have 8 nodes. A prism-

shaped element may be formed by defining duplicate K and L and duplicate O and P 

nodes. A tetrahedron shape is also available. The acoustic pressure in the fluid medium is 

determined by the wave equation with the following assumptions: 

 The fluid is compressible (density changes due to pressure variations). 

 Inviscid fluid (no dissipative effect due to viscosity). 

 There is no mean flow of the fluid. 

 The mean density and pressure are uniform throughout the fluid. Note that the acoustic 

pressure is the excess pressure from the mean pressure. 

 Analyses are limited to relatively small acoustic pressures so that the changes in density 

are small compared with the mean density. 

The lumped mass matrix formulation is not allowed for this element. 

4.3.3 Material Properties and boundary condition of Rotor and Viscous 

Fluid Medium 

The following dimensions of the rotor are used in the current section:   

Length of the rotor (L) = 800mm; radius of the rotor (R1) = 10mm; Thickness of the disc 

TD1=0.01m; TD2=0.015m; TD3=0.020m. 

The material properties of the mild steel cantilever rotor used in the analysis are shown in 

the Table 4.1. 

        Table 4.1: Material properties of mild steel rotor. 

Young’s Modulus (E)                                                       200Gpa 

Poisson ratio’s (ν)                                                             0.3 

Density (ρ)                                                                      7850 kg/m
3
 

The required material properties for the fluid elements were bulk modulus (K), density (ρ) 

and viscosity (ν) are shown in Table 4.2.The actual fluid properties used in the FE analysis 

depend on the type of fluid to be simulated.  
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  Table 4.2:  Physical properties of viscous fluid medium (for water). 

Bulk Modulus (E)                                                           2.05GPa 

Viscosity (ν)                                                                    0.01poise 

 Density (ρ)                                                                     1000 kg/m
3
 

 

Cantilever rotor has fixed at both x and y direction (X=0,Y=0) and rotated at z direction 

those are parallel direction of axis of rotor. Rotor speed has been set between the ranges of 

300 to 700 rpm. Fluid container is fixed in all direction( X=0,Y=0 and Z=0) from the 

bottom side. Mesh size has been chosen on the basis of conversion test. Mesh size is 4710. 

The natural frequency and amplitude for cracked rotor derived from finite element based 

finite element analysis are plotted along with theoretical and experimental analysis results 

of cracked  cantilever rotor with viscous medium and the orientation of cracks (β1=0.125, 

β2=0.175, β3=0.225 and β4=0.275) is shown in the Figures 4.3 to 4.13. 

 

 

 

 

 

Figure 4.3: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q =12, RD = 0.055m, TD= 0.020m, MD = 

1.0kg . 
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Figure 4.4: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD=0.055m,TD=0.020m, MD = 1.0kg, 

for virtual mass effect. 
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Figure 4.5: Frequency Ratio (ω/ ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.125, a2/D=0.150, L1/L=0.313, 

L2/L=0.563, RD=0.055m, TD=0.020m, MD=1.0kg, for virtual mass effect.  
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Figure 4.6: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, RD=0.055m,TD=0.020m, MD=1.0kg, 

for gap ratio effect. 
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Figure 4.7: Frequency Ratio (ω/ ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.125, a2/D=0.150, L1/L=0.313, 

L2/L=0.563, RD=0.055m,TD=0.020m, MD = 1.0kg, for 44-Direction. 
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Figure 4.8: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12,a1/D=0.250, a1/D=0.225, L1/L=0.313, 

L2/L=0.563, RD=0.055m, TD=0.020m, MD=1.0kg, for 44- Direction. 

0.6 0.62 0.64 0.66 0.68 0.7 0.72
0

20

40

60

80

100

Frequency Ratio

N
o
n
d
im

e
n
s
io

n
a
l A

m
p
lit

u
d
e
 R

a
tio

 

 

Theoretical Result

FEA Result

Experimental Result

v (Stokes)      M*
  0.0633        0.127

Figure 4.9: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), Mild 

Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.225, a1/D=0.150, L1/L=0.313, 

L2/L=0.563, RD =0.055m, TD=0.020m, MD=1.0kg, for 44- Direction. 
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Figure 4.10: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q=12,a1/D=0.150,a1/D=0.125, L1/L=0.313, 

L2/L=0.563, RD=0.055m, TD=0.020m, MD =1.0kg, for 44- Direction. 
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Figure 4.11: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel rator R1=0.01m, L=0.8m, q=12, a1/D=0.250, a1/D=0.225, L1/L = 0.313, 

L2/L=0.563, RD=0.055m, TD=0.020m, MD=1.0kg, for 55- Direction. 
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Figure 4.12: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio 

(δ*/ɛ*), Mild Steel Rotor R1=0.01m, L=0.8m, q=12, a1/D=0.225, a1/D=0.150, 

L1/L=0.313, L2/L=0.563, RD=0.055m, TD=0.020m, MD=1.0kg, for 55- Direction. 
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Figure 4.13: Frequency Ratio (ω/ω0) Vs Non-dimensional Amplitude Ratio (δ*/ɛ*), 

Mild Steel Rotor R1=0.01m, L=0.8m, q =12, a1/D=0.150, a1/D=0.125, L1/L = 0.313, 

L2/L=0.563, RD = 0.055m, TD= 0.020m, MD = 1.0kg, for 55- Direction. 
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Table 4.3 shows the comparison of FEA result with theoretical and experimental result for 

effect of change in viscosity of fluid on the non-cracked cantilever rotor. 

Table 4.3: Comparison between theoretical, experimental and FEA results for effect of 

different viscous medium.  

 

Tables 4.4 and 4.5 illustrate the comparison of FEA result with theoretical and 

experimental result for virtual mass effect on the non-cracked and cracked cantilever rotor 

in the viscous medium respectively. 

Table 4.4: Comparison between theoretical, experimental and FEA results for 

ν=0.541stokes, M*=0.136.  

 

Table 4.5: Comparison between theoretical, experimental and FEA results for a1/D= 

0.125, a2/D=0.150, L1/L = 0.313, L2/L=0.563, ν=0.541stokes, M*=0.0.136 (virtual mass 

effect). 

 

 

 

 

 

 

 

 

Sl.No. Viscosity 

of fluid 

(ν) 

Theoretical 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Experimental 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

FEA 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Error 

in % 

The/ 

FEA 

Error 

in  

% 

Exp/ 

FEA 

1 0.0633 176.920 186.19 181.982 2.25 2.36 

2 0.5410 58.947 61.792 60.733 3.06 1.74 

3 2.9000 20.533 21.491 21.140 2.16 1.66 

Sl. No. Mass of 

disc 

(MD) in 

kg 

Theoretical 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Experimental 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

FEA 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Error 

in % 

The/ 

FEA 

Error in 

% 

Exp/FEA 

1 1.00 117.583 123.40 121.051 2.41 1.94 

2 0.75 102.032 107.34 104.950 2.24 2.27 

3 0.50 75.46 79.044 77.663 2.31 1.77 

Sl.No. Mass of 

disc 

(MD) in 

kg 

Theoretical 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Experimental 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

FEA 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Error in 

% 

The/ 

FEA 

Error 

in % 

Exp/ 

FEA 

1 1.00 103.03 107.40 105.21 2.07 2.07 

2 0.75 91.218 95.340 93.078 1.99 2.37 

3 0.50 75.463 79.044 77.206 2.25 2.32 
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Tables 4.6 and 4.7 show the comparison of FEA result with theoretical and experimental 

result for effect of change in radius of fluid filled container on the uncrack and cracked  

rotor respectively. 

Table 4.6: Comparison between theoretical, experimental and FEA results for ν=0.541 

stokes, M*=0.136 (Non-cracked rotor). 

 

 

 

 

 

 

 

 

 

Table 4.7: Comparison between theoretical and experimental results for a1/D=0.125, 

a2/D=0.150, L1/L=0.313, L2/L=0.563, ν=0.541stokes, M*=0.136 (44-direction of crack). 

 

Table 4.8 shows the comparison of FEA result with theoretical and experimental result for 

the effect of multiple crack depths and crack locations on the dynamic response of the 

cantilever rotor in the both transverse crack direction (i.e. 44-direction and 55-direction). 

 

 

 

 

 

 

 

Sl. No. Gap 

Ratio 

(q) 

Theoretical 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Experimental 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

FEA 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Error in 

% 

The/ 

FEA  

Error in 

% 

Exp/ 

FEA 

1 q1 42.5346 44.286 43.516 2.25 1.73 

2 q2 66.999 69.776 68.446 2.11 1.90 

3 q3 73.582 76.790 75.408 2.42 1.79 

4 q4 78.069 80.910 79.973 2.38 1.15 

Sl.No. Gap 

Ratio 

(q) 

Theoretical 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Experimental 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

FEA 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

Error in 

% 

The/ 

FEA  

Error in 

% 

Exp/ 

FEA 

1 q1 32.939 34.625 33.640 2.08 2.84 

2 q2 51.735 54.151 52.935 2.26 2.24 

3 q3 56.463 58.924 57.840 2.38 1.83 

4 q4 60.986 63.815 62.394 2.25 2.22 
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Table 4.8: Comparison between theoretical, experimental and FEA results for L1/L = 

0.313, L2/L=0.563.  

 

 

 

 

Relative 

crack 

depth 

44-direction 55-direction 

Viscosity of fluid 

(ν) Stokes 

Viscosity of fluid 

(ν) Stokes 

0.0633 0.541 2.9 0.0633 0.541 2.9 

Theoretical 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

β1=0.250 

β2=0.225 
89.791 29.073 10.528 75.463 24.521 8.855 

β1=0.225 

β2=0.150 
110.98 37.943 13.535 89.791 29.073 10.528 

β1=0.150 

β2=0.225 
176.92 58.947 20.531 141.24 46.105 15.561 

Experimental 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

β1=0.250 

β2=0.225 
94.127 30.224 10.978 78.496 25.533 9.303 

β1=0.225 

β2=0.150 
116.79 39.749 14.148 94.083 30.648 11.009 

β1=0.150 

β2=0.225 
185.07 61.297 21.594 148.18 48.258 16.172 

FEA 

Analysis 

(Non-

dimensional 

Amplitude 

(δ*/ɛ*)) 

β1=0.250 

β2=0.225 
91.865 29.753 10.805 77.228 25.192 9.041 

β1=0.225 

β2=0.150 
113.33 38.720 13.861 91.972 29.831 10.812 

β1=0.150 

β2=0.225 
181.36 60.137 21.015 144.30 47.183 15.886 

Error in % 

The/FEA 

β1=0.250 

β2=0.225 
2.25 2.28 2.56 2.28 2.66 2.05 

β1=0.225 

β2=0.150 
2.07 2.00 2.35 2.37 2.54 2.62 

β1=0.150 

β2=0.225 
2.44 1.97 2.30 2.12 2.28 2.04 

Error in % 

Exp/FEA 

β1=0.250 

β2=0.225 
2.40 1.55 1.57 1.61 1.33 2.81 

β1=0.225 

β2=0.150 
2.96 2.58 2.02 2.24 2.66 1.78 

β1=0.150 

β2=0.225 
2.00 1.89 2.68 2.61 2.22 1.76 
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4.4 Discussion 

The brief discussion on the results of proposed finite element method has been presented 

in this section. It is noticed that presence of   changed viscosity of fluid, mass of disc, 

radius of container and multiple crack in the rotor alters the vibration response.Various 

steps involved in the ANSYS to solve any problem are discussed. These steps are: 

preprocessing phase, solution phase and post processing phase. The selection of the 

element is very important to get the most refined results from the ANSYS. The SOLID187 

element is chosen for mild steel rotor and FLUID30 has been selected for the fluid 

medium.The geometrical configurations (i.e. geometry of element and nodal position) of 

SOLID187 and FLUID30 are shown in the Figures 4.1 and 4.2 respectively. The 

properties of mild steel rotor and fluid medium are presented in Tables 4.1 and 4.2 

respectively.Finite element model of crack rotor is illustrated in Figure A1. FE model of 

rotor with fluid medium is demonstrated in the Figure A2. FEA simulation result is 

presented in the Figures A3 and A4. The results derived from finite element method are 

authenticated by results obtained from theoretical and experimental test for non-cracked 

and multi-cracked cantilever rotor partially submerged in altered viscous medium. The 

results obtained from the finite element analysis are plotted with results derived from 

theoretical and experimental analysis for cracked cantilever rotor partially submerged in 

the viscous medium and are shown in Figures 4.3 to 4.13. Table 4.3 shows the comparison 

of FEA result with theoretical and experimental result for effect of change in viscosity of 

fluid on the non-cracked cantilever rotor. Tables 4.4 and 4.5 illustrate the comparison of 

FEA result with theoretical and experimental result for virtual mass effect on the non-

cracked and cracked cantilever rotor in the viscous medium respectively. Tables 4.6 and 

4.7 show the comparison of FEA result with theoretical and experimental result for effect 

of change in radius of fluid filled container on the uncrack and cracked rotor respectively. 

Table 4.8 shows the comparison of FEA result with theoretical and experimental result for 

the effect of multiple crack depths and crack locations on the dynamic response of the 

cantilever rotor in the both transverse crack direction (i.e. 44-direction and 55-direction). 

It is observed that results are in good agreement. 
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4.5 Summary 

The summary is outlined from the results derived from numerical method. The simple, 

effective and robust finite element method is presented to analyze the multiple cracks in 

the cantilever rotor partially submerged in the viscous medium. It is observed that the 

dynamic response obtained from finite element analysis show the error between non-

cracked and cracked rotor model. This can be observed in Figures 4.3 and 4.13.The 

dynamic response such as natural frequencies and amplitude are derived from finite 

element analysis and found to be of close proximity with results obtained from theoretical 

and experimental observations. The percentage of error of finite element analysis is within 

3% for rotor. The dynamic response derived from finite element analysis can be utilized to 

design and develop the fault diagnosis and condition monitoring techniques based on 

artificial intelligent techniques such as fuzzy logic and various types of neural 

networks.The artificial intelligent techniques based structural health monitoring 

algorithms have been discussed in the upcoming chapters. 
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Chapter 5 

Analysis of Fuzzy System for Detecting 

the Multiple Crack in Cantilever Rotor 

The presence of a crack is a grave threat to the integrity of the system, which leads to 

reducing the life and may cause the failure of the system. Hence, it is needed to develop 

the online automated method to predict the damage effectively, present in the engineering 

system. It is well-established fact that the presence of the crack in the system upset the 

vibration parameters (e.g. Change the natural frequencies and amplitude). So these 

changes can be successfully used to locate fault position and intensity. On the ground of 

these modifications in vibration parameters, automated AI techniques can be used to 

detect the crack locations and depths to circumvent the catastrophic failure of engineering 

systems. In the current chapter, inverse techniques are employed to implement the 

proposed methodology using the induced vibration response parameters of the rotor for 

predicting the locations and depths of the multiple cracks present in the rotor. 

5.1 Introduction 

Fuzzy Logic System (FLS) was first developed by Mamdani and Assilan around 1975 

[211], although L A Zadeh [212] has presented the concept of fuzzy set in 1965.  

Essentially, Fuzzy Logic System (FLS) is a multi-value logic, which permits interval 

qualities to be characterized by linguistic expressions like true/false, high/low, yes/no. In 

the most recent couple of decades, specialists are utilized the FL approach for 

applications, such as feature extraction, identification and classification of geometrical 

properties and so on. FLS can mimic the human conduct by taking the distinctive thinking 

modes keeping in mind the end goal to make the computer system act like humans. The 

investigation of the imprecision and vulnerability motivates the exceptional human being 

capacity to comprehend different engineering or industrial  applications. FL can determine 

mapping principles regarding words instead of numbers. Another essential idea in FLS is 

fuzzy if–then rule which is for the most part utilized as a part of the advancement of the 

fuzzy rule-based system. FLS can show nonlinear capacities of self-assertive many-sided 
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quality to a desired level of precision. FLS is an advantageous approach to guide a data 

space to output space and is one of the apparatuses used to model multi-inputs, multi-

outputs systems. Henceforth the fuzzy methodology can be adequately utilized as a crack 

diagnostics tool for multiple cracked systems. In the present chapter, multiple crack 

detection techniques using fuzzy logic system have been developed. The fuzzy inference 

system for identification of multiple crack tool has been designed and developed with five 

inputs (two relative natural frequency, two relative amplitude and viscosity of fluid) and 

four outputs (two relative crack locations and two relative crack depths).  The proposed 

multiple crack identification tool has been developed using the triangular, trapezoidal and 

gaussian membership functions. The Mamdani fuzzy, Takagi-Sugeno fuzzy and fuzzy 

based hybrid system is developed for identification of crack in rotor. The dynamic 

characteristics acquired from the theoretical, FE and experimental analysis have been used 

for development of the fuzzy controller model. The results of the proposed fuzzy systems 

for identification of crack have been compared with the results found from the theoretical, 

experimental and FE analysis. It is found that the fuzzy logic models can be used 

excellently for crack detection in the rotor. The present chapter is organized in the seven 

altered sections.  Section 5.1 introduces the introductory part of the fuzzy logic system. A 

fuzzy logic system has been discussed in Section 5.2. The investigation of the Mamdani 

fuzzy system used for identification of multiple crack in rotor has been described in 

section 5.3. The analysis of Takagi-Sugeno fuzzy system for the identification in rotor has 

been described in section  5.4. The analysis of gaussian fuzzy based hybrid system for the 

identification of multiple crack in the rotor has been introduced in section 5.5. Section 5.6 

discusses the obtained results from the Mamdani fuzzy, Takagi-Sugeno fuzzy and Hybrid 

fuzzy model and finally, section 5.7 discuses a summary of the analysis of fuzzy system 

used for identification of multiple transverse crack in the rotor. 

5.2 Fuzzy Logic System 

The fuzzy technique is a popular computing system based on the concept of fuzzy set 

theory, fuzzy reasoning, and fuzzy if-then rules. The application of fuzzy logic is found 

successfully in wide variety of fields such as bioinformatics, pattern recognition, business, 

data classification, automatic control, decision analysis, robotics, expert systems and time 

series prediction. A fuzzy logic controller primarily takes a judgement by nonlinear 

mapping of the input information in a scalar output, applying fuzzy rules. The mapping 
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could be possible through fuzzy if–then rules, input/output membership functions, a total 

of output sets, and de-fuzzification. An FLC can be taken as a congregation of 

autonomous multi-data, single-output network. The FLC mainly comprises four parts: the 

inference engine, rules base, fuzzifier and de-fuzzifier. The rule base of the FLC can be 

created using the numeric information. When the fuzzy rules are developed, FLC becomes 

a system that gives output data, after processing the input data using fuzzy rules and fuzzy 

linguistic expressions. The fuzzifier receive data values and checks the level of 

relationship with each of the fuzzy sets along with membership functions. The FLC 

changes crisp inputs into crisp outputs. The fuzzy logic system consists of five stages to 

complete the operation. These are as follows; 

Step 1: Feed input data to FLC 

The input data is fed to FLS. The fuzzy system distinguishes the degree of association of 

input variables using fuzzy rule database and membership functions. That is called 

fuzzification of input data. 

Step 2: Functions of Fuzzy Operator 

The fuzzy system measures the degree of association of each fuzzified input data that 

fulfils for each rule of the fuzzy rule base. If the rule exists among more than one 

membership functions, the fuzzy operator gets a single value of the rule. 

Step 3: Apply the algorithm for generation of rules 

The fuzzy membership function is reshaped through an algorithm, which is a parameter of 

a fuzzy set. A function is associated for reshaping the output, related to the forerunner. 

Step 4: Clustering the results 

Each rule of the fuzzy database produces a result, that is  integrated to get a decision from 

fuzzy logic system. The clustering of each rule base results leads to an aggregated fuzzy 

set as output. 

Step 5: Aggregate all output 

The aggregate output fuzzy set consider as an input for the defuzzification method and the 

output is single value. The aggregate of a fuzzy set incorporate a sort of output values and 

defuzzified in order to determine a single output value from the set. 
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5.2.1 Concept  of Fuzzy Membership Function 

The fuzzy membership function plays a significant role in the modeling of the fuzzy logic 

controller. The fuzzy membership function describes the fuzzy set and delivers an amount 

of the degree of similarity or inaccurate enslavements of an element to a fuzzy set.The 

triangular, gaussian, trapezoidal, Bell-shaped, etc. are the membership functions mostly 

used in the fuzzy logic analysis, but any other type of membership functions can also be 

used.The non-zero degree membership elements are called as support and one degree 

membership elements are called as core of the fuzzy set. The membership functions are 

usually called μF (x) is shown in the Figures 5.1(a), 5.1(b) and 5.1(c).Where μ is signifies 

as the degree of the weight of the element x in the fuzzy set F. The size of the membership 

function is typically stated to zero to one. Therefore, each component of the fuzzy set. Fits 

with a degree in the range of [0, 1]. The following three types of membership function 

selected in the present analysis are address below. 

The Triangular membership function is shown in Figure 5.1 (a). The Triangular 

membership function μF(x) has three vertices ‘p’, ‘q’ and ‘r’ of the fuzzy set ‘F’. The 

degree of membership is equivalent to zero at point ‘p’ & ‘r’ and degree of membership is 

equal to one at point ‘q’. The mathematical exemplification of the fuzzy triangular 

membership function μF(x) can be described below. 
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The parameter ‘p’ and ‘r’ placed at feet of the triangle and the parameter ‘q’ placed at the 

pick. 

The fuzzy gaussian membership function is shown in figure 5.1 (b). The gaussian 

membership function is determined by the ‘c’ and ‘α’. Where ‘α’ is the width of 

membership function and ‘c’ is denoted the center of membership function. The 

mathematical exemplification of the gaussian fuzzy membership function can be described 

as below.   

      2

x;c, exp 0.5 x c                              (5.2) 

The trapezoidal membership function is shown in Figure 5.1(c). It has two base points (e, 

h) and two shoulder point (f, g).The mathematical representations of the trapezoidal 

membership function are as follows.                                                                             
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5.2.2 Designing of Fuzzy Logic Model using Fuzzy Rule 

Fuzzy logic system is based on the permutation of fuzzy logic and fuzzy set theory. Fuzzy 

logic system possesses the approximation feature with the help of fuzzy IF-THEN rules 

and fuzzy membership functions. Figure 5.2 shows a basic model of fuzzy inference 

system. 

 

The input and output variables intricately depend on working domain of any real complex 

problem, so the optimization of input and output data is necessary for the better solution of 

complex systems. Sometimes approximation of input and output variables of a complex 

application is preferable, rather than going through an elaborate process, which gets more 

time to solve the same problem. The fuzzy rules and membership functions have been 

used to perform the fuzzy system for the approximation of input and output 

parameters.The fuzzy membership functions are significant parameters of the fuzzy 

system, which are designed using proper fuzzy rules and fuzzy linguistic term.The 

fuzzification of input variables and defuzzification of the output variables have been 

performed using the conditional statement and fuzzy rules. The conditional statements like 

fuzzy intersection, union and complement have been used to develop the membership 

functions of the fuzzy system. Hence, the fuzzy model receives the input variables from 

the working domain to an absolute circumstances and using the fuzzy rules. It will give an 

organized action as preferred by the system. 

 

 

Figure 5.2: General structure of fuzzy logic system 
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5.2.3 Modeling of Defuzzification Mechanism 

The conversion of fuzzy outputs into crisp output in the fuzzy system is called 

defuzzification. Defuzzification approach is selected based on the features of the 

application. The last step in modeling of fuzzy system is the transformation of fuzzy 

output set to a crisp output. The crisp output illustrates the possible distribution of the 

conditional fuzzy control action. The correlation between the fuzzy output set (K), non-

fuzzy output (X0) and defuzzifier in the following equation;  

X0 = Defuzzifier (K). 

For the development of the fuzzy system, several defuzzification methods are used. The 

mostly used defuzzication methods are listed below;  

(1) Centroid of the area method            (2) Mean of maximum method 

(3) Maximum membership principle    (4) Weighted average method 

5.3 Analysis of Mamdani Fuzzy Logic Mechanism for 

Identification of Multiple Crack in Rotor 

In the present segment introduces the analysis of triangular, gaussian and trapezoidal 

membership functions for the development of Mamdani fuzzy models. The five input data 

are fed into fuzzy model and four variables are received as output. The linguistic variables 

used for the inputs are as follows; 

(1)   rnfx = Relative natural frequency in x-axis direction 

(2)   rnfy = Relative natural frequency in y-axis direction   

(3)   rax  =  Relative amplitude in x-axis direction 

(4)   ray  =  Relative amplitude in y-axis direction 

(5)    ν    =  Viscosity of fluid  

The linguistic variables used for the outputs are as follows; 

(1) rfcl = Relative first  crack location         (2)  rfcd =Relative first crack location  

      (3)  rscl =Relative second crack  depth        (4) rscd =Relative second crack depth  

Figures 5.3(a), 5.3(b) and 5.3(c) illustrate the triangular membership, gaussian 

membership and trapezoidal membership fuzzy models respectively. The various fuzzy 

linguistic variables with detail description of the membership function name and range of 

linguistic term have been illustrated in the Table 5.1. Fuzzy controller has been trained 

with the help of many defined fuzzy rules. Twenty fuzzy rules are taken from the several 
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rules and described in Table 5.2. Eleven membership functions are considered for all five 

input parameters. Nineteen membership functions are taken for the output parameters of 

relative first and second crack depth. Whereas Forty-six membership functions are 

considered for the four output parameters (i.e. relative first crack location and depth). 

Figures 5.4, 5.5, and 5.6  shows the three menmbership function(i.e. Triangular, Gaussian, 

and Trapezoidal) of fuzzy controller model.The process of defuzzification of the Mamdani 

fuzzy system with three membership function (i.e. Triangular, Gaussian, and Trapezoidal) 

are illustrated in Figures 5.7, 5.8 and 5.9 respectively by activating the rule no. 5 and 18 

from Table 5.2. 

 

 

 

 

 

Figure 5.3(a): Triangular fuzzy controller model. 

Figure 5.3 (b): Gaussian fuzzy controller model. 
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5.3.1 Designing the Mamdani Fuzzy Logic Mechanism for  Multiple 

Crack Identification in Rotor 

The rules for fuzzy mechanism can be defined, based on above fuzzy linguistic terms as 

follow: 

IF  rfnf is rnfxp and rsnf is rnfyq and rfa is raxr  and rsa is rays and ν is vt 

THEN   rfcl is rfclpqrst and  rfcd is  rfcdpqrst and rscl  is rsclpqrst and rscd is rscdpqrst       (5.4)                                                                                           

Where p, q, r, s, t =1to11. 

According to fuzzy methodology a factor, 
pqrstW  is defined in the rules as follows 

[142,207]:  

       

            

pqrst p p q q r r s s

t t

W μ rnfx  freq   μ rnfy  freq   μ rax  Amp   μ ray  Amp  

 μ v  v  

   


            

   

(5.5)

                 

 

Where:  and p qfreq freq  are the first and  second relative natural frequencies at x and y-

axis directions of the carcked cantilever rotor respectively;   and  r sAmp Amp  first and 

second relative amplitudes at x and y-axis directions of  the cracked cantilever rotor; tv  is 

the viscosity of fluid. The  membership values of the relative  carck loaction and relative 

crack depth, (crack_location) rcli and (crack_depth) rcdi (i=1,2) by relating  the composition 

rule of fuzzy inference can be inscribed as [142, 207]:    

_ _pqrst 
pqrst pqrst

μ (crack location) w  μ (crack location)   rcli
rcli rcli length

                  (5.6a) 

_ _pqrst 
pqrst pqrst

μ (crack depth) w  μ (crack depth)          rcdi
rcdi rcdi depth

                 (5.6b)                    

The outputs of all sets of fuzzy rules combined to accomplish the comprehensive 

conclusions can be written as follows;  

Figure 5.3 (c): Trapezoidal fuzzy controller model. 
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11111

12121212121

_ _ _

                                       _

pqrst

μ (crack location)  μ (crack location) ..  μ (crack location)  
rcli rcli rcli

.. μ (crack location)
rcli

  

 
             (5.7a)                              

11111

12121212121

_ _ . _

                                  _

pqrst

μ (crack depth)  μ (crack depth) ..  μ (crack depth)  
rcli rcli rcli

... μ (crack depth)
rcli

  

 
               (5.7b)                                               

The crisp values of the first and second relative crack location and crack depth can be 

written using Centre of gravity approach as [142,207]:  

1 2

1 2

Re

_ _ _
                           =

_ _

,

,

rcl

rcl

lative crack location (rfcl, rscl)

(crack location) . μ (crack location) . d (crack location)

μ  (crack location) . d (carck location)







   (5.8a)  

1 2

1 2

Re

_ _ _
                              =

_ _

,

,

rcl

rcl

lative crack depth (rfcd, rscd)  

(crack depth) . μ (crack depth) . d (crack depth)

μ  (crack depth) . d (crack depth)







  (5.8b)        

 

Table 5.1: Description of fuzzy linguistic variable. 

Linguistic 

term with 

range 

Membership 

function name 

Description and range of the linguistic term 

rnfx1 to 4 H1NF1,H2NF1,H3N

F1, H4NF4, 

High ranges of relative natural frequency in X-direction of 

vibration in ascending order respectively. 

rnfx 5 to 7 M1NF1,M2NF1,M3

NF1, 

Medium  ranges of relative natural frequency in X-direction of 

vibration in ascending order respectively 

rnfx8 to 11 L1NF1,L2NF1,L3NF

1, L4NF1 

Lower ranges of relative natural frequency in X-direction of 

vibration in descending order respectively. 

rnfy1to 4 H1NF2,H2NF2,H3N

F2, H4F2 

Higher ranges of relative natural frequency in Y-direction of 

vibration in ascending order respectively. 

rnfy5 to 7 M1NF2,M2NF2,M3

NF2 

Medium ranges of relative natural frequency in Y-direction of 

vibration in ascending order respectively. 

rnfy8to 11 L1NF2, L2NF2, 

L3NF2, L4NF2 

Lower ranges of relative natural frequency in Y-direction of 

vibration in descending order respectively. 

rax1 to 4 H1A1,H2A1,H3A1 Higher  ranges of relative amplitude in X-direction of vibration 

in ascending order respectively 

rax 5 to 7 M1A1,M2A1,M3A1 Medium  ranges of relative amplitude in X-direction of 

vibration in ascending order respectively 
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rax8 to 11 L1A1,L2A1,L3A1, 

L4A1 

Lower  ranges of relative amplitude in X-direction of vibration 

in descending order respectively 

ray1 to 4 H1A2,H2A2,H3A3 High ranges of relative amplitude in Y-direction of vibration in 

ascending order respectively. 

ray 5 to 7 M1A2,M2A2,M3A2 Medium  ranges of relative amplitude in Y-direction of 

vibration in ascending order respectively 

ray8 to 11 L1A2,L2A2,L3A2, 

L4A2 

Lower ranges of relative amplitude in Y-direction of vibration 

in descending order respectively 

V1 to 4 H1V1,H2V1,H3V1, 

H4V1 

Higher ranges of viscosity of viscous medium in ascending 

order respectively 

V5 to 7 M1V1,M2V1,M3V1 Medium  ranges of viscosity of viscous medium in ascending 

order respectively 

V8 to 11 L1V1,L2V1,L3V1, 

L4V1 

Lower  ranges of viscosity of viscous medium descending order  

respectively 

rfcl1 to 21 S1CL1,S2CL1,S3CL

1, S4CL1…S21CL1 

Smaller  ranges of relative crack depth  of rotor in descending  

order respectively 

rfcl22to 24 M1CL1,M2CL1, 

M3CL1 

Medium  ranges of relative crack depth  of rotor in ascending  

order respectively 

rfcl25 to 46 B1CL1, B2CL1, 

B3CL1… B22CL1 

Bigger  ranges of relative crack depth  of rotor in ascending  

order respectively 

rfcd1 to 9 S1CD1,S2CD1,S3CD

1, S4CD1 ….S9CD1 

Smaller   ranges of relative crack location in the  rotor  in 

ascending  order respectively 

rfcd10 M1CD1 Medium   ranges of relative crack location in the  rotor in 

ascending  order respectively 

rfcd 11 to 19 L1CD1, L2CD1, 

L3CD1…… L9CD1 

Larger   ranges of relative crack location in the  rotor  in 

ascending  order respectively 

rscl1 to 21 S1CL2,S2CL2,S3CL

2,S4CL2 ….S21CL2 

Smaller  ranges of relative crack depth  of rotor  in ascending  

order respectively 

rscl22to 24 M1CL2,M2CL2, 

M3CL2 

Medium  ranges of relative crack depth  of rotor  in ascending  

order respectively 

rscl25 to 46 B1CL2, B2CL2, 

B3CL2…… B22CL2 

Bigger  ranges of relative crack depth  of rotor  in ascending  

order respectively 

rscd1 to 9 S1CD2,S2CD2,S3CD

2, S4CD2 ….S9CD2 

Smaller  ranges of relative crack location in the  rotor  in 

descending  order respectively 

rscd10 M1CD2 Medium  ranges of relative crack location in the  rotor  in 

ascending  order respectively 

rscd 11 to 19 L1CD2, L2CD2, 

L3CD2…… L9CD2 

Larger  ranges of relative crack location in the  rotor  in 

ascending  order respectively 
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Table 5.2: Example of some fuzzy rules out of several fuzzy rules for the rotor. 

Sl. No. Few rules  for fuzzy controller 

1 If rnfx is H1NF1, rnfy is H2NF2, rax is H1A1, ray is H2A2, v is L2V1 then rfcl 

is B17CL1 and rfcd is S8CD1, and  rscl is L18CL2 and rscd is S5CD2 

2 If rnfx is H2NF1, rnfy is H3NF2, rax is H2A1, ray is H3A2, v is L1V2 then rfcl 

is B15CL1 and rfcd is S7CD1, and  rscl is L16CL2 and rscd is S3CD2 

3 If rnfx is H3NF1, rnfy is L1NF2, rax is H3A1, ray is L1A2, v is M1V1 then rfcl 

is M2CL1 and rfcd is M1CD1, and  rscl is B2CL2 and rscd is S6CD2 

4 If rnfx is M1NF1, rnfy is H3NF2, rax is M1A1, ray is H3A2, v is M2V1 then 

rfcl is B10CL1 and rfcd is S5CD1, and  rscl is L4CL2 and rscd is S8CD2 

5 If rnfx is M2NF1, rnfy is L3NF2, rax is M2A1, ray is L3A2, v is M3V1 then rfcl 

is S18CL1 and rfcd is M1CD1, and  rscl is S8CL2 and rscd is L2CD2 

6 If rnfx is H4NF1, rnfy is H1NF2, rax is H1A1, ray is H3A2, v is L1V1 then rfcl 

is B19CL1 and rfcd is S8CD1, and  rscl is L7CL2 and rscd is S1CD2 

7 If rnfx is L1NF1, rnfy is M2NF2, rax is M3A1, ray is H2A2, v is L2V1 then rfcl 

is M1CL1 and rfcd is L2CD1, and  rscl is L3CL2 and rscd is S7CD2 

8 If rnfx is M3NF1, rnfy is M2NF2, rax is M2A1, ray is M3A2, v is L3V1 then 

rfcl is S16CL1 and rfcd is S9CD1, and  rscl is M2CL2 and rscd is L1CD2 

9 If rnfx is H2NF1, rnfy is L2NF2, rax is H4A1, ray is L2A2, v is M1V1 then rfcl 

is S8CL1 and rfcd is L8CD1, and  rscl is S4CL2 and rscd is L5CD2 

10 If rnfx is L2NF1, rnfy is L4NF2, rax is L2A1, ray is L4A2, v is H3V1 then rfcl 

is S5CL1 and rfcd is L7CD1, and  rscl is S2CL2 and rscd is L8CD2 

11 If rnfx is M1NF1, rnfy is L4NF2, rax is M3A1, ray is L2A2, v is H2V1 then rfcl 

is S10CL1 and rfcd is L5CD1, and  rscl is S14CL2 and rscd is L2CD2 

12 If rnfx is H3NF1, rnfy is M3NF2, rax is H1A1, ray is M1A2, v is L1V1 then rfcl 

is B9CL1 and rfcd is L6CD1, and  rscl is S20CL2 and rscd is S8CD2 

13 If rnfx is L3NF1, rnfy is L1NF2, rax is L3A1, ray is L2A2, v is H2V1 then rfcl 

is B9CL1 and rfcd is L5CD1, and  rscl is S20CL2 and rscd is S8CD2 

14 If rnfx is L4NF1, rnfy is L2NF2, rax is L4A1, ray is L2A2, v is H3V1 then rfcl 

is S6CL1 and rfcd is L4CD1, and  rscl is S8CL2 and rscd is L7CD2 

15 If rnfx is H1NF1, rsnf is H2NF2, rfa is M3A1, rsa is M1A2, v is L2V1 then rfcl 

is B8CL1 and rfcd is S17CD1, and  rscl is S18CL2 and rscd is L3CD2 

16 If rnfx is M3NF1, rnfy is L3NF2, rax is L2A1, ray is L1A2, v is M1V1 then rfcl 

is S9CL1 and rfcd is L4CD1, and  rscl is M2CL2 and rscd is L2CD2 

17 If rnfx is L2NF1, rnfy is M1NF2, rax is L4A1, ray is M1A2, v is H2V1 then rfcl 

is S9CL1 and rfcd is L5CD1, and  rscl is M2CL2 and rscd is S5CD2 

18 If rnfx is H2NF1, rnfy is M2NF2, rax is H4A1, ray is L2A2, v is L3V1 then rfcl 

is S14CL1 and rfcd is L5CD1, and  rscl is M3CL2 and rscd is S9CD2 

19 If rnfx is H4NF1, rnfy is L4NF2, rax is L2A1, ray is L3A2, v is H3V1then rfcl 

is S20CL1 and rfcd is S8CD1, and  rscl is M1CL2 and rscd is L4CD2 

20 If rnfx is L1NF1, rnfy is L4NF2, rax is L3A1, ray is L2A2, v is H2V1 then rfcl 

is S4CL1 and rfcd is L6CD1, and  rscl is S16CL2 and rscd is L8CD2 
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    (b)NaturalFrequency at y-axis   direction. (a) Natural Frequency at x-axis direction. 

(c) Amplitude at x-axis direction. (d) Amplitude at y-axis direction. 

(e):Membership function for viscosity of fluid. 

(f) Relative first crack depth. 

(g) Relative second crack depth. 

(h) Relative first crack location. 

(i) Relative second crack location. 

Figure 5.4: Membership functions for  triangular  fuzzy  controller model 

 

6.2389 

H2A2 

6.0533 5.9047 5.8362 5.8092 5.7696 5.7142 5.6869 5.5272 5.3899 5.2738 5.1876 

0.0 

L4A2 L3A2 L2A2 L1A2 M1A2 M2A2 M3A2 H1A2 H3A2 H4A2 

5.1058 

1.0 

 

0.908 

1.0 

0.0 

0.2645 0.306 

0.3253 

0.3455 

0.3657 

0.3859 

0.406 

0.4263 

0.4465 

0.4667 

0.4869 

0. 508 

0.5273 

0.5475 

0.5679 

0.5842 

0.602 

0.6281 

0.6483 

0.6685 

0.6887 

0.704 

0.4291 

0.7493 

0.7798 

0.806 

0.8213 

0.8415 

0.8792 0.9285 

0.9587 

0.9817 0.2847 0.2443 

0.2214 

0.204 

0.1839 

0.1635 

0.1432 

0.1231 

0.102 

0.0817 

0.0615 

0.0412 

0.0205 

0.01 

S9CL2 S7CL2 S5CL2 S3CL2 S1CL2 M2CL2 B1CL2 B3CL2 B5CL2 B7CL2 B9CL2 B11CL2 B13CL2 B15CL2 B17CL2 B19CL2 B21CL2 

B22CL2 B20CL2 B18CL2 B16CL2 B14CL2 B12CL2 B10CL2 B6CL2 B6CL2 B4CL2 B2CL2 M3CL2 M1CL2 S2CL2 S4CL2 S6CL2 S8CL2 S12CL2 S10CL2 

S11CL2 S13CL2 

S14CL2 

S15CL2 

S16CL2 

S17CL2 

S18CL2 

S19CL2 

S20CL2 

S21CL2 

1.0 

 S7CD1 L9CD1 L8CD1 L7CD1 L6CD1 L5CD1 L4CD1 L3CD1 L2CD1 L1CD1 M1CD1 S1CD1 S2CD1 S3CD1 S4CD1 S5CD1 S6CD1 S8CD1 S9CD1 1.0 

0.0 

0.60 0.575 0.550 0.525

0 
0.50 0.475 0.45 0.40 0.375 0.35 0.30 0.275 0.250 0.20 0.175 0.15 0.125 0.10 0.075 0.045 0.01 

 S7CD2 L9CD2 L8CD2 L7CD2 L6CD2 L5CD2 L4CD2 L3CD2 L2CD2 L1CD2 M1CD2 S1CD2 S2CD2 S3CD2 S4CD2 S5CD2 S6CD2 S8CD2 S9CD2 1.0 

0.0 

0.60 0.575 0.550 0.525

0 
0.50 0.475 0.45 0.40 0.375 0.35 0.30 0.275 0.250 0.20 0.175 0.15 0.125 0.10 0.075 0.045 0.01 

 H2V1 

2.900 2.512 2.201 1.962 1.523 1.376 1.168 0.936 0.542 0.269 0.0633 

1.0 H4V1 H3V1 H1V1 M3V1 M2V1 M1V1 L1V1 L2V1 L3V1 L4V1 

0.0 

0.0512

1 

3.00 

 
B22CL1 

0.908 0.2645 0.306 

0.3253 

0.3455 

0.3657 

0.3859 

0.406 

0.4263 

0.4465 

0.4667 

0.4869 

0. 508 

0.5273 

0.5475 

0.5679 

0.5842 

0.602 

0.6281 

0.6483 

0.6685 

0.6887 

0.704 

0.4291 

0.7493 

0.7798 

0.806 

0.8213 

0.8415 

0.8792 0.9285 

0.9587 

0.9817 0.2847 0.2443 

0.2214 

0.204 

0.1839 

0.1635 

0.1432 

0.1231 

0.102 

0.0817 

0.0615 

0.0412 

0.0205 

0.01 

S9CL1 S7CL1 S5CL1 S3CL1 S1CL1 M2CL1 B1CL1 B3CL1 B5CL1 B7CL1 B9CL1 B11CL1 B13CL1 B15CL1 B17CL1 B19CL1 B21CL1 

B20CL1 B18CL1 B16CL1 B14CL1 B12CL1 B10CL1 B4CL1 B2CL1 M3CL1 M1CL1 S2CL1 S4CL1 S6CL1 S8CL1 S12CL1 S10CL1 

S11CL1 S13CL1 

S14CL1 

S15CL1 

S16CL1 

S17CL1 

S18CL1 

S19CL1 

S20CL1 

S21CL1 

B6CL1 B8CL1 

1.0 

 H2A1 

6.2873 6.1932 5.9678 5.8834 5.8122 5.7862 5.7481 5.7123 5.6295 5.4429 5.3142 5.2674 

0.0 

L4A1 L3A1 L2A1 L1A1 M1A1 M2A1 M3A1 H1A1 H3A1 H4A1 

5.0972 

1.0 

 H2NF1 

1.0 0.912 0.8739 0.8541 0.8268 0.7734 0.7343 0.7014 0.6812 0.6548 0.6387 0.6046 

0.0 

L4NF1 L3NF1 L2NF1 L1NF1 M1NF1 M2NF1 M3NF1 H1NF1 H3NF1 H4NF1 

0.5743 

1.0  H2NF2 

1.0 0.899 0.8621 0.8368 0.8072 0.7512 0.7278 0.6901 0.6672 0.6399 0.6109 0.5815 

0.0 

L4NF2 L3NF2 L2NF2 L1NF2 M1NF2 M2NF2 M3NF2 H1NF2 H3NF2 H4NF2 

0.5486 

1.0 



Chapter 5                              Analysis of Fuzzy System for Detecting the Multiple Crack in 

Cantilever Rotor 

 

110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Natural Frequency at y-axis direction (a) Natural Frequency at x-axis direction 

(c)  Amplitude at x-axis direction. (d) Amplitude at y-axis direction. 

(e)  Viscosity of fluid 

 (i) Relative second crack location. 

  
 (i) Relative second crack location. 

  

Figure 5.5: Membership functions for gaussian fuzzy controller model 
 

(f) First relative first crack depth. 

 

(g) First relative second crack depth. 
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(g) Relative second crack depth 

(a) Natural Frequency at x-axis direction 
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    (b) Natural Frequency at y-axis direction 

(c) Amplitude at x-axis direction (d) Amplitude at y-axis direction 

(e)   Viscosity of fluid 

 

(f) Relative first crack depth 

 

 (h) Relative first crack location 

 

  (i)  Relative second crack location. 

 
 

Figure 5.6: Membership functions for Trapazoidal  fuzzy controller model 
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Figure 5.7: Resultant values of first and second relative crack depth and crack locations 

from triangular membership function while activated the fuzzy rules no 5 and 18 of 

Table 5.2 for the  rotor. 
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Figure 5.8: Resultant values of first and second relative crack depth and crack locations 

from gaussian membership function while activated the fuzzy rules no 5 and 18 of Table 5.2 

for the rotor. 
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Figure 5.9: Resultant values of first and second relative crack depth and crack locations 

from trapezoidal membership function while activated the fuzzy rules no 5 and 18 of Table 

5.2 for the rotor. 

Inputs for fuzzy Rule no 5                                 
 

Inputs for fuzzy Rule no 18 
 

 

 

 



Chapter 5                              Analysis of Fuzzy System for Detecting the Multiple Crack in 

Cantilever Rotor 

 

115 

5.4 Analysis of Takagi-Sugeno Fuzzy Logic Mechanism for 

Identification of Crack in Rotor 

In this segment, the Takagi-Sugeno fuzzy controller is used for identification of crack in 

cantilever rotor partially submerged in the viscous medium. The input and output variables  

are taken for T-S fuzzy controller system as similar as the Mamdani type fuzzy system. 

The Takagi-Sugeno  method of fuzzy inference was introduced by the Takagi, sugeno and 

Kang [1985] to develop a systematic approach for producing fuzzy rules from a given 

input-output data set. In general, the structure of Takagi-Sugeno type fuzzy model is 

similar to the Mamdani type fuzzy model. The first order Takagi-Sugeno model has more 

degrees of freedom and hence the estimated capability is higher, with a more risk to over 

fit. The practice of minimum degrees of freedom is employed to control overfitting the 

problem. Zero-order Sugeno fuzzy is highly interpretable than the first-order Sugeno 

fuzzy model. Hence, the assortment of the Tagaki-Sugeno type model depend on the 

requirements of the problem and the probability to overfit the fuzzy system. For the n-

dimensional input, m-dimensional output of the system, the rule of the T-S fuzzy inference 

system is described by the equation are as follows;     

1 1 1 1(   P ) ...... (   P )  (   Q ) .... (  Q )k k k k

n n m mIF y is and and y is then u is and and u is                          (5.9) 

Where 1( ,........., )ny y y are the input variables and 1( ,..... )mu u u  are the output 

variables, k

nP  are the set of fuzzy defined on the input variables and  k

i 1,....,Q i m are 

fuzzy singletons defined on the output variables over the output variables iu .When u  is 

constant the resulting model is called as the Zero-order Sugeno fuzzy model. It can be 

viewed in the case of the Mamdani fuzzy logic system, in which a fuzzy singleton 

specifies each rule's consequent. Figure 5.10 represents the cognitive mechanism for zero-

order Sugeno model. More specifically, the consequent part of this fuzzy simplified rule 

can be seen either as a singleton fuzzy set in the Mamdani model or as a constant output 

function in TS models. In this work, the membership functions have been verified based 

on the analysis of error (average error calculation). The three membership function (i.e. 

Triangular, Gaussian and Trapezoidal) employed in the zero-order Sugeno based models. 

Based on a set of K rules, the output of any unknown input vector y(0) is obtained by the 

following fuzzy cognitive formula:  
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   
1

,       k=1,.......,K
n

k jk i
i

Y y 


                                                                                            (5.10) 

It is noted that while calculating the rule activation strength, the connective AND can be 

understood through changed T-norm operators: usually there is a choice between product 

and min operated. Here chosen the product operator as it keeps up more input statistics 

than the min operator and mostly provides a smoother output surface which is a required 

possession in any modeling application. Calculate the inferred outputs ju


 by taking the 

weighted average of consequent values k

jQ  with respect to rule activation strength  k y : 

 

 
1

1
,         i=1,......,m

jk
K y q

k
j K

k

k

k
u

y














                                                                                             (5.11) 
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Figure 5.10: Zero-order T-S fuzzy logic system with two inputs and two rules [208]. 
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5.5 Analysis of Hybrid Fuzzy Logic Mechanism for 

Identification of Multiple Crack in Rotor 

This section introduces the mechanism of hybrid fuzzy controller for multiple crack 

identification  in rotor partially submerged in the viscous fluid. To diagnose the locations 

and depths of multiple crack in rotor system, a novel fuzzy  base hybrid model has been 

developed. Takagi-Sugeno type fuzzy models are more accurate than the Mamdani type 

fuzzy models, but they have much more parameters what sometimes might be a drawback. 

A hybrid approach has been offered to reduce the number of parameters and to maintain 

the prediction accuracy for the fault diagnosis. Figure 5.11 illustrates the structure of the 

hybrid fuzzy model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11:  Hybrid fuzzy architecture for crack identification. 

In this segment hybrid fuzzy model are designed by combination of Mamdani fuzzy and 

Takagi- Sugeno fuzzy system. The hybrid fuzzy controllers are trained by means of 

vibration characteristics which is extracted from the theoretical, experimental, and FE 

analysis. The first and second relative natural frequencies, first and second relative 

amplitude and viscosity of fluid are considered as an input parameters for hybrid fuzzy 

controller. Mamdani fuzzy controllers have given the output in the form of interim values 

(i.e. rfcl _interim, rfcd _interim, rscl_interim, rscd_interim). The Takagi-Sugeno fuzzy 

controller receives the interim outputs parameters from the Mamdani fuzzy controller 
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along with the two relative natural frequencies, two relative amplitude, and viscosity of 

fluid as inputs.Finally, the output parameters rfcl_final, rfcd_final, rscl_final, rscd_final 

are obtained from the hybrid fuzzy controller. The comparison of result obtained from the 

Mamdani fuzzy, Sugeno fuzzy, hybrid fuzzy and experimental analysis have been 

illustrated in Table 5.7 and the results are obtained  to be in close agreement. 

5.6 Results and Discussion 

In this section  analysis of results are carried out from developed Mamdani fuzzy, Takagi-

Sugeno fuzzy and fuzzy based hybrid model to forcast the multiple crack locations and 

depths in cantilever rotor system partially immersed in the viscous fluid medium. The 

Mamdani and Takagi-Sugeno fuzzy model are used the triangular, gaussian and 

trapezoidal membership functions. The fuzzy based hybrid systems are active with the 

gaussian membership function. The proposed FL model with three different type of fuzzy 

membership function (i.e. Triangular, Gaussian and Trapezoidal) has been developed for 

the five input variable (two relative natural frequency, two relative amplitude and 

viscosity of fluid) and four output variables (first and second relative crack locations and 

depths). Figures 5.1(a), 5.1(b) and 5.1(c) illustrate the three type of membership function 

(Triangular, Gaussian and Trapezoidal) employed for the progress of the knowledge base 

system. The different stages incorporated in the fuzzy logic system are presented in Figure 

5.2. Figures 5.3(a), 5.3(b) and 5.3(c) present the triangular, gaussian and trapezoidal 

membership function with linguistic term respectively. Tables 5.1 and 5.2 show the 

various linguistic term with range and twenty fuzzy rules used to train the fuzzy logic 

based crack identification system for rotor respectively. The complete structure of the 

Mamdani fuzzy system including three different type of membership function with the 

linguistic variable has been illustrated in Figures 5.4 to 5.6. The process of defuzzification 

for the Mamdani fuzzy model has been implemented using triangular, gaussian and 

trapezoidal membership functions with the help of activated rules 5 and 18 of Table 5.2 

and presented in Figures 5.7 to 5.9. The obtained results from the developed Mamdani 

fuzzy models using triangular, gaussian and trapezoidal membership functions and 

experimental analysis have been compared in Table 5.3 for the rotor.Table 5.3 present the 

analysis result of the Mamdani fuzzy system. It has been observed that the  Mamdani  

gaussian fuzzy gives the better results as compared to Mamdani triangular fuzzy and 

Mamdani trapazoidal fuzzy  system. The illustrative view of mechanism of zero-order 
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Sugeno fuzzy model is presented in Figure 5.10. The comparison of results obtained from 

the implemented sugeno triangular fuzzy model, Sugeno gaussian fuzzy model, Sugeno 

trapezoidal fuzzy model and experimental analysis have been presented  in Table 5.5. 

From the analysis of sugeno fuzzy  model,  it has been observed that the sugeno gaussain 

fuzzy gives the closer result as compared to sugeno trapezoidal fuzzy and sugeno 

triangular fuzzy model.Table 5.6 represents the comparison of results obtained from 

theoretical, experimental, FE analysis and Sugeno fuzzy gaussian model for the rotor. The 

hybrid fuzzy model is the combination of the Mamdani fuzzy and Sugeno fuzzy model 

with gaussian membership function has been implemented. Figure 5.11 represents the 

structure of the hybrid fuzzy controller. The obtained results from the developed hybrid 

fuzzy model with gaussian membership function and experimental analysis have been 

compared in Table 5.7 for the rotor. Table 5.7 represents the comparison of results 

obtained from Mamdani fuzzy, Sugeno fuzzy, hybrid fuzzy and experimental analysis for 

the rotor. It has been observed that the hybrid fuzzy model provides the better result as 

compared to Mamdani fuzzy and Sugeno fuzzy model.  
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5.7 Summary 

The Mamdani fuzzy, Takagi-Sugeno fuzzy and hybrid fuzzy approaches are implemented 

in the present analysis.The following summary can be drawn by considering the results 

derived from Mamdani fuzzy, Sugeno fuzzy and hybrid fuzzy models.The two relative 

natural frequencies, two relative amplitude and viscosity of fluid are considered as input 

parameters and two relative crack locations, two relative crack depths are taken as the 

output parameters for proposed fuzzy models. The result derived from the developed 

Mamdani fuzzy model, Sugeno fuzzy model and hybrid fuzzy model  have been compared 

with experimental  test  results  to authenticate the  effectiveness of proposed fuzzy 

models. The total  percentage of  error of the obtained result of the Mamdani triangular 

fuzzy model is 7.32%, for the Mamdani gaussian fuzzy model is 5.25% and for the 

Mamdani trapezoidal fuzzy model is 6.77%. From the analysis result of  takagi-sugeno 

fuzzy model, It has been observed that the error of the percentage of the obtained result of 

the Sugeno triangular fuzzy model is 6.98%, for the sugeno gaussian fuzzy model is 

5.01% and for the sugeno trapezoidal fuzzy model is 6.12%.The results found to be good 

in agreement. Based on above study, it is found that fuzzy model with gaussian 

membership function gives better results as comparison to triangular and trapezoidal 

models for both  Mamdani and takagi-sugeno fuzzy model. Therefore, the developed 

gaussian membership fuzzy controller can be efficiently used as fault diagnosis tools in 

dynamically analysis of rotor. The fuzzy based hybrid model gives more precise result as 

compared  to Mamdani fuzzy and Sugeno fuzzy. It is found that total percentage of  error 

for hybrid fuzzy model is 4.82 %.  
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Chapter 6 

Analysis of Hybrid BPNN-RBFNN Neural 

Network for Identification of Multiple 

Crack in Cantilever Rotor Partially 

Submerged in the Viscous Medium 

The presence of damage is a serious threat to proper functioning of structures and 

machines. Early detection of damage now has become the subject of serious concern for 

the researchers to secure the performance of systems. The efficient structural fault 

diagnosis methodology can be a valuable technique for proper identification of crack and   

worsening in engineering or industrial structural members. Since the last few years, many 

techniques have been applied to identify the fault in the engineering system. Few of them 

have used the sensors (Radiograph, Magnetic field, eddy current and thermal fields) to 

identify damage and others based on visual method (Dye penetration method). These 

methods consume much time to seize the fault in the system. Since last few years, some 

mathematical models and experimental investigations have been proposed by the 

researchers to determine the crack initiation and propagation. In the current chapter, 

intelligent techniques have been applied based on artificial network techniques to locate 

the multiple crack, present in the rotor which is rotates in the viscous fluid medium. The 

Back Propagation Neural Network (BPNN) and Radial Basis Function Neural Network 

(RBFNN) have been used in the present study. Finally, the obtained results from the 

proposed neural network model are validated with results of experimental analysis and 

show a very well agreement. 

6.1 Introduction 

The present chapter, proposed an introduction of basic design and development of neural 

network controller and learning rule. In a human body, the biological neural network has a 
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systematized set of neurons, assist for several kinds of output (i.e. breathing, thinking etc.) 

The Artificial Neural Networks (ANNs) are simplified models of the biological central 

nervous system. ANN is a massively parallel distributed information processing system 

made up of highly interconnected neural computing elements that have the ability to learn 

and thereby acquire knowledge and make it available for use. Neural network can be used 

to distinguish patterns and recognize trends that are more difficult to be remarked by the 

humans being or other computer system. Many researchers believe neural models offer a 

most promising integrated approach to build truly intelligent computer system. The 

biological network able to process millions of input stimuli in milisec even through the 

process is electrochemical in nature and, therefore, propagates relatively at slow milisec 

rate. Some of its properties  of neural network are outlined below; 

a) Self-Organization: Neural network can acquire outcomes for inputs that are not used 

during training by producing its specific depiction of the information it obtains during 

learning time. This ability benefits in resolving the higher level complicated problem. 

b) Adaptive learning: The neural network system has the ability to control the altering of 

the environment by regulating the synaptic weights and execute as per the condition. 

This features of the neural network system can be applied for industrial applications in 

non- stationary environment. 

c) Real time operation: This feature of the neural network is to compile maximum 

number connected neurons employed in parallel to resolve a particular problem. Neural 

networks learn by example. For this particular hardware devices are manufactured 

which takes advantages of this ability. 

d) Non-linearity: Artificial neural networks (ANNs) have ability to solve the non-linear 

problems. This capability is tremendously used in the field of structural health 

monitoring as the signals from multifaceted structures with inconstant loading. 

e) Input-Output mapping: This is the very influential feature of the artificial neural 

network which includes controlled learning. The network efforts to associate a single 

input signal with a desire response. It revises the synaptic weights by a learning process 

in order to achieve the desired response.  

f) Fault Tolerance: Neural network is integrally fault tolerant. In case of failure of 

neuron in neural network system there will be a partial damage of the network system 

which leads to only weakening the excellence of output instead of crumpling the entire 

system. 
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Since last few decades, many researchers have developed a health monitoring algorithm 

for the structural elements. The development of structural health monitoring techniques is 

a significant achievement of science fraternity because the existence of crack decreases the 

service life of the structural element and accountable for commercial damage and in few 

cases may be loss of human life. The various non-destructive techniques are available in 

the literature for predicting the structural damage, that is not efficient in term of 

correctness and computation time for real problems. Moreover the development of 

mathematical model for the complicated problems is almost impossible. In the present 

analysis, application of ANN with adaptive learning, self-organization capacity, real time 

operation, fault tolerance ability and pattern recognition capability are suitable for design 

of an automated intelligent system. It is capable for fault recognition with very high 

accuracy and less are computation time for faulty dynamic structure. In the present 

scenario various scientist continuously engaged for developing a damage detection tool 

using ANNs.In this section, three types of ANNs have been discussed (i.e. BPNN and 

RBFNN). All two types of ANNs are designed for five input variables (relative first and 

second natural frequencies & relative first and second amplitde and viscosity of fluid) and 

four output variables (relative first and second crack location and relative first and second 

crack depth). A comparison of results obtained from all three ANN models with results 

obtained from theoretical, numerical and experimental is done in current chapter. The 

RBFNN gives the best results as compared to other discussed ANNs models. 

Experimental investigation authenticates the fidelity of neural models.Therefore, it is 

decided that the proposed method can be effectively using for multiple crack 

identification. The current chapter has been organized into six different segments.  Section 

6.1 presents the introduction part of neural network technique. The analysis of the ANN 

model used for identification of multiple crack have been discussed in section 6.2. The 

representation of complete view of the BPNN is presented in section 6.3. The 

representation of complete view of the RBFNN is presented in section 6.4. The results and 

discussions of the results obtained from BPNN and RBFNN model have been discussed in 

section 6.5. Finally the summary of the complete chapter described in section 6.6. 
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6.2  Artificial Neural Network Technique 

ANNs are computational parallel distributed information processing system. It is therefore 

effectively applied in many industrial applications such as fault diagnosis control & 

optimization, industrial process, and sale forecasting, etc. The ability to work under 

challenging environment and parallel computing ability make ANNs most efficient and 

robust to solve the problem easily unlike using analytical methods.  

 

 

Figure 6.1: Model of neuron of artificial neural network 

The important features of the ANN are described below. 

(1) The input variables with synaptic weights are assigned to train neuron that turn upset 

the decision-making capacity of ANN. The inputs to the neuron with synaptic weight 

are also called weighted inputs. 

(2) These weighted inputs are then summed together in summing point and if they exceed 

with pre-set threshold value, the neuron fires. Moreover, for any other cases neuron 

does not fire.  

(3) For limiting the output of neuron, an activation function is provided. The most popular 

activation function is sigmoidal. Mostly the normalized amplitude range of the output 

of a neuron is given as closed unit interval [0, 1] or [-1, 1]. 
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6.2.1 Learning Paradigms of Artificial Neural Network 

The learning process of Artificial neural network  is a mathematical logic which develops 

the  performance  of  ANNs  and  frequently  this rule is  applied repeatedly over the 

network. The learning rule may accept the weights and bias of network and will compare 

the   actual result and predicted result of network to provide better values for weights and 

bias. The learning rule of ANN is mainly divided into three categories;  

a) Supervised learning: In this type of learning process type if the desired output for the 

network is also delivered with the input while training the network. An input and output 

pair are given the neural network and it is possible to calculate an error based on its 

target output and actual output. This error is used to make adjustment to the   network 

by bring up to date its weights.  

b) Unsupervised learning: In this learning process the neural network is only given a set 

of inputs and network's concern to find some kind of arrangement within the inputs 

provided without any outward assistance. 

c) Reinforcement learning: Reinforcement learning is related to supervised learning in 

that some feedback is given, though in its place of given that a target output a reward is 

given based on how sound the system performed. The intention of reinforcement 

learning process is to make the most of the reward the system accepts through trial-and-

error.  

Mathematically, neuron q can be described through the following equations:  

1

x

q qj j

j

u w k


                                                                                                                                             (6.1) 

 q qy g u                                                                                                                                                (6.2)
    

 

Where: k1, k2... kx are the input signals; wq1, wq2... wqx are the synaptic weights of neuron q; 

yq is the output signal of the neuron;  g   is the activation and uq is the linear combined 

output.  
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6.3 Analysis of Feed Forward Back Propagation Neural 

Network Controller used for Multiple Crack 

Identification in Rotor 

The proposed multilayer feed forward neural network controller trained by back-

propagation algorithm has been built for the prediction of relative crack depth and relative 

crack location of the cantilever rotor partially submerged in the viscous medium. (Figure 

6.3.). The neural network has got five input parameters (two relative natural frequency in 

x and y-axis directions, two relative amplitude in x and y- axis directions and viscosity of 

fluid) and four output parameters (first and second relative crack location and depths).Five 

input parameters have been taken from the experimental results.  

6.3.1 Learning Back Propagation Technique 

The feed forward multilayer neural network has been trained using the back propagation 

technique (Figure 6.2). The backpropagation technique is based on delta learning rule in 

which the synaptic weight modification is ended by the mean square error of the output 

value to the input value. This technique computes the loss function gradient for all the 

weights in the network. The gradient is supplied to the optimization method which uses it 

to bring up to date the synaptic weights, in an order to reduce the loss function. To 

computes the gradient of a loss function, backpropagation requires a known and desired 

output for each input value. Each hidden layer error in an opposite way towards the 

propagate movement by the network to be calculated and supply to the network using 

back propagation algorithm to reduce the error in the actual output value and desired 

output value. It is considered as a supervised learning method while it is also used in some 

unsupervised networks such as auto-encoders. 
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Figure 6.2: Back propagation Technique 

6.3.2 Neural Controller Mechanism 

A back propagation neural network has been designed for identification of multiple crack 

of cantilever rotor partially submerged in the viscous fluid. The BPNN model has been 

designed for five input and four output parameters. The input variables to the neural model 

are: ‘rnfx’, ‘rnfy’, ‘rax’, ‘ray’, and ‘ν’. The output variables of BPNN model are: ‘rfcl’, 

‘rfcd’, ‘rscl’ and ‘rscd’. The BPNN model is made with one input layer, seven hidden 

layers and one output layer. The input and output layer contain five and four neurons 

respectively. The input layer neurons represent the relative first & second natural 

frequencies, first & second amplitude and viscosity of fluid. Similarly, output layer 

neurons represent first & second relative crack location and first & second crack depth in 

cantilever rotor.  

The first hidden layer has 16 neurons, the second hidden layer has 50 neurons, the third 

hidden layer has 150 neurons, the fourth hidden layer has 300 neurons, the fifth hidden 

layer has 150 neurons, the sixth hidden layer has 86 neurons and the seventh hidden layer 

has 24 neurons. In the present  investigation  the  number of  hidden  layers  are framed 

and the  number of neurons  in each layer are  chosen  experimentally. Several neural 

networks with the different number of hidden layers and hidden neurons and the 

performance are measured for networks using cross-validation on the basis of above 
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experimentation is chosen. In current  research, considered 1410 samples for training and 

testing. Out of which 900 are used for training and 510 are used for testing. Out of 900 

training data 300(theoretical), 300(FEM analysis) and 300(experimentally) are used. 

Figure 6.3 represents multiple layers back propagation neural network architecture for 

identification of multiple crack. The neural network is trained with 900 patterns 

representing typical scenarios, some of which are illustrated in Table 6.1.  

μ = Momentum coefficient (i.e. 0.2);  

η = Learning rate (i.e.  0.35);  

Network topology 5-16-50-150-300-150-86-24-4 

 

Figure 6.3: Multi-layer feed forward back propagation neural network model for crack 

identification 

ψ1= deviation in natural frequency in x-axis direction. 

ψ2= deviation in natural frequency in y- axis direction. 

ψ3= deviation in amplitude in x-axis direction. 

ψ4=deviation in amplitude in y-axis direction. 
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ψ5=deviation in viscosity of fluid. 

The output of BPNN due to sharing of input layer neuron to hidden layer neuron are given 

by [163]; 

   L

i

L

jf z                                                                                                                      (6.3) 

Where:
     L-1

i.
L L

j ji

i

z W  ,                                                                                             (6.4) 

Layer number (2 or 8) = L 

j
th

 neuron in hidden layer labeled as ‘L’= j 

i
th

 neuron in hidden layer labeled as ‘L-1’=i 

 L
jiW = Weight of connection from ‘i’ neuron in layer ‘L-1’ to j neuron in layer ‘L’ 

The activation function taken as; 

 
xx

xx

ee

ee
xf








                                                                                                                (6.5) 

In the training process output of the neural network  , 1  4actual n i to  may be differ from 

actual output  , 1  4desired n i to  as presented in training pattern of neural network. The 

measure of the performance of neural network is instantaneous sum-squared difference 

between , actual n  and , desired n for the set of given training patterns. 

 
2

, , 

 

1

2
error desired n actual n

all training
pattern

E                                                                                (6.6) 

Where;  

Relative first crack location (rfcl) is represented by parameter  , 1actual n n
   

Relative second crack location (rscl) is represented by parameter  , 2actual n n
  

Relative first crack depth (rfcd) is represented by parameter  , 3actual n n
   

Relative second crack depth (rscd) is represented by parameter  , 4actual n n
  

Feed forward back propagation model, error back propagation method is applied to train 

the network [163]. This model calculates local error gradients to evaluate suitable 

rectifications to reduce error. The error gradient for output layer is; 

    7 7

1 , , desired n actual nf z                                                                                        (6.7) 

 Hence local gradients for hidden layer (L) neuron is represented by;  
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        1 1
  

L L L L

j J k kj

k

f z W
  

   
 
                                                                                  (6.8) 

The weights are modified as per the following terms; 

     1 1ji ji jiW W W                                                                                          (6.9) 

       L-1

j1 L

ji ji ji jW W W                                                                       (6.10) 

Where α (momentum co-efficient) = 0.2 (chosen statically) 

            η (learning rate) = 0.35 (chosen statically) 

            φ = iteration number 

The final output of the feed forward back propagation can be expressed as; 

 9

, actual n nf z                                                                                                               (6.11) 

Where  9 9 8

i n ni

i

z W 
 

6.4 Analysis of Radial Basis Function Neural Network used 

for Multiple Crack Identification in Rotor 

The radial basis function neural network, as a type of feed-forward neural network has 

recently attracted extensive research interest because of its simple architecture, high 

approximation and regularization capability, and good local specialization and global 

generalization ability. RBFNN is a powerful technique for interpolation in multi-

dimensional space. The RBFNN chosen is usually a gaussian-kernel transfer function, the 

response of such a function is positive for all input values. 

6.4.1 RBFNN Mechanism for Identification the Multiple Crack 

Radial basis function neural network (RBFNN) model typically have three layers. The 

first layer is linear and only distributes the input signal, while the next layer is nonlinear 

and uses gaussian functions. The third layer linearly combines the gaussian outputs. The 

nodes of each layer are completely linked to the previous layer. Each node of the input 

layers have been assigned by the input variable and transformed directly towards the 

hidden layer without weights. RBF contained by the hidden nodes, called as the transfer 

functions. RBF is symmetrical about a given center point in a multi-dimensional space. 

Number of hidden node of layer with RBF activation functions are connected in a feed 
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forward parallel manner in the RBFN model. The RBFs related parameters are enhanced 

for the duration of training. These values of parameter are not essentially the same all over 

the network nor are they directly associated by the actual training vectors. When the 

training vectors are supposed to be precise and it is required to implement a smooth 

interpolation between them, then a linear combination of RBFs can be established which 

provide no error at the training vectors. The methods of fitting RBFs to data, for function 

approximation, are closely related to distance weighted regression. 

    2

1

exp
G

k kj j j

j

Y x w c x 


                                                                                                       (6.12) 

Where  kY x = thk  output, 
kjw = weight from the thj  kernel node to the thk  output node, 

jc = centroid of the  thi  kernel node, 
j =width of the thj  kernel node and G = number of 

kernel nodes. Generally 
jc  are selected constantly by the parameters

kjw ,
jc  and

j .The 

singular value decomposed (SVD) are employed to solve the 
kjw and

j . Leonard et al 

[209] have proposed the enhance and better methodology include using K -means 

clustering for finding the
jc . K -nearest heuristic to evaluate the 

je .
kjw is evaluated using 

multiple linear regression. The K -means clustering algorithm determine a set of cluster 

centers and splits the training data into subsets. Every center of cluster is then linked with 

one of the centers presented in the hidden layer.  

After the centers are established the width of each kernel is determined to cover the 

training points. To allow a smooth fit of the desired network outputs. The width is selected 

so that 
j  is greater than the distance to the nearest kernel center but also as small as 

possible to keep its distance of influence to its local region. For designing the radial basis 

function unit algorithms are used which are discussed in detail below. Consider training a 

model that has ‘r’ inputs. Because all inputs are associated to the hidden node, each node 

has r-dimensions center but only one width value is used to scale all r-dimensions.The 

prearrangement of the value of these centers and widths is discussed below. 

Let tx  be the received vector with modules 1tx , 2tx ,……….., rtx . The output of the thj unit, 

 j tu x , in the hidden layer for this input pattern is;  

 
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r

j t it ij j

i

u x x x 



 
     

 
                                                                                (6.13) 
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Where ijx
  is the center of thj  radial basis function unit for input variable i, 

j is the 

width of the thj  RBF unit and itx  is the i
th

 variable of the pattern. The connection between 

the hidden layer units and output layer units are weight sums. The output value ( mtY ) of 

the m
th

 output node is equal to the summation of the weighted outputs of the hidden units, 

given by; 

 
1

exp
H

mt jm j k

j

Y w u x


 
  

 
                                                                                             (6.14)                                                                                                         

Where H is  denoted the quantity of hidden nodes, mtY  is  represented  the  output value  of 

the m
th

 node in the third layer(i.e. output layer) for the t
th

  received pattern, 
jmw  is the 

weight between the j
th

 unit of radial basis function which is  calculated by three steps of 

the training action: 

(1) The centers of   RBF unit are identified by a ‘K-means’ clustering algorithm. 

(2) The nearest-neighbor approaches are used to find the width.  

(3) By applying the multiple linear regression techniques to determine the output unit and 

also the weights linking the RBF units. 

6.4.1.1  Finding the Centers of RBF Unit  

We can use any clustering algorithm for evaluation of RBF unit centers. The K-means 

clustering algorithm has been used to determined a set of cluster from a particular data. 

The numbers of input variable of the first layer (i.e. input layer) are used to calculate the 

dimensions of the RBF unit centers. The centers of the RBF units are coincident to the 

clusters centers. The K-means clustering algorithm begins as follows: 

1. Altered arbitrarily selected training pattern has been used for adjusting the 

development of each cluster. 

2. Allocate each training pattern to closest cluster. It can be completed by determining 

the Euclidean distance between the cluster centers and the training patterns. 

3. Compute the average location for each other center after allocating all the training 

patterns. Then they become a fresh cluster centers. 

4. The steps 2 and 3 repeats, until the cluster centers do not changed for the period of the 

successive iteration.  
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6.4.1.2  Finding the Width of RBF Unit 

After allocating the centers of RBF unit, the width of RBF unit can be detrmined. The 

width of any RBF distance to the closest q of RBF units. 

Where q is represent as a design parameter for the RBFN network, for unit is given by 

 
2

1 1

1 q r

j kj ki

i k

x x
Q

  

 

 
  

 
                                                                                          (6.15) 

Where kjx
 and 

kix  are the k
th

 items of the centers of the j
th

 and i
th

 hidden RBF units.  

This algorithm section determines the required centers and width of the RBF unit. 

6.4.1.3 Finding the Weights 

When the centers and widths of the RBF units have been selected, then the N training 

patterns are processed through the hidden nodes to generate an NxN matrix, called D. Let 

T be the MxN desired output nodes. The aim is to determine the weights that decreases the 

error between the actual output and the desired output of the RBF network.  

Essentially, we are trying to minimize the objective function. 

z WD                                                                                                                        (6.16)                                                                                                                   

Where W is the T × N matrix of weights on the links between the hidden node and output 

nodes of the network. The selection of weights between the hidden layer and the output 

layer of network is determined using linear least square regression.The result to the earlier 

equation can be acquired using the pseudo-inverse of D and is given by; 

1( )T TW ZD DD                                                                                                            (6.17) 

6.4.1.4   Selection of H and q 

The design parameters, i.e. the number of RBF units in the hidden layer ‘H’ and the value 

of overlap parameter ‘q’ for the nearest neighbor method, are selected by the model 

builder to achieve the optimal RBF network structure for better performance. The 

parameters can be easily determined by using an S-fold cross-validation method (SFCV) 

[210], the procedure is as follows: 

(1) Training data are arbitrarily separated into P equal sized sets. 

(2) RBFNN is trained using P -1 data sets for a given set H and q. 

(3) The remaining subset is used to test the network’s local specialization and global 

generalization ability. 
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(4) The mean square difference between the target output and the predicted output is the 

error associated with test subsets. 

(5) This procedure is repeated several times using different P–1 subsets for training and a 

different subset for testing at each time. 

(6) The mean square error is the error for all the testing set for the proposed RBF network. 

(7) This procedure is repeated several times with different values of H and q to obtain the 

optimum network structure with minimum mean square error. 

6.4.2 Radial Basis Function Neural Network Mechanism for Finding the 

Crack Locations and Depths in Rotor 

A radial basis function neural network is designed for identification of multiple crack of 

mild steel cantilever rotor submerged in the viscous fluid. The RBF neural network 

designed for five input and four output variables. The input variable parameters to the 

neural model are rnfx, rnfy, rax, ray, ν and the output variable are rfcl, rfcd, rscl and 

rscd.The RBFNN architecture for identification of multiple crack in rotor has been 

illustrated in Figure 6.4.   

 

                            Figure 6.4: RBFNN model for identification of crack 
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6.5 Hybrid  BPNN-RBFNN Neural Network Mechanism 

for Finding the Multiple Crack Locations and Crack 

Depths 

This section introduces the mechanism of hybrid BPNN-RBFNN neural network for 

finding the multiple crack in cantilever rotor partially immersed in the viscous fluid 

medium. A novel hybrid BPNN-RBFNN neural network technique has been designed to 

identifying the locations and depths of multiple crack in cantilever rotor. Hybrid BPNN-

RBFNN neural network controller has been designed  with combination of BPNN and 

RBFNN controller. The extracted dynamic response from the theoretical, finite element 

and experimental analysis are used to train the hybrid BPNN-RBFNN neural network 

model.first & second relative natural frequency, first & second relative amplitude  and 

viscosity of fluid are used as input parameters to a BPNN controller and rfcl_interim, 

rfcd_interim, rscl_interim, rscd_interim are the outputs from the BPNN controller. The 

output from the BPNN controller along with first & second relative natural frequency, first 

& second relative amplitude  and viscosity of fluid are fed to the RBFNN controller. 

Finally, rfcl_final, rfcd_final, rscl_final, rscd_final are the output parameters from the 

hybrid BPNN-RBFNN model. The detail architecture of the hybrid fuzzy-rule base 

controller model has been shown in Figure 6.6. 
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Figure 6.5: Hybrid BPNN-RBFNN  neural network  architecture for crack identification 

6.6 Results and Discussion 

This section depicts the discussion on analysis of results derived from various neural 

models such as BPNN and RBFNN. Figure 6.1 presents the general architecture of an 

artificial neural network. The architecture of BPNN mechanism has been illustrated in 

Figure 6.2. The nine layered back propagation neural network technique for identification 

of first and second relative crack locations and depths is presented in Figure 6.3. The input 

variables two relative natural frequency, two relative amplitude and viscosity of fluid are 

used for the input layer of feed forward back propagation neural network. These input 

variables process through seven hidden layers then the output layer gives first and second 

relative crack locations and depths. The RBFNN is a feed forward supervised learning 

type of neural network.It has approximation and regularization capacity. In present work, 

the RBFNN has been employed for localization and quantification of cracks present in the 

mild steel cantilever rotor. Similar to BPNN model, RBFNN consists of one input layer 

and output layer, but RBFNN has only one hidden layer. The input data is fed into input 
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layer. Output layer gives relative crack locations and relative crack depths. Figure 6.4 

illustrates the architecture of RBFNN for identification of multiple crack. The hybrid 

BPNN-RBFNN model is the combination of the BPNN and RBFNN controller has been 

implemented. Figure 6.5 represents the architecture of the hybrid BPNN-RBFNN 

controller for finding the multiple crack in rotor.The results obtained from BPNN model, 

FEA, theoretical compared with the experimental analysis are presented in Table 6.1.The 

results obtained from RBFNN model, FEA, theoretical compared with the experimental 

analysis are presented in Table 6.2. The results obtained from BPNN, RBFNN, Mamdani 

fuzzy gaussian model and experimental analysis has been compared in Tables 6.3. The 

results obtained from the BPNN, RBFNN, hybrid BPNN-RBFNN model and experimental 

analysis has been compared in Table 6.4. The results obtained from BPNN, RBFNN, 

hybrid BPNN-RBFNN model and experimental test are compared, and close agreement is 

observed between each other. It is observed that the hybrid BPNN-RBFNN model gives 

better results as compared to BPNN, RBFNN and Mamdani fuzzy gaussian model for 

cracked rotor.The obtained results from the developed hybrid BPNN-RBFNN model, 

BPNN, RBFNN and experimental analysis has been compared in Table 6.4 for the rotor 

and proximity found between them. It has been observed that the hybrid BPNN-RBFNN 

model provides the better result as compared to BPNN and RBFNN model. 
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6.7 Summary 

This chapter discusses the summary drawn from the analysis carried out in the present 

section. The neural network models (BPNN and RBFNN) and Hybrid BPNN-RBFNN 

neural network model has been designed and developed on the basis of the change of 

dynamic behavior such as amplitude and natural frequency because of the presence of the 

crack in the mild steel cantilever rotor. The two natural frequencies, two relative 

amplitude and viscosity of fluid have been employed as inputs to neural network model 

and the final outputs of the neural model are relative first and second crack location and 

crack depth. For the prediction of crack, two hundred training pattern have been taken to 

train the BPFNN and RBFNN model. BPNN model has a several number of neurons in 

the nine layers for treating the input data such as relative natural frequency and relative 

amplitude. It is found that the error in the output of the controller is significantly 

decreased from the preferred output by applying BPNN and RBFNN. The obtained results 

from the developed neural network have been compared with the obtained results of the 

theoretical analysis, experimental analysis, finite element analysis and Mamdani fuzzy 

gaussian method to examine the success of the model. The total percentage of error for 

BPNN is 5.16% , for RBFNN is 4.98% and for hybrid BPNN-RBFNN model is 4.60%. 

From the investigation of the operation of the developed BPNN, RBFNN and hybrid 

BPNN-RBFNN controller for multiple crack identification, it is observed that the hybrid 

BPNN-RBFNN controller can predict the crack locations and their intensities very close to 

the results as compared to BPNN, RBFNN and hybrid fuzzy model. In the next sections, 

the artificial neural network model has been to construct to several hybrid technique like 

as adaptive neuro-fuzzy inference system, Multi-adaptive neuro-fuzzy inference system 

methodology for online structural monitoring conditioning. 
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Chapter 7 

Analysis of MANFIS For Identification of 

Multiple Crack in Rotor 

The presence of crack is a serious threat to proper functioning of structures (i.e. rotor, 

beam, and shaft etc.) and structures suffers a prospective risk of failure. The catastrophe in 

structures produces the high expenses of maintenance. The influence of crack on the 

dynamic response of the structure depends mainly on the location and size of crack.In this 

chapter a novel technique is introduced to detect the multiple crack locations and depths in 

the rotor partially submerged in the viscous fluid medium using multiple adaptive neuro 

fuzzy-interference system (MANFIS). The proposed MANFIS controller comprises with 

the five layers. The first layer has the five inputs named as adaptive layer. The fourth and 

fifth layers are also called as adaptive layer. The fifth layer has provided the four output 

parameters. The second and third layers are fixed layer. The four input parameters two 

relative natural frequencies and two relative amplitudes at both transvers direction (i.e. 44 

and 55-axis direction) and viscosity of fluid and four output parameters first and second 

relative crack depths and locations are utilized for the performance of proposed MANFIS 

controller. MANFIS is a prolonged form of the ANFIS to provide a multiple output for the 

required system. This methodology can be employed efficiently for modeling functions 

with complexity and nonlinearities without the use of precise measurable analysis. This 

approach has been utilized to diagnose the cracked cantilever rotor submerged in the 

viscous fluid medium and the results are favorable. The input and output parameters are 

extracted using the Takagi-Sugeno fuzzy model. The extracted data are used to train the 

FL model [199]. Through combination of excellent feature of both Fuzzy logic system and 

neural networks have been used to develop the ANFIS model. The proposed MANFIS 

method has been observed to be in agreement with the obtained results of experiment 

analysis. 
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7.1 Introduction 

Many research work has been carried out by researchers to improve the methodology for 

fault diagnosis of structure. It has been analyzed that the AI based techniques such as FL 

System, ANNs etc. have been used to implement the well-organized intelligent techniques 

for detection of damages in faulty structures. Currently the science and engineering 

community have been used the multiple adaptive neuro-fuzzy inference system for design 

and development of  the expert system.The combined features of neural network and 

fuzzy system of the multiple ANFIS model have been provided the robust stand to 

implement the controller for various application in engineering or industrial field. The 

present chapter introduces a method based on the MANFIS which is a postponement of 

ANFIS system to identify a multiple transverse crack in a rotor system.The recognized 

MANFIS controller model consists of single input layer, single output layer and three 

hidden layer. From the five layers of MANFIS system, the first layer name as input layer 

has been trained using the FL system. The residual four layers are trained using the ANNs. 

Many fuzzy rule and various fuzzy linguistic terms have been incorporated for the values 

of the five input parameters (first and second relative natural frequencies, first and second 

relative amplitude and viscosity of fluid) and four output parameters (first and second 

relative crack locations and depths) to train the fuzzy layer of the MANFIS controller. 

Many training patterns have been implemented to train the layer based on the neural 

network of the MANFIS controller. The first layer based on the fuzzy uses the two relative 

natural frequencies, two relative amplitude and viscosity of fluid as the inputs. The output 

of the fuzzy model fed to the hidden layer and Finally output parameters first and second 

relative crack locations and depths have been received from the MANFIS controller. From 

the analysis of predictive result of proposed technique. It has been observed that the output 

values agree well with the result of experimental investigation. Based on the analysis it is 

confirmed that the proposed technique reveals its capability to be an appropriate non-

destructive method for identification of damages in vibrant structure. The present chapter 

has been organized into four different sections. First Section 7.1 discusses the introductory 

part of the proposed MANFIS and explains the application of MANFIS in advance 

computing.  The analysis of MANFIS applied for identification of crack in rotor has been 

described in section 7.2. The comparison of the results obtained from MANFIS model 

with  the results obtained from the techniques discoursed in the earlier chapters  have been 
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presented and discussed in section 7.3. Finally, section 7.4 provides conclusions made by 

analysis of MANFIS for multiple crack identification in the rotor. 

7.2 Analysis of Multiple Adaptive Neuro-Fuzzy Inference 

System For Identification of Crack 

The Multiple adaptive neuro fuzzy inference system (MANFIS) is a combined 

arrangement of Fuzzy inference system (FIS) and artificial neural network (ANN). The 

MANFIS incorporate fuzzy inference system with the artificial neural network to improve 

the performance of model by means of precise and rapid estimation of the complex 

function. MANFIS controller employs fuzzy rules for adjustment of a set of parameters 

and the ANN for training and updating these parameters. The artificial neural networks 

give available high accuracy input- output mapping for nonlinear modelling system. The 

demerit of the artificial neural network is that they are black box modes which is unable to 

clarify the particular. The ANFIS controller is functioning under the first order Takagi 

Sugeno Fuzzy Model [207]. In this investigation, there are five inputs and four outputs. 

The inputs of the network model are as follows; 

(1)  rnfx = Relative natural frequency in x-axis direction 

      (2)  rnfy = Relative natural frequency in y-axis direction  

      (3)  rax  = Relative amplitude in x-axis direction 

      (4)  ray  = Relative amplitude in y-axis direction 

      (5)   ν    =  Kinematic viscosity of fluid 

The output parameters are as follows; 

(1)  rfcl = Relative first  crack location        (2) rfcd = Relative first crack location 

       (3)  rscl = Relative second crack  depth       (4) rscd = Relative second crack depth 

For the Multiple ANFIS architecture, ‘if and then rules’ are defined as below; 

 

IF 1y  is lP , 2y  is kQ , 3y  is mR , 4y  is oS , 5y  is pT ,     

THEN , , 1 , 2 , 3 , 4 , 5 ,j i j i j i j i j i j i j ik a y b y c y d y e y x                                                                    

Where  

 

 

 

(7.1) 
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1,ik = 1,rcl i 1, 1 1, 2 1, 3 1, 4 1, 5 1,i i i i i ia y b y c y d y e y x        

For first relative crack location; 

2,ik = 1,rcd i = 2, 1 2, 2 2, 3 2, 4 2, 5 2,i i i i i ia y b y c y d y e y x      

For first relative crack depth; 

3,ik  2,rcl i 1, 1 1, 2 1, 3 1, 4 1, 5 1,i i i i i ia y b y c y d y e y x       

For second relative crack location;   

4,ik  2,rcd i 2, 1 2, 2 2, 3 2, 4 2, 5 2,i i i i i ia y b y c y d y e y x       

For second relative crack depth; 

The symbols are as follows; j =1 to 4; l =1 to n1; k =1to n2; m=1to n3; o=1 to n4; p=1 to 

n5;and i=1 to y1, y2, y3, y4, y5. The symbols n1, n2, n3, n4, and n5 are the number of 

membership functions for the fuzzy systems for the inputs y1, y2, y3, y4, and y5 respectively. 

The symbols P , Q , R , S and T are the fuzzy membership sets defined for the input 

variables y1(rnfx), y2(rnfy), y3(rax), y4(ray), and y5(ν). The symbols 

1,ia , 1,ib , 1,ic , 1,id , 1,ie , 1,ix , 2,ia , 2,ib , 2,ic , 2,id , 2,ie  and 2,ix  are the consequent parameters of 

the ANFIS fuzzy model. The abbreviation “rfcl,” “rfcd,” “rfcl,”and “rscd,” are the linear 

consequent functions defined in terms of the inputs (y1, y2, y3, y4, and y5). The ANFIS 

consists of five layers as discussed below. 

Layer 1: is the input layer. Each node in this layer is a square node with a specific fuzzy 

membership functions (Mode functions) identifying the degrees to which the inputs fulfill 

the quantifier. For five inputs, the output from the nodes are given as follows; 

 1, , hh j pO y  For 11,....,h n  (for input 1y  ); 

  1, , hh j QO y  For 1 1 21,........,h n n n    (for input 2y  );  

 1, , hh j RO y  For 1 2 1 2 31,.......,h n n n n n      (for input 3y  ); 

 1, , hh j SO x  For 1 2 3 1 2 3 41,........,h n n n n n n n        (for input 4y  ); 

 1, , hh j TO y  For 1 2 3 4 1 2 3 4 51,.....,h n n n n n n n n n          (for input 5y ); 

Here 
hP , 

hQ , 
hR , 

hS ,
hT  are the membership functions, these can have various 

shapes, like triangular, trapezoidal, gaussian or some other shape. Here the membership 

function is selected as the bell shaped function (Figure 7.1) for P ,Q , R , S and T .  

 

 

(7.2) 

(7.3) 
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                             Figure 7.1: Bell-shaped membership function 

The membership functions for P, Q, R, S and T are considered in ‘layer 1’ and are defined 

as follows; 

 
2

1
;

1

h
Ph b

h

h

y

y c

a

 
   

   
   

11,......,h n                                                                     (7.4(i))                                                                            

 
2

1
;

1

h
Qh b

h

h

y

y c

a

 
   

   
   

1 1 21,.....,h n n n                                                         (7.4(ii))                                                                 

 
2

1

1

h
Rh b

h

h

y

y c

a

 
   

   
   

; 1 2 1 2 31,.....,h n n n n n                                            (7.4(iii)) 

 
2

1
;

1

h
Sh b

h

h

y

y c

a

 
   

   
   

1 2 3 1 2 3 41,......,h n n n n n n n                               (7.4(iv))          

 
2

1
;

1

h
Th b

h

h

y

y c

a

 
   

   
   

1 2 3 1 2 3 41,......,h n n n n n n n                                (7.4(v))         

Where hb , hc , ha  are the parameters that control the slope, center and width of  bell shape 

function of node ‘h’ respectively. It is also known as premise parameter. 



Chapter 7                     Analysis of MANFIS For Identification of Multiple Crack in 

Rotor 

 

153 

Layer 2: is the fuzzification layer. Neurons in this layer perform fuzzification. 

Fuzzification comprises the process of transforming crisp values into grades of 

membership for linguistic terms of fuzzy sets. Each node in this layer is a circular node, 

labeled as “П.” which multiplies the incoming signals and sends the product out. The 

output is denoted by 2, ,i jO .  

         2, , ,i j i j Ph Qh Rh Sh ThO w y y y y y                                                                         (7.5) 

For 1 2 3 4 51,......, . . . .i n n n n n  and 1 2 3 4 51,......,h n n n n n      

Layer 3:  is the rule layer. Each node in this layer is a fixed node (circular), labeled as 

“N.” The output of the thi node is calculated by talking the ratio of firing strength of thi  

rule  ,i jw  to the sum of all rules firing strength: 

_
,

,3, , 1, 2, 3, 4, 5

,1

i j
i ji j r n n n n n

r jr

w
O w

w




 


                                                                                                      (7.6) 

This output gives a normalized firing strength. 

Layer 4: is the normalization layer. Each  neuron  in  this  layer  receives  inputs  from  all  

neurons  in  the  rule  layer,  and  calculates  the  normalized  firing  strength of a given 

rule.  The  normalized  firing  strength  is  the  ratio  of  the  firing  strength  of  a  given  

rule  to  the  sum  of  firing  strengths of all rules. It represents the contribution of a given 

rule to the final result. Each node in this layer is a square node with a node function. 

 
_ _

, .4, , , , 1 , 2 , 4 , 5 ,i j i ji j i j i j i j i j i j i jO w k w a y b y c y d y x                                                               (7.7) 

Where 
_

,i jw  a normalized firing strength from is (output) from layer 3, and 

 , , , , ,i j i j i j i j i ja b c d x     is the parameter set for relative crack location  1j   and 

relative crack depth  2j  .  

Layer 5:  is represented by a single summation neuron. The single node in this layer is a 

fixed node (circular), labeled as “ ,” which computes the overall outputs as the 

summation of all incoming signals: 

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5

. . . .
. . . . _

, ,1
5, , , , . . . .

1 ,1

i n n n n n
i y y y y y

i j j ii
i j i j j i i n n n n n

i i ji

w k
O w k













 





                                                                          (7.8) 

The present developed structure of ANFIS model has five dimensional space partitions 

which are 1 2 3 4 5. . . .n n n n n . Each region has a fuzzy “if and then” rule. The current developed 
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ANFIS architecture have five dimensional space partition and has “y1 x y2 x y3 x y4 x y5” 

regions. Fuzzy IF THEN rule has been governed  each region.  1
st
  layer  of ANFIS  is 

reffered to  fuzzy sub space. The variables of 4
th

 layer  are  mentioned as consequent 

parameters and have been used  to optimized  the network. During the forward pass of the 

hybrid learning algorithm node outputs go forward until layer four and the consequent 

parameters are identified by least square method. In the backward pass, error signals 

propagate backwards and the premise parameters are updated by a gradient descent 

method.The architecture of MANFIS is presented in Figure 7.2(a) for multiple crack 

identification. Figure 7.2(b) illustrates the architecture of ANFIS for identification of crack in 

rotor. 

 

 

Figure 7.2(a): Representation of Multiple ANFIS controller for crack identification. 
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Figure 7.2(b): Adaptive Neuro-fuzzy inference system (ANFIS) for crack identification. 

7.3 Results and Discussion 

This  section depicts  the obtained results from developed Multiple adaptive neuro-fuzzy 

inference system (MANFIS) for identification of multiple crack in cantilever rotor system 

partially submerged in the viscous fluid medium. The obtained results from the current 
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analysis exhibit  the effect of crack locations and depths on the vibration response of the 

cantilever rotor. Figure 7.1 illustrates the model of Bell shaped membership functions 

employed for developing ANFIS model. The  structure  of the proposed MANFIS model 

for multiple crack detection and  the complete structure  with  altered  layers of the ANFIS 

system for crack identification have been presented in Figure 7.2(a) and Figure 7.2(b) 

respectively.Table 7.1 presents the comparison of obtained results from the theoretical 

analysis, FEA and MANFIS model.The appropriateness of the MANFIS approach has 

been tested by comparing the results with the hybrid Fuzzy models of Chapter-5, hybrid 

BPNN-RBFNN neural network models of Chapter-6 and experimental analysis of 

Chapter-8. Comparison have been illustrated in the Table 7.2. Ten sets of inputs (two 

relative natural frequencies, two relative amplitudes and viscosity of fluid) from the many 

sets of inputs have been taken for the proposed technique and the corresponding outputs 

(relative first and second crack locations and  depths) are presented in the Tables 7.1 and 

7.2. The first five columns of Tables 7.1 and 7.2 presents the inputs for the MANFIS 

technique i.e. first relative natural frequency at x-axis direction (rnfx), second relative 

natural frequency at y-axis direction (rnfy), first relative amplitude at x-axis direction 

(rax), second relative natural frequency (ray) and  viscosity of fluid (ν).The remaining 

columns from the Table represent the outputs such as first relative crack location, first 

relative crack depth, second crack location  and second crack depth from the respective 

techniques.  
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7.4 Summary 

The results derived from MANFIS technique for multiple crack identification in the rotor 

partially submerged in the viscous fluid medium have been summarized below. In the 

present analysis a technique based on the values of natural frequencies and amplitudes of 

the rotor system has been proposed for recognition of the crack location and their 

severities in a rotor using MANFIS model. MANFIS model has one input layer, four 

hidden layer and one output layer. Two relative natural frequencies, two relative amplitude 

and viscosity of fluid are used as inputs to the fuzzy segment of the MANFIS model. The 

output of the developed model is relative crack depth and relative crack location. The 

result derived from the developed hybrid BPNN-RBFNN, hybrid fuzzy model, FEA, 

theoretical analysis and MANFIS model have been compared with experimental test 

results to authenticate the effectiveness of proposed fuzzy models. The total percentage of 

error of the obtained result of the hybrid BPNN-RBFNN model is 4.60%, for the hybrid 

fuzzy model is 4.82% for the FEA model is 2.44%, and for the Theoretical analysis is 

4.89%.The results found to be good in agreement. Based on above study, it is found that 

MANFIS model gives better results as comparison to hybrid BPNN-RBFNN, hybrid fuzzy 

model, FEA,  theoretical analysis. Therefore, the developed MANFIS controller can be 

efficiently used as fault diagnosis tools in dynamically analysis of rotor. The MANFIS 

model gives more precise result as compared to hybrid BPNN-RBFNN and hybrid fuzzy 

model. It is found that total percentage of error for MANFIS model is 4.22 %.  
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Chapter 8 

Analysis of Hybrid Fuzzy-Rule Base 

Technique for Multiple Crack 

Identification in Rotor 

Different fault diagnostics techniques are required to observe the health of various 

machine components and structural elements for acquiring the un-interrupted service. The 

detection of crack before failure of the rotor system not only prevents loss of economy but 

also saves the human life. Various non-destructive techniques have been applied by 

researchers to locate the damage but they are costly and time consuming. The vibration 

based method along with intelligent techniques can be used to effectively identify the 

damage. The rule base system has been done by engineers and researchers from various 

fields of science and technology for developing intelligent systems for identification of 

multiple crack. The rule base technique has potential to solve various engineering 

problems based on concepts of sets of rules.  

8.1 Introduction 

The  current chapter introduces the hybrid fuzzy-rule base technique. Rule base technique 

stated  the knowledge of the environment in the form of rules. Rules are one of the leading 

type of information exemplification formalisms used in expert systems. The rule 

comprises the  set of  conditions (antecedents) and  set of conclusions (consequents).The 

rule base, inference engine and working memory  are the typical  main component of the 

rule-base system. The working memory has the information regarding the  specific instant  

of the problem being solved. The  rule base controller has been used the set of rules which  

signify the  solving knowledge of problem for a particular  domain. The working memory 

used to derive a new statistics and inference  engine uses the rule base. Basically rule-base 

controller is a tabel look-up technique which is representing the dynamic complex system. 

In rule base system, each rule is a command of motion control for a particular permutation 
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of all desired inputs. Entirely rule‐based systems need a crack detection approach to 

resolve conflicts among two or more relevant rules. The accurate rule should be capable to 

detect the crack locations and depths  in rotor in the sense of  preset performance 

circumstance. For the better safety  and performance of  rotor, the rule-base technique 

requirements to be revised   to overcome variations in crack locations and depths in rotor. 

8.2 Analysis of Rule-Base Technique for Identification of       

Multiple Crack in Rotor 

8.2.1  Designing  of  Rule-Base Controller for Finding the Multiple 

Crack in Rotor 

In current work, the rule base technique are used for the identification of multiple crack in 

cantilever rotor partially submerged in the viscous fluid medium. In this investigation, 

there are five inputs and four outputs. 

The inputs of the rule-base model are as follows; 

(1) rnfx = Relative natural frequency in x-axis direction  

(2) rnfy = Relative natural frequency in y-axis direction   

(3) rax  = Relative amplitude in x-axis direction 

(4) ray  = Relative amplitude in y-axis direction 

(5) ν     = Viscosity of fluid 

The output parameters are as follows; 

(1) rfcl  = Relative first  crack location          (2) rfcd = Relative first crack depth  

(2) rscl  = Relative second crack  location      (4) rscd = Relative second crack depth  

First, the set of rule are taken from the result obtained from the experimental analysis, 

FEA and theoretical analysis.  Each rule is consisting of five inputs (i.e. rnfx, rnfy, rax, ray 

and ν) and four outputs (i.e. rfcl, rfcd, rscl and rscd). Some of the rules are mentioned 

below. 

Rule 1: 

 

 

 

 

 

IF (89.35<first relative natural frequency<89.37) and (74.83<second relative natural 

frequency<74.86) and (663.06<first relative amplitude<663.07) and (658.38< second 

relative amplitude<658.39) and (0.06<viscosity of fluid<0.07)  THEN  

(first relative crack location=100)  and (first relative crack depth=6) and(second   

relative crack location=475 ) and (second relative crack depth=5.5) 
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Rule 2:  

 

 

 

 

 

Rule 3: 

 

 

 

 

 

Rule 4: 

 

 

 

 

 
 

 

Rule 5: 

 

 

 

 
 
 

Rule 6: 

 

 

 

 

 

 

 

 

 

IF (87.67<first relative natural frequency<87.68) and (79.61<second relative natural 

frequency<79.62) and (666.53<first   relative amplitude<666.54) and (652.54<second 

relative amplitude<652.55) and (0.06<viscosity of fluid<0.07)  THEN   

(first relative crack location=500)  and (first relative crack depth=5) and  (second  

relative crack location=750 ) and (second relative crack depth=5) 

IF (82.44<first relative natural frequency<82.45) and (70.12<second relative natural 

frequency<70.13) and (612.42<first relative amplitude<612.43) and (601.6<second 

relative amplitude<601.7) and (0.06<viscosity of fluid<0.07)     THEN  

 (first relative crack location=150)  and (first relative crack depth=3.5)and (second  

relative crack location=400 ) and (second relative crack depth=5.25) 

 

  IF (77.88<first relative natural frequency<77.89) and (64.66<second relative natural     

frequency<64.67) and (767.88<first relative amplitude<767.89) and (756.04<second 

relative amplitude<756.05) and (0.541<viscosity of  fluid<0.542)  THEN   

 (first relative crack location=250)  and (first relative crack depth=4.25) and (second  

relative crack location=500 ) and (second relative crack depth=7) 

IF (74.24<first relative natural frequency<74.25) and (63.88<second relative natural 

frequency<63.89) and (746.4<first   relative amplitude<746.5) and (736.4<second 

relative amplitude<736.5) and (0.541<viscosity of fluid<0.542)  THEN  

(first relative crack location=200)  and (first relative crack depth=4)and (second  

relative crack location=575 ) and (second relative crack depth=5)  

 

IF (73.68<first relative natural frequency<73.69) and (64.71<second relative natural 

frequency<64.72) and (758.6<first   relative amplitude<758.7) and (747.8<second 

relative amplitude<747.8) and (0.541<viscosity offluid<0.542) THEN  

(first relative crack location=475)  and (first relative crack depth=4.75)and  (second  

relative crack location=700 ) and (second relative crack depth=5.5) 
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Rule 7: 

 

 

 

 

 

Rule 8: 

 

 

 

 

 

Rule 9: 

 

 

 

 

 

Rule 10: 

 

 

 

 

 

 
Figure 8.1: Rule base controller for identification of multiple cracks. 

In this section, the rule‐based technique has been implemented for identification of 

multiple crack in cantilever rotor partially immersed in the viscous fluid medium. Figure 

8.1 shows the resulting architecture of fuzzy rule base technique. The rule base controller 

IF (57.63<first relative natural frequency<57.64) and (47.66<second relative natural 

frequency<47.67) and (671.33<first   relative amplitude<671.34) and (563.73<second 

relative amplitude<563.74) and (2.8<viscosity of fluid<2.9)  THEN  

(first relative crack location=350)  and (first relative crack depth=4.5)and (second  

relative crack location=750 ) and (second relative crack depth=5.75) 

 

IF (56.18<first relative natural frequency<56.19) and (46.26<second relative natural 

frequency<46.27) and (661.33<first   relative amplitude<661.34) and (559.46<second 

relative amplitude<559.47) and (2.8<viscosity of fluid<2.9) THEN    

(first relative crack location=150)  and (first relative crack depth=3.25)and (second  

relative crack location=450 ) and (second relative crack depth=5.75) 

 

IF (53.08<first relative natural frequency<53.09) and (43.47<second relative  natural 

frequency<43.48) and (637.72<first   relative amplitude<638.72) and (535.77<second 

relative amplitude<535.78) and (2.8<viscosity of fluid<2.9) THEN  

(first relative crack location=250) and (first relative crack depth=3) and (second  

relative crack location=575 ) and (second relative crack depth=4.5) 

 

IF (52.98<first relative natural frequency<52.99) and (42.86<second relative natural 

frequency<42.87) and (629.51<first relative amplitude<629.52) and (525.08<second 

relative amplitude<525.09) and (2.8<viscosity of fluid<2.9) THEN  

(first relative crack location=200) and (first relative cracdepth=3.75)and (second  

relative crack location=400) and (second relative crack depth=3.5) 
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has been designed with five inputs i.e. rnfx, rnfy, rax, ray, ν and four output parameters 

i.e. rfcl, rfcd, rscl, rscd. 

8.3 Analysis of Hybrid Fuzzy-Rule Base Technique for 

Finding the Multiple Crack in Rotor 

This section discusses about the mechanism of hybrid fuzzy-rule based technique for 

identification of multiple crack in cantilever rotor partially immersed in the viscous fluid 

medium. A novel hybrid fuzzy –rule base technique has been designed to identifying the 

locations and depths of multiple crack in cantilever rotor.  

 
Figure 8.2: Hybrid fuzzy-rule base technique for identification of multiple crack. 

Hybrid fuzzy-rule base controller has been designed with combination of fuzzy-base 

controller and rule base controller. The extracted vibration behavior from theoretical, 

finite element and experimental analysis are employed to train the hybrid fuzzy-rule base 

model. Two relative natural frequency, two relative amplitude and viscosity of fluid are 

used as an input to a fuzzy controller and rfcl_interim, rfcd_interim, rscl_interim, 

rscd_interim are the outputs from the fuzzy base controller. The output from the fuzzy 
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controller along with two relative natural frequency, two relative amplitude and viscosity 

of fluid are fed to the rule base controller. Finally, rfcl_final, rfcd_final, rscl_final, 

rscd_final are the output parameters from the hybrid fuzzy-rule base technique. The fuzzy 

controller used here is a taken from Chapter‐4. From the previous chapter it is concluded 

that gaussian membership function is the best among other membership function. 

Therefore gaussian membership function is used in the fuzzy controller. A comparison of 

results obtained from theoretical, finite element, gaussian fuzzy, MANFIS, hybrid fuzzy 

rule base model and experimental analysis have been presented in Table 8.1 and Table 8.2 

and the results are found to be in close agreement. The proposed hybrid fuzzy-rule base 

technique can be used as a robust technique to identify multiple crack in cantilever rotor 

partially submerged in the viscous medium. The detail architecture of the hybrid fuzzy-

rule base controller model has been shown in Figure 8.2. 

8.4  Results and Discussion  

The current section of this chapter analyses the results obtained from the developed rule 

base technique and hybrid fuzzy-rule base technique employed for identifying the multiple 

crack in cantilever rotor partially submerged in the viscous medium. The extracted results 

from theoretical, finite element and experimental analysis are used to train the rule base 

model and hybrid fuzzy-rule base model. The rule base model has been designed with 

inputs i.e. two relative natural frequencies, two relative amplitudes, viscosity of fluid and 

outputs i.e. first and second relative crack locations and crack depths. Figure 8.1 illustrates 

the architecture of rule base technique.The proposed hybrid fuzzy- rule base system 

comprises with two layers. The first layer is the fuzzy base controller, where as the second 

layer is rule-base controller. The gaussian membership based fuzzy segment of the hybrid 

fuzzy-rule base model has been developed using the set of fuzzy rules, fuzzy linguistic 

terms, two relative natural frequencies, two relative amplitudes, viscosity of fluid and the 

interim output i.e. the rfcl_interim, rfcd_interim, rscl_interim, rscd_interim.The interim 

outputs from the fuzzy base model along with two relative natural frequencies, two 

relative amplitudes, viscosity of fluid are fed to the rule base model. Finally, the output 

parameters i.e. rfcl_final, rfcd_final, rscl_final, rscd_final are obtained. Figure 8.2 

illustrates the architecture of hybrid fuzzy-rule base technique.The depiction of the fuzzy 

linguistic terms for the input and output parameters are shown in Table 5.1. and 5.2 

represents twenty numbers of the fuzzy rules out of the several hundred fuzzy rules used 
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for designing the fuzzy membership functions. A comparison of results obtained from 

theoretical, finite element, hybrid fuzzy-rule base model and experimental analysis have 

been presented in Table 8.1. The comparision of obtained results from the rule-base 

technique, hybrid fuzzy-rule base controller, MANFIS and experimental analysis have  

been illustrated in Table 8.2. 
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8.5 Summary  

This chapter has described rule‐based and hybrid fuzzy-rule based techniques for 

identifying the multiple crack in cantilever rotor partially submerged inside the viscous 

medium. The following summary can be drawn by analyzing the results in terms of crack 

locations and crack depths derived from rule-base controller and hybrid fuzzy rule base 

controller. The rule base technique has a set of rules obtained through rule induction and 

enhanced with manually derived heuristics. In this chapter, an intelligent hybrid fuzzy-rule 

based controller have been presented. The vibration characteristics and property of viscous 

fluid derived from theoretical, finite element and experimental analysis for various crack 

depths and crack locations for cantilever rotor partially submerged in the viscous 

medium.These data is fed as inputs to the hybrid fuzzy-rule base model and outputs are 

first and second relative crack depth and location. The gaussian fuzzy model gives most 

efficient results. It is suggested that the gaussian fuzzy-base controller is used in the 

hybrid fuzzy-rule base controller. The feasibility of rule-base controller and hybrid fuzzy-

rule base model has been verified by experimental examination. It is observed that 

percentage of error is least in the rule-based controller when compared with experimental 

results.The error 3.3 % for the cantilever rotor. The hybrid fuzzy-rule base controller 

produces best results for first and second crack locations and cracks depth in comparison 

to other artificial intelligence model.The error is found to be 2.1 % for the cantilever rotor 

when diagnosis is done using rule-base technique. 
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Chapter 9 

Analysis & Description of Experimental 

Investigation 

The experimental investigation has been carried out to evaluate the vibration behavior 

(natural frequencies and amplitude) of non-cracked and cracked cantilever rotor partially 

submerged in the viscous fluid medium for the different combination of crack depths and 

crack locations. The dynamic response evaluated from experimental test has been 

compared with that of theoretical, numerical and various AI techniques data as discussed 

in previous chapters. This chapter addresses the organized experimental investigation 

procedure and discusses vibration behavior measuring devices for evaluating the vibration 

response of cantilever rotor. 

9.1 Detail Specification of Apparatuses used in the 

Experimental Analysis 

Experiments have been accomplished using the developed experimental setup (Figure 9.1) 

for measuring the dynamic response (natural frequency and amplitude of vibration) of the 

mild steel cantilever rotor attached disc at the free end (length and radius are 0.8m, 0.01m 

respectively).The experiments are conducted for cantilever rotor partially submerged in 

the viscous medium. Cracked mild steel rotor specimens have been taken for experimental 

analysis with different crack locations and depths. Three different viscous fluids are used 

as a viscous medium. The cantilever rotor is connected to the power motor which is 

supported by the ball bearing. The cracked, and non-cracked cantilever rotor has been 

displaced from its original position while rotating with the help of power motor. The 

amplitude of the rotor has been recorded by ultrasonic sensors which are connected to 

Arduino micro-controller with the help of jumper wire. The ultrasonic sensors are used for 

recognizing the displacement of the rotating rotor from the original position. The sensing 

displacement data of ultrasonic sensor are displaced in the computer system with the help 

of Arduino microcontroller. The rotating speed of rotor is controlled by the variac.The 
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accessories used in the experimental analysis have been shown in Table 9.1with their 

specifications in detail. 

Table 9.1: Detail description and specifications of the apparatus used in the experiments 

Sl. No. Name of the Instrument Description of Instruments 

1 

 

Power motor 

 

Type AC/DC, FHP Motor 

125 Watt, 220V, 

Speed: 6000RPM 

2 Micro-controller Arduino UNO ATmega 328 ,32KB 

Operating Voltage 5V, SRAM 2KB 

Analog Input Pins 6 

Input voltage 6-20V 

Digital Input Pins 14 

3 Communication USB connection Serial Port 

4 Bread board Small Size Bread Board. 

5 3 Ultrasonic Sensors Range of distance measure: 0.01m to 4m 

6 Power supply 50Hz ,230 to 240v AC 

7 Variac Input : 230v, 50 to 60  Hz, 

Output:  0 to 270 v 

Maximum Load 8 Amp. 

8 Vessel Dia. of vessel= 260mm,  Height=400mm 

9 Display device Computer system 

10 Test specimen Double cracked  mild steel  rotor 

Radius of Rotor ( R1)  is 0.01m 

Length of Rotor( Ls) = 0.8m 

11 Techo meter Laser photo /contact tachometer 

Detacting 5 digits, 10 mm ( 0.4" ) LCD. 

Measuring range 0.5 to 20000 RPM 

± ( 0.05% + 1 digit ), RPM only. 
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                                    Figure 9.1 : View of the experimental setup. 

1.Power Motor, 2.Aurdino Micro-controller, 3.USB Connection Serial Port, 4.Bread 

Board, 5.3Ultrasonic Sensors, 6.Power Supply, 7.Variac, 8.Fluid Filled Container, 

9.Dispaly Device, 10. Cantilever Rotor 

 

 
Figure 9.1(a): Ultrasonic sensor 
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Figure 9.1(b): Aurdino micro-controller 

 
Figure 9.1(c): Bread board 

 
Figure 9.1(d): Variac 
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Figure 9.1(e): Power motor 

 

Figure 9.1(f) : Tachometer 

 

Figure 9.1(g): Display device 
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9.2 Experimental Procedure for the Analysis of Rotor 

System 

The  experimental  investigation  has  been  performed  on  the  non-cracked and cracked  

rotating cantilever rotor partially submerged in the viscous fluid medium to verify the 

robustness of the results derived from theoretical, numerical and various artificial 

intelligence techniques.  

The experimental setup comprises of a multiple cracked rotor with additional mass, power 

motor, variac, arduino micro-controller, breadboard, USB connection serial port ,three 

ultrasonic sensors and  fluid filled vessel  as shown in Figure 9.1.The  cracks  at various  

locations  and  different depths  are  introduced  in  the  specimen  with  the  help  of wire  

cut  EDM  for  mild steel rotor. The inside diameter and length of fluid container are 

260mm and 400mm respectively. The additional mass (i.e. disc) attached at the free end 

tip of the rotor. The rotating speed of the cantilever rotor is controlled by the variac. One 

end of the variac is connected to the power motor and other end is connected to power 

supply. The shaft of the motor is coupled with the cantilever rotor by the universal joint. 

The rotor is supported by ball bearing. It is assumed that the operated loads are acted 

radially on the bearing and there are no thrust loads of significant magnitudes. There are 

also other assumptions taken into account for the ball bearing [213] and are given below. 

1. The rolling surfaces are free of defects and perfectly smooth. 

2. The rolling balls are equi-pitched around the rotor. 

3. The complete ball bearing assembly is rigid excluding for the point of contact between 

the raceways and the rolling bodies. 

4. The rolling balls of the bearing assembly are massless. This eliminates independent 

radial degrees of freedom. 

5. The outer race of the ball bearing is firmly attached to a rigid housing while the inner 

race is sustaining the heavy elastic rotor. 

The kinematic viscosities of the fluids are taken at the temperature 25
0
C.When the rotor 

rotates inside the fluid medium, the temperature of the fluid increases little due to shearing 

action. Due to altered temperature, there are very slight changes in the kinematic viscosity 

of the fluid. So the effect of temperature on the viscosity of the fluid is neglected. In the 

present analysis, first mode is taken into account. As it is the major contributor of 

amplitude as compared to other modes of vibration. In the current analysis, other modes of 
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vibration (apart from the 1
st
 mode) and shearing inertia effect are not considered. Three 

ultrasonic sensors are arranged at the 8cm circumferential radius of the rotor, which is 

connected to the Arduino micro-controller with the help of wire. Sensors data are 

displayed on the screen of computer system. Experimental results for amplitude of 

transverse vibration at particular location along the length of the rotor are recorded by 

positioning the three ultrasonic sensors at the corresponding resonant frequencies.Each 

sensor has separate deflection data for the rotor. For accuracy, reading has been taken for 

three times at the same speed. Each set has 900 samples measured by sensors within 15 

minutes (i.e. sampling time 1sec/sample).The pictorial view of various apparatuses used in 

the experimental test are shown in Figures 9.2(a) to 9.2(g). 

9.3 Results and Discussion 

The present section describes the analysis of results obtained from the experimental 

investigation. The non-cracked and cracked rotor with various crack locations and 

different crack depths partially submerged in the viscous fluid medium have been 

examined in the experiment at set up to get the vibration signatures. This is used to verify 

the robustness of results obtained from the various techniques discussed in the previous 

chapters. Comparison of results derived from the theoretical analysis for multiple crack 

cantilever rotor with orientation of cracks (β1=0.125, β2=0.175, β3=0.225 and β4=0.275), 

crack location (α1=0.313, α2=0.563) and viscosity of fluid (ν1= 0.0633, ν2= 0.541, ν3= 2.9) 

are shown in Chapter 3 and they are plotted with result of experiment examination in the 

Figures 3.2 to 3.9 and 3.11 to 3.18 for the mild steel cantilever rotor. The results derived 

from the theoretical and experimental observation are presented in tabular form with 

relative amplitude and relative crack location and crack depth in the Tables 3.3 to 3.8 for 

the cantilever rotor. Agreement between the results is observed. Theoretical results for 

cantilever cracked rotor are found to be within 5% error when compared with the 

experimental results. The results for both transverse direction (i.e. 44 and 55-axis 

direction) relative natural frequency and relative amplitude are obtained from finite 

element analysis for multiple crack rotor with several depths of cracks (β1=0.125, 

β2=0.175, β3=0.225 and β4=0.275), crack locations (α1=0.313, α2=0.563) and viscosity of 

fluids (ν1= 0.0633, ν2= 0.541, ν3= 2.9 stokes) in Chapter 4.  The results are plotted with 

corresponding relative amplitudes derived from theoretical and experimental investigation 

for cracked cantilever rotor and has been illustrated in Figures 4.3 to 4.13. The results for 
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first relative crack depth and crack position and second relative crack location and crack 

depth are derived from theoretical, numerical and experimental examination 

corresponding to relative natural frequencies and amplitude in both  transverse direction. 

The results are presented in Tables 4.3 to 4.13 for cantilever rotor. The finite element 

analysis results for cantilever cracked rotor are found within 2.5% error when compared 

with the experimental results. In Chapter 5, the results derived from Mamdani gaussian  

fuzzy, Sugeno gaussian fuzzy, hybrid gaussian fuzzy model and experimental test have 

been compared in Table 5.7 for cantilever rotor. Tables 5.3 to 5.6 present the comparison 

of results obtained from Mamdani and Sugeno fuzzy model along with three membership 

function (Triangular, Gaussian and Trapezoidal) for cantilever rotor. The total percentage 

of error of results for Mamdani Triangular fuzzy model is 7.32%, for Mamdani gaussian 

fuzzy model is 5.25%, for Mamdani Trapezoidal fuzzy model is 6.77% for the cantilever 

rotor. Similarly, total percentage of error of results for Sugeno Triangular fuzzy model is 

6.98%, for Sugeno gaussian fuzzy model is 5.01 %, for Sugeno Trapezoidal fuzzy model 

is 6.12%. The total percentage of error of results for hybrid gaussian fuzzy model is 

4.82%. Chapter 6 presents discussion about BPNN, RBFNN and hybrid BPNN-RBFNN 

neural network model. The results derived from BPNN, RBFNN and hybrid BPNN-

RBFNN model are compared with experimental analysis results and have been presented 

in Table 6.4 for cantilever rotor. The percentage of total error for BPNN is 5.16% ,for 

RBFNN is 4.98% and hybrid BPNN-RBFNN model is 4.60% for cantilever rotor. The 

comparison of results derived from MANFIS systems have been displayed in Tables 7.1, 

and 7.2 for cantilever rotor. The total percentage of error for MANFIS is 4.22% for 

cantilever rotor. The comparison of results obtained from rule base technique have been 

presented in Tables 8.1 and 8.2. The total percentage of error for rule-base controller and 

hybrid fuzzy-rule base controller is 3.3% and 2.1% respectively. Close proximity is found 

between the compared results. After the study of results, it is observed that Sugeno 

gaussian fuzzy, RBFNN, hybrid fuzzy,MANFIS, rule-base technique and  hybrid fuzzy-

rule base system provides the least error in the result when compared with results obtained 

from experimental  analysis. 
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Chapter 10 

Results and Discussion 

10.1 Introduction 

This chapter introduces the systematic analysis of performance of various techniques used 

for identification of multiple crack in cantilever rotor partially submerged in the viscous 

fluid cited in the above chapters. The dynamic responses of cracked rotor have been used 

for development of fault diagnosis tool. Several techniques are discussed in the current 

dissertation for assessment of multiple crack in cantilever rotor. These techniques are: 

theoretical method (Chapter 3), Finite element method (Chapter 4), fuzzy logic system 

(Chapter 5), and artificial neural network (Chapter 6), MANFIS (Chapter 7), hybrid fuzzy-

rule base technique (Chapter 8) and experimental investigation (Chapter 9). 

10.2  Analysis of Results  

Ten techniques have been employed in current research for development of crack 

identification tool of cantilever rotor partially immersed in the viscous fluid as discussed 

in introduction (Chapter 1). This dissertation comprises two introductory chapters 

(Chapter 1- Introduction and Chapter 2 - Literature review) besides eight chapters. This 

section addressed the analysis of results derived from various methods cited in different 

chapters. The introduction section (Chapter 1) of the thesis addressed aims and objective 

along with the motivation factors to carry out current research. The outline of the 

dissertation is also discussed in last section of Chapter 1. The literature review (Chapter 2) 

part addresses the various methodologies that have been presented by researchers and 

engineers for prediction of cracks in structures (i.e. rotor, beam, plate) and machine 

components. Finally, this section discusses the results obtained from the  investigations. 

The vibration response has been obtained by theoretical analysis of rotating non-cracked 

and cracked fixed-fixed supported rotor and cantilever rotor partially submerged in the 

viscous medium cited in Chapter 3. The whirling position of cantilever rotor with attached 

disc at the free end has been illustrated in Figure 3.1. The results obtained from the 

theoretical analysis are depends upon viscosity and density, length of rotor, radius of fluid 



Chapter 10                                                                                   Results and Discussion 

179 

filled container, mass of disc and damping coefficient. Figures 3.2, 3.3, 3.7, 3.8, 3.20 and 

3.21 represent the effect of viscosity and density of fluid on the vibration response of non-

cracked rotor. It is observed that as the viscosity and density of the external fluid 

increases, the amplitude as well as critical speed decreases. Comparing the results 

presented in Figures 3.2-3.3, 3.7-3.8 and 3.20-3.21, it is found that the amplitude of 

vibration for the longer rotor is smaller than that of the smaller rotor. This is a peculiar 

phenomenon which is caused because of higher values of the virtual mass coefficient and 

damping coefficient in case of longer rotor. Figures 3.4 and 3.22 show the effect of gap 

ratio (i.e. fluid container radius increases) on the vibration response of non-cracked rotor. 

It is observed that the amplitude of rotor increases with the increase in container radius. 

Figures 3.5, 3.9 and 3.23 show the virtual mass effect on the amplitude of non-cracked 

rotor. It is noticed that as the virtual mass effect increases the amplitude of vibration 

decreases and it also decreases the resonance frequency for the rotor. Figures 3.6 and 3.24 

illustrate the damping coefficient on the vibration response of rotor. It is observed that the 

damping has reduced only the amplitude of vibration rather then shifting the resonance 

frequency for the rotor. Figures 3.12, 3.13, 3.26 and 3.27 show the effect of multiple crack 

depths on the vibration response of the rotor in the both transverse direction (i.e.44-

direction and 55-direction). It is observed that due to increase in multiple crack depths, the 

critical speed as well as amplitude of vibration decreases. The comparison between 44-

direction and 55-direction amplitude of vibration has been presented in the Figures 3.14 

and 3.28. It is found that the obtained amplitude of vibration in 44-direction is greater then 

the obtained amplitude of vibration in 55-direction of crack in rotor. It is found that there 

is significant error in the amplitude and natural frequency due to the presence of a crack. 

Figures 3.16 and 3.29 illustrate the effect of virtual mass on the vibration response of the 

cracked rotor. A comparison and authentication of the results obtained from theoretical 

analysis are plotted with results from experimental analysis and have been plotted in 

Figures 3.31 to 3.41. Figures 3.11(a), 3.11(b) and 3.11(c) describe the full view of the 

cantilever rotor with crack element, Cross-section of crack element and coupling forces on 

the crack element for the theoretical analysis of cracked rotor respectively. Full view of 

fixed-fixed rotor and schematic of multiple cracked fixed-fixed rotor submerged in the 

viscous fluid have been illustrated in the Figures 3.19 and 3.25 respectively. Schematic 

block diagram of experimental setup for the multi-cracked cantilever rotor partially 

submerged in the viscous medium has been presented in the Figure 3.30. A comparison 

and authentication of the results obtained from the theoretical analysis and experimental 
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analysis have been plotted in Figures 3.31 to 3.41. The result obtained from theoretical 

and experimental observation have been presented in Tables 3.3 to 3.8 for cantilever rotor. 

The results derived from the theoretical analysis compared with the experimental results 

for effect of change in viscosity of fluid on the vibration response of non-cracked 

cantilever rotor and  has been presented in Table 3.4.The result derived from the 

theoretical analysis compared with the experimental results  for   effect of virtual mass  on 

vibration behavior of  non-cracked  and cracked cantilever rotor have been presented in 

Tables 3.4 and 3.5 respectively. Tables 3.6 and 3.7 have presented the comparison of 

derived theoretical and experimental result for the effect of change in radius of fluid filled 

container on non-cracked and cracked cantilever rotor. A comparison between theoretical 

and experimental results for the effect of multiple crack depths in crack locations in both 

transverse directions (i.e. 44-direction and 55-direction) of cantilever rotor partially 

submerged in the viscous fluid medium and has been presented in Table 3.8. As can be 

seen, the results obtained using the theoretically shows agreement with the experimental 

results.The total percentage of error of finite element analysis is 5% for cantilever 

rotor.The finite element based simulation software package ANSYS has been used to 

extract vibrational features of cantilever rotor (in Chapter 4). It is noticed that presence of 

damage in the form of crack in the cantilever rotor can vary the vibration responses. The 

various steps involved in the ANSYS to solve the problem have been discussed. The 

results obtained from the finite element method have been authenticated by results of 

experimental analysis for the cantilever rotor partially submerged in the viscous medium. 

The SOLID187 element is used for the solid mild steel cantilever rotor.  The geometry of 

the SOLID187 element is presented in Figure 4.1. The FLUID30 3-D acoustic fluid 

element is used for the viscous fluid. The geometry of FLUID30 3-D acoustic fluid is 

presented in the Figure 4.2. The properties of the mild steel rotor and fluid medium are 

presented in Tables 4.1 and 4.2.The results obtained from the finite element analysis are 

plotted with results derived from theoretical and experimental analyses for non-cracked 

and cracked cantilever rotor partially submerged in the viscous medium and have been 

presented in Figures 4.3 to 4.13. The results for 44-direction with altered relative crack 

depths and relative crack locations obtained from finite element analysis have been plotted 

with results derived from the theoretical and experimental analysis  for cracked  cantilever 

rotor  and are shown in  Figures 4.8  to 4.10. The results for 55-direction with altered 

relative crack depths and relative crack locations obtained from finite element analysis 

have been plotted with results derived from the theoretical and experimental analysis  for 
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cracked cantilever rotor  and are shown in Figures 4.11 to 4.13.The comparison of 

obtained FEA result with the theoretical and experimental result for effect of change in 

viscosity of fluid on the non-cracked cantilever rotor has been presented in Table 4.3. The 

comparison of FEA result with theoretical and experimental result for virtual mass effect 

on the non-cracked and cracked cantilever rotor partially submerged in the viscous 

medium and have been represented in Tables 4.4  and 4.5 respectively. The comparison  

of  FEA result with theoretical and experimental results  for effect of change in radius of 

fluid filled container on the vibration response of non-cracked and cracked cantilever rotor 

has been illustrated in Tables 4.6 and 4.7 respectively. The comparison of  FEA result 

with theoretical  and experimental results for the effect of different  relative crack depths 

and crack locations on the vibration response of the cantilever rotor partially submerged in 

the viscous medium in both transverse direction (i.e. 44-direction  and 55-direction)  have 

been presented in the Table 4.8. It is observed that results have good agreement with each 

other. The total percentage of error of results from finite element analysis and 

experimental results is 3% for cantilever rotor. The analysis of results derived from the 

developed fuzzy model for identification of multiple crack in cantilever rotor has been 

depicted in Chapter 5. The fuzzy logic system has been developed with simple but 

effective architecture for five input variables (relative first natural frequencies, relative 

second natural frequency, relative first amplitude, relative second amplitude and viscosity 

of fluid) and four output variables (relative first and second crack locations and crack 

depths). Three types of membership functions (Triangular, Gaussian and Trapezoidal) are 

employed in the development of the Mamdani and Takagi-Sugeno fuzzy system and are 

presented in Figures 5.1(a), 5.1(b) and 5.1(c)  respectively. The various phase involved in 

the fuzzy logic system has been shown in Figure 5.2. The complete structure of the 

Mamdani fuzzy system including three different type of membership functions with the 

linguistic variable has been illustrated in Figures 5.4 to 5.6.The defuzzification of inputs 

using various membership functions (Triangular, Gaussian and Trapezoidal) have been 

performed with the help of activated rules 5 and 18 of Table 5.2  and are presented in 

Figures 5.7 to 5.9. Figure 5.11 represents the structure of the hybrid fuzzy model. The 

results derived from various Mamdani and Takagi-Sugeno fuzzy models (Triangular, 

Gaussian and Trapezoidal) and experimental test have been compared in Tables 5.3 and  

5.5 respectively  for cantilever rotor. Table 5.4 represents the comparison of results 

obtained from theoretical, finite element analysis, Mamdani Fuzzy gaussian model and 

experimental analysis for cantilever rotor. The comparison of results obtained from 
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theoretical, finite element analysis, Takagi-Sugeno fuzzy gaussian model and 

experimental analysis have been represented in Table 5.6.The comparison of results 

obtained from the Mamdani gaussian fuzzy, Takagi-Sugeno gaussian fuzzy and hybrid 

gaussian fuzzy system have been presented in Table 5.7. The total percentage of error of 

results for the Mamdani triangular fuzzy model is 7.32%, for Mamdani gaussian fuzzy 

model is 5.25%, for the Mamdani Trapezoidal fuzzy model is 6.77% for the cantilever 

rotor. Similarly, the total percentage of error of results for the Sugeno Triangular fuzzy 

model is 6.98%, for Sugeno gaussian fuzzy model is 5.01 %, for the Sugeno Trapezoidal 

fuzzy model is 6.12% for cantilever rotor. The total percentage of error of results for 

hybrid gaussian fuzzy model is 4.82% for cantilever rotor. Chapter 6 depicts the 

discussion on the analysis of results derived from various neural models such as BPNN 

and RBFNN. Figure 6.1 presents the model of neuron of artificial neural network. Figure 

6.2 illustrates the nine-layered Feed forward back propagation neural network techniques 

used for identification of first and second crack locations, and crack depths and are 

presented in Figure 6.3. First relative natural frequency, second relative natural frequency, 

first relative amplitude, second relative amplitude and viscosity of fluid have been used as 

input variables to input layer of Feed forward back propagation neural network model. 

These input variables process through seven hidden layers then output layer gives first and 

second relative crack depths and relative crack locations. The RBFNN is a feed forward, 

supervised learning type of neural network. In present work, RBFNN is employed for 

localization and quantification of cracks, present in the cantilever rotor partially 

submerged in the viscous medium. Similar to BPNN model, RBFNN consists of one input 

layer and output layer. But RBFNN has only one hidden layer. Moreover, output layer 

gives relative crack locations and crack depths. Figure 6.5 denotes architecture of radial 

basis function neural network for identification of multiple crack. The results obtained 

from neural network techniques (BPNN and RBFNN) and the experimental test are 

compared and close agreement between each other is observed. The results derived from 

BPNN model compared with theoretical, finite element and experimental analysis results 

are presented in Tables 6.1. The results derived from RBFNN model compared with 

theoretical, finite element and experimental analysis results are presented in Tables 6.2. 

The total percentage of error for BPNN is 5.16%, for RBFNN is 4.98% and for hybrid 

BPNN-RBFNN is 4.60% for the cantilever rotor. The results obtained from BPNN, 

RBFNN, Mamdani fuzzy gaussian model and experimental analysis has been compared in 

Table 6.3 for cantilever rotor. The results obtained from BPNN, RBFNN, hybrid BPNN-
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RBFNN and experimental analysis  has been compared in Table 6.4. It is observed that the 

hybrid BPNN-RBFNN model gives better results as compared to BPNN, RBFNN and the 

Mamdani fuzzy gaussian model for the cantilever rotor. Chapter 7 describes the analysis 

of results obtained from the Multiple Adaptive neuro fuzzy system (MANFIS). The fuzzy 

system with bell-shaped membership function is integrated with MANFIS models for 

designing the smart crack identification mechanism for cantilever rotor. Figure 7.1 

presents the model of bell shaped membership function and Figures 7.2(a) and 7.2(b) 

represent  the MANFIS controller and Adaptive neuro fuzzy inference system (ANFIS) 

for crack identification in cantilever rotor respectively. First relative natural frequencies, 

second relative natural frequencies, first relative amplitude second relative amplitude and 

viscosity of fluid are used as inputs to the fuzzy segment of the MANFIS model. The 

output of the MANFIS model is first and second relative crack locations and crack depths. 

MANFIS can predict the crack depth and its location using the vibration response (i.e. 

natural frequency and amplitude) of the rotating cantilever rotor partially submerged in the 

viscous medium. The comparison of results derived from MANFIS, RBFNN, Sugeno 

fuzzy gaussian model and experimental analysis have been presented in the Table 7.1. The 

comparison of results derived from MANFIS, FEA, theoretical and experimental analysis 

have been presented in the Table 7.2. The total percentage of error is 4.22% for MANFIS 

model for multiple crack identification in the rotor. It is observed that the MANFIS can 

predict the crack locations and their intensities and are very close to the results compared 

to results from FEA, RBFNN, Sugeno fuzzy gaussian and experimental analysis.The 

analysis of results obtained  from the developed hybrid fuzzy-rule base model for 

identification of multiple crack in cantilever rotor partially submerged in the viscous 

medium and has been depicted in Chapter 8. The total percentage of error for rule-base 

controller and hybrid fuzzy-rule base controller is 3.3% and 2.1% respectively. The hybrid 

fuzzy-rule base controller has given least error  as compared to other artificial intelligence 

techniques.The experimental investigation is performed to verify the robustness of the 

results derived from the theoretical analysis, finite element analysis, fuzzy logic system, 

neural network techniques, MANFIS and hybrid fuzzy-rule base technique and is 

discussed in Chapter 9. The schematic and snapshot view of the experimental set up with 

all required instruments and test specimen are shown in Figures 3.12 and 9.1.The 

developed experimental setup comprises of the following apparatuses: 1-Cracked 

cantilever rotor, 2-Disk, 3-Fluid filled container, 4-Arduino Micro-controller, 5-Vraiac, 6-
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Power motor, 8-there ultrasonic sensors.The systematic experimental procedure is 

described in the section 9.3 of Chapter 9.  

10.3  Summary 

After the comprehensive investigation of the current chapter it is observed that the hybrid 

fuzzy model provides better results as compared to the results derived from standalone AI 

techniques. Among all proposed hybrid models, hybrid fuzzy-rule base technique gives far 

better results. The total percentage of error for hybrid fuzzy-rule base model with 

experimental results is 2.1%. 
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Chapter 11 

Conclusions and Scope for Future 

Research 

11.1 Introduction 

In the current investigation, localization and quantification of crack locations and depths 

present in the cantilever rotor partially submerged in the viscous fluid using vibration 

response have been addressed. The effects of multiple transverse cracks on cantilever rotor 

are analyzed using the intelligent fault diagnosis system. The dynamic responses of 

cantilever rotor have been determined using theoretical, finite element and experimental 

analysis. The influence of cracks on the dynamic behavior of the rotor is found to be very 

sensitive in regards to crack location, crack depth in the viscous medium. The dynamic 

response has been adopted to design inverse intelligent crack identification tools such as 

fuzzy logic system, neural network, multiple adaptive neuro fuzzy-interference system 

(MANFIS) and hybrid fuzzy-rule base technique for assessment of relative crack locations 

and relative crack depths. 

11.2 Conclusions 

The conclusions are drawn on the basis of results derived from various methods as 

discussed in the above chapters and are as follows; 

 The theoretical, finite element and experimental analyses for cantilever rotor containing 

multiple transverse crack partially submerged in the viscous fluid have been derived to 

evaluate the natural frequencies and amplitude of the system. 

 The rheological properties (i.e.viscosity and density) of viscous fluid have great 

influence on the dynamic response of the spinning rotor. From the theoretical analysis, 

it is observed that the resonant frequency of the rotor is decreased with the increasing 

viscosity and density of the viscous fluid. Also, the critical speed of the rotor reduces 

due to increasing in virtual mass and the amplitude of vibration decreases due to 

increasing in damping coefficient factor. 
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 It is observed from the analysis that increasing the radius of the container (i.e. gap 

ratio), increases the amplitude of vibration, which is due to decreases in damping factor 

and virtual mass effect. The increment in the damping factor, decreases the amplitude 

of vibration. 

 The positions of the cracks affect significantly the changes in the natural frequencies of 

vibrations in the case of constant relative depth of the cracks. When there is  increase in 

the distance of the crack location from fixed end of cantilever rotor the natural 

frequencies tend to increase.  

 The critical speed reduces due to the presence of multiple transverse crack in the rotor. 

The stiffness of the cracked rotor along the crack (55-Direction) is lower than the 

stiffness in perpendicular to the crack (44-Direction) and both transverse directional 

stiffness of cracked rotor are lower than the stiffness of non-cracked rotor. The critical 

speed measured along the crack (55-Direction) is inferior than that measured in the 

direction of perpendicular to the crack (44-Direction) and again both are lower then the 

non-cracked rotor. 

 The experimental test on cracked cantilever rotor with different crack orientations has 

been performed to verify the authentication of the dynamic response obtained from 

theoretical and finite element methods for cantilever rotor (shown in Figures 4.8 to 

4.13). The results are in close agreement. The percentage of error is found within 5% 

between theoretical and experimental results. 

 The dynamic response (i.e. relative natural frequencies and amplitude) corresponding 

to different crack locations and its size have been used as a platform to develop the 

fuzzy logic system for multiple crack identification of cantilever rotor system partially 

submerged in the viscous fluid

 The triangular, gaussian and trapezoidal membership functions have been employed to 

design and develop the Mamdani fuzzy and Takagi-Sugeno fuzzy logic system with 

five input and four output parameters. From the analysis of results, it is reported that 

fuzzy system can be efficiently used for identification of crack locations and depths. 

 Both fuzzy models (i.e. Mamdani fuzzy and Takagi-Sugeno fuzzy) with gaussian 

membership function provide better results as compared to Triangular and Trapezoidal 

fuzzy models. It is reported by the analysis of results from the fuzzy models. Hence, a 

fuzzy model with gaussian membership function is found most suitable for 

identification of crack present in the rotor system. 
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 The hybrid fuzzy model with gaussian membership function has been designed to 

predict the crack present in the cantilever rotor system. From the analysis of results, it 

is concluded that the hybrid fuzzy model with gaussian membership function provides 

better results as compared to Mamdani fuzzy and Takagi-Sugeno fuzzy models. The 

hybrid Fuzzy model with gaussian membership function can be used as potential crack 

identification tools. 

 The artificial neural network techniques such as BPNN,RBFNN and hybrid BPNN-

RBFNN method have been used as crack identification tool with five input and four 

output parameters in current research. The training data for developed neural models 

have been derived from theoretical, finite element and experimental investigations. The 

results predicted by neural network techniques in terms of relative crack locations and 

its size have good agreement with the experimental results. The results predicted by 

proposed hybrid BPNN-RBFNN model provides the least error from experimental 

results. The percentage of error is found 4.6% between  hybrid BPNN-RBFNN  model 

and experimental results.The hybrid BPNN-RBFNN model can be used more 

efficiently  than  BPNN and RBFNN models for the identification of crack in the rotor. 

 Multiple adaptive neuro fuzzy inference system (MANFIS) has been employed to 

develop a crack identification tool in rotor system. From the investigation of results 

predicted from MANFIS technique, it is observed that the MANFIS technique can find 

the crack parameters with greater accuracy as compared to Fuzzy logic model and 

neural network model and the MANFIS results are in close proximity with the 

experimental analysis results.The total percentage of error is found 4.22% between 

theoretical and experimental results. Hence, the developed crack identification 

technique is  proficient to identify crack in the faulty rotor system. 

 The rule base and hybrid fuzzy-rule base technique has been designed with five input 

and four output parameters. By analyzing the results from rule base technique, it is 

noticed that the hybrid fuzzy-rule base technique results are more accurate in 

comparison to fuzzy logic, neural network and MANFIS techniques. The total 

percentage of error is found 2.1% between hybrid fuzzy-rule base technique and 

experimental results. 

 The results predicted from proposed AI techniques have been compared with the results 

obtained from the theoretical, numerical and experimental analysis. The results 

predicted from hybrid fuzzy-rule base model provides more accurate results as 

compared to other AI techniques discussed in above chapters. It is concluded that 
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hybrid fuzzy-rule base technique can be used as an efficient crack identification tool in 

the engineering system. 

 The developed artificial intelligent fault diagnosis system can be used for identification 

of cracks present in cantilever type long rotating shaft used in drilling jigs, high speed 

centrifuges, high-speed turbine rotor, mechanical systems, marine structures, various 

engineering systems etc. This theory can also be used for fault detection of the rotor 

rotating in the viscous medium for conditioning monitoring. 

11.3 Future Scope of Research  

 Bearing characteristics for rotor system play an important role on its dynamics 

behaviour, which  can be incorporated in the theory for higher accuracy. 

 The application of AI techniques may be extended to estimation of damage present in 

the dynamic engineering system. 

 The hybridization of AI techniques can be used as an effiecient, accurate and robust 

fault detection technique for identification of damage present in various vibrating 

dynamic systems such as turbine shafts, helicopter rotors etc. 
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Appendix-A 

  

Crack section 

          

 Figure A1: FEA model of crack rotor 

 

 

Interaction point 

of rotor and fluid 

 

Figure A2: FEA model of  rotor immersed in the fluid medium 
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Figure A3:  FEA solution of  Rotor with fluid medium in axisymmetric position. 

 

 

 

Figure A4:  FEA solution  of rotor with fluid medium. 
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