130 research outputs found

    Attitude Compensation of Space Robots for Capturing Operation

    Get PDF

    Dynamic Balance Control of Multi-arm Free-Floating Space Robots

    Full text link
    This paper investigates the problem of the dynamic balance control of multi-arm free-floating space robot during capturing an active object in close proximity. The position and orientation of space base will be affected during the operation of space manipulator because of the dynamics coupling between the manipulator and space base. This dynamics coupling is unique characteristics of space robot system. Such a disturbance will produce a serious impact between the manipulator hand and the object. To ensure reliable and precise operation, we propose to develop a space robot system consisting of two arms, with one arm (mission arm) for accomplishing the capture mission, and the other one (balance arm) compensating for the disturbance of the base. We present the coordinated control concept for balance of the attitude of the base using the balance arm. The mission arm can move along the given trajectory to approach and capture the target with no considering the disturbance from the coupling of the base. We establish a relationship between the motion of two arm that can realize the zeros reaction to the base. The simulation studies verified the validity and efficiency of the proposed control method

    Research on a semiautonomous mobile robot for loosely structured environments focused on transporting mail trolleys

    Get PDF
    In this thesis is presented a novel approach to model, control, and planning the motion of a nonholonomic wheeled mobile robot that applies stable pushes and pulls to a nonholonomic cart (York mail trolley) in a loosely structured environment. The method is based on grasping and ungrasping the nonholonomic cart, as a result, the robot changes its kinematics properties. In consequence, two robot configurations are produced by the task of grasping and ungrasping the load, they are: the single-robot configuration and the robot-trolley configuration. Furthermore, in order to comply with the general planar motion law of rigid bodies and the kinematic constraints imposed by the robot wheels for each configuration, the robot has been provided with two motorized steerable wheels in order to have a flexible platform able to adapt to these restrictions. [Continues.

    Kinematics, motion analysis and path planning for four kinds of wheeled mobile robots

    Get PDF

    Optimization of body configuration and joint-driven attitude stabilization for transformable spacecrafts under solar radiation pressure

    Full text link
    A solar sail is one of the most promising space exploration system because of its theoretically infinite specific impulse using solar radiation pressure (SRP). Recently, some researchers proposed "transformable spacecrafts" that can actively reconfigure their body configurations with actuatable joints. The transformable spacecrafts are expected to greatly enhance orbit and attitude control capability due to its high redundancy in control degree of freedom if they are used as solar sails. However, its large number of input poses difficulties in control, and therefore, previous researchers imposed strong constraints to limit its potential control capabilities. This paper addresses novel attitude control techniques for the transformable spacecrafts under SRP. The authors have constructed two proposed methods; one of those is a joint angle optimization to acquire arbitrary SRP force and torque, and the other is a momentum damping control driven by joint angle actuation. Our proposed methods are formulated in general forms and applicable to any transformable solar sail that consists of flat and thin body components. Validity of the proposed methods are confirmed by numerical simulations. This paper contributes to making most of the high control redundancy of transformable solar sails without consuming any expendable propellants, which is expected to greatly enhance orbit and attitude control capability.Comment: 16 pages, 11 figures, submitted to Astrodynamics published by Tsinghua University Press and Springe

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Collision avoidance and dynamic modeling for wheeled mobile robots and industrial manipulators

    Get PDF
    Collision Avoidance and Dynamic Modeling are key topics for researchers dealing with mobile and industrial robotics. A wide variety of algorithms, approaches and methodologies have been exploited, designed or adapted to tackle the problems of finding safe trajectories for mobile robots and industrial manipulators, and of calculating reliable dynamics models able to capture expected and possible also unexpected behaviors of robots. The knowledge of these two aspects and their potential is important to ensure the efficient and correct functioning of Industry 4.0 plants such as automated warehouses, autonomous surveillance systems and assembly lines. Collision avoidance is a crucial aspect to improve automation and safety, and to solve the problem of planning collision-free trajectories in systems composed of multiple autonomous agents such as unmanned mobile robots and manipulators with several degrees of freedom. A rigorous and accurate model explaining the dynamics of robots, is necessary to tackle tasks such as simulation, torque estimation, reduction of mechanical vibrations and design of control law
    • …
    corecore