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This paper adds on to the on-going efforts to provide more autonomy to space robots and
introduces the concept of programming by demonstration or imitation learning for trajectory
planning of manipulators on free-floating spacecraft. A redundant 7-DoF robotic arm is
mounted on small spacecraft dedicated for debris removal, on-orbit servicing and
assembly, autonomous and rendezvous docking. The motion of robot (or manipulator) arm
induces reaction forces on the spacecraft and hence its attitude changes prompting the
Attitude Determination and Control System (ADCS) to take large corrective action. Themethod
introduced here is capable of finding the trajectory that minimizes the attitudinal changes
thereby reducing the load on ADCS. One of the critical elements in spacecraft trajectory
planning and control is the power consumption. The approach introduced in this work carry out
trajectory learning offline by collecting data from demonstrations and encoding it as a
probabilistic distribution of trajectories. The learned trajectory distribution can be used for
planning in previously unseen situations by conditioning the probabilistic distribution. Hence
almost no power is required for computations after deployment. Sampling from a conditioned
distribution provides several possible trajectories from the same start to goal state. To
determine the trajectory that minimizes attitudinal changes, a cost term is defined and the
trajectory which minimizes this cost is considered the optimal one.

Keywords: motion planning, probabilistic movement primitives, robot manipulation, learning from demonstrations,
trajectory adaptation

1 INTRODUCTION

Robots that operate in space are very much limited due to the unique challenges encountered like
communication latency, lack of power sources and extreme safety requirements. Current robots
operating in space are either controlled from ground stations or tele-operated. As a result, there is
large scale research going on to make space robots more autonomous.

One of the critical issues that require immediate attention is the ever increasing space junk,
especially in the past decade as it poses a huge threat to the functioning spacecraft (satellites,
International Space Station etc.). There are more than half a million debris in Low Earth Orbit
(LEO) NASA, 2013 and it is estimated that the space environment can be stabilised when on the
order of 5–10 objects are removed from LEO per year ESA, 2018. Although several methods for
space debris removal has been proposed like harpoons, nets, tentacles SPACE.COM, 2018,
using robotic arms to capture still remain the preferred choice as it can be extended to various
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other application areas like on-orbit servicing and assembly
and autonomous rendezvous and docking.

Spacecrafts require flying at a nominal attitude to charge battery,
communicate with the ground station and determine its attitude and
position. However orbital environment being micro-gravitational
poses a difficult challenge since the spacecraft bus to which the
robot-arm is attached is floating and any motion of the robot-arm
would induce an attitudinal disturbance to the spacecraft. For free-
flying spacecraft, the attitude determination and control system
(ADCS) continuously compensate for the disturbances from the
operation of themanipulator tomaintain the nominal attitude of the
spacecraft and hence a lot of energy is consumed.

Free-floating is a conceptual operating state of the spacecraft
(when ADCS is switched off) installed with robotic arm. This type of
spacecraft leave the attitude uncontrolled during the operation of the
robotic arm. However, leaving the attitude of the spacecraft tumbled
is unsafe and not ideal for the power system and the sensors used for
determining its attitude. For both cases, we want the trajectory
planner of the robotic arm to consider two important aspects, viz.,

1. minimal attitudinal disturbances of the spacecraft bus due
to manipulator operation

2. computationally inexpensive for minimal power
consumption.

Inthis work, we demonstrate how programming by
demonstrations or imitation learning Shyam et al., 2019;
Paraschos et al., 2018 can be used to plan trajectory of a 7-DoF
robot arm attached to small spacecrafts. The learned trajectories are
efficiently encoded as a probabilistic distribution (PD) from which
we can sample out trajectories for reproduction. This method is
computationally efficient and is capable of minimizing the attitude
disturbances (as shown in Section 5.3).

Optimal control methods Rybus et al., 2016; Rybus et al., 2017;
Camacho and Alba, 2013 are well developed but it often get stuck
at local minima due to poor initial guess and if successful,
produces only a single trajectory. However, modeling as a PD
captures the mean as well as the variance of the trajectories. The
variance information could be used for sampling initial guess
values form the PD for optimization based local planners to
perturb the trajectory to avoid obstacles. It is known that the
quality of initial guess determines the computational load and
avoidance of local minima Shyam et al., 2019.

Future space robots is expected to have human arm like
dexterity. Hence it is proposed to use a 7-DoF redundant
robot arm. This has the added advantage that the planning
and control can still be carried out effectively even if a joint
encoder or sensor fails.

2 RELATED WORK

The analysis of the kinematic and dynamic of spacecraft with
manipulator is well established. Exploiting the non-holonomic
behavior of the orbital manipulator system for spacecraft attitude
and end-effector trajectory control have been studied extensively. It
usually involves joint space techniques to control both the motion of

the arm and sometimes the spacecraft attitudeYoshida andNakanishi,
2003; Hirano et al., 2018. Early research used mapping methods to
correlate the end-effector position with the induced disturbances on
the spacecraft to minimize the attitude disturbances Torres and
Dubowsky, 1992; Vafa and Dubowsky, 1993. However, the
mapping methods are computationally inefficient and furthermore,
higher DoF manipulators will significantly increase the mapping
difficulty and are challenging to find optimised paths.

The work by Nenchev et al. Nenchev et al. (1999) proves that for
certain manipulator motions, no reaction forces are induced on the
spacecraft. Asmentioned in their work, such solutions exists only for
some special cases where integrability of the reaction null space
velocity exists. This work then inspired many following research to
exploit and optimise the control method for spacecraft with
manipulator Dimitrov and Yoshida, 2006; Piersigilli et al., 2010;
Nguyen-Huynh and Sharf, 2013.

More recently, researchers have attempted to solve the
problem of trajectory planning by minimizing a cost
functional which satisfies certain criteria. For example Rybus
et al. (2016); Seweryn and Banaszkiewicz (2008) minimizes the
power consumption. Non-linear Model Predictive Control
(NMPC) have been used for control of free-floating
spacecrafts Rybus et al., 2017 but it remains to be seen how
such heavy computations can be carried out by an on-board
spacecraft computer. The other focus is post-panning impedance
control of the orbital manipulator to free-motion targets. These
researches aim to solve the kinodynamics in order to finely
control the impact force for safe and accurate manipulation in
the micro-gravity environment Papadopoulos, 1992.

2.1 Contributions
The main contributions of this work are

1. Imitation learning based trajectory planning:

• First the trajectories are learned from demonstrations and
encoded as a probabilistic distribution (PD). Planning to an
unseen target only requires sampling and conditioning of
the PD. This avoids computationally expensive optimization
methods (which usually have a cost function to minimize) to
run on on-board computer.

2. Minimize attitude disturbances during capture:

• Sampling from a PD for our redundant manipulator arm
can produce infinite possible trajectories theoretically.
Attitude disturbances for each trajectory can be easily
computed and is possible to choose the trajectory with
the least disturbance.

This paper is organized as follows. Section 3 gives briefly
kinematic and dynamic formulations of the spacecraft
manipulator system. In Section 4, we discuss the method used
for generating trajectory data for learning. Section 5 provides the
equations by which trajectories can be compactly encoded as a
probabilistic distribution which can be used further for reproduction
to unseen situations. Section 6 presents the simulation results and
Section 7 gives the conclusions and future directions.
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3 DYNAMIC FORMULATION

The kinematic and dynamic formulation of free-floating spacecrafts
have been studied previously Umetani and Yoshida, 1989; Wilde
et al., 2018; Nanos and Papadopoulos, 2017. Here we give a abridged
version of the same for completeness. This formulation makes it
easier to compute various matrices especially the coriolis and
centrifugal which requires symbolic differentiation of the mass
matrix. The whole formulation is carried out using Python’s
symbolic library called ‘sympy’ Meurer et al., 2017 which
supports ‘C’ code generation as well for faster execution.

3.1 Nomenclature
• mi: mass of the ith link, the first being the spacecraft
• ri: position vector of the centre of mass of ith link with respect
to the inertial co-ordinate system

• _ri: linear velocity of the centre of mass of ith link with respect
to the inertial co-ordinate system

• Ii: moment of inertia of ith link with respect to the inertial co-
ordinate system

• ωi: angular velocity of the i
th link with respect to the inertial

co-ordinate system
• ai: vector pointing from the joint i to the centre of mass of
link i

• bi: vector pointing from the centre of mass of link i to
joint i + 1

• li: length of ith link
• ϕs: vector of attitude angles (yaw, pitch and roll) of the
spacecraft

• ϕm: vector of manipulator joint angles

3.2 Assumptions
1. Momenta is conserved and is zero at the beginning
2. Gravity is negligible
3. The Centre of Mass of the system coincides with the origin

of the inertial co-ordinate system
4. The motion planning is carried out when the satellite-

manipulator system at a safe state and is sufficiently close
to the target.

The mass centre of the spacecraft-manipulator arm can be
described as

∑n
i�0

miri � 0 (1)

The linear and angular momentum conservation equations
become

∑n
i�0

mi _ri � 0 (2)

∑n
i�0

Iiωi � 0 (3)

From Figure 1, the geometrical relationship between the various
vectors can be written as

FIGURE 1 | Schematic diagram of a spacecraft-manipulator arm.

FIGURE 2 | Left: Home position of the Future Space Debris Removal
Orbital Manipulator (FSDROM) (a 7-DoF redundant robot arm attached to the
spacecraft); Right: Position of the Future Space Debris Removal Orbital
Manipulator (FSDROM) with Manipulator capturing an orbital debris.

TABLE 1 | DH parameters of the robot arm.

Joint α (rad) a (m) d (m) θ (rad)

1 −π
2 0.0 0.5 θ1

2 π
2 0.0 0.0 θ2

3 π
2 0.9 0.0 θ3

4 −π
2 0.9 0.0 θ4

5 π
2 0.8 0.0 θ5

6 −π
2 0.8 0.0 θ6

7 π
2 0.0 0.8 θ7

TABLE 2 | Simulation Parameters.

Satellite L 1 L 2 L 3 L 4 L 5 L 6 L 7

L 0

Mass (kg) 200.0 20.0 30.0 30.0 20.0 20.0 20.0 20.0
Ix 1400.0 0.10 0.25 0.25 0.25 0.25 0.25 0.25
Iy 1400.0 0.10 25.0 25.0 25.0 25.0 25.0 25.0
Iz 2040.0 0.10 25.0 25.0 25.0 25.0 25.0 25.0
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ri � ri−1 + ai + bi−1 (4)

Equations. 1, 4 can be solved simultaneously to obtain the centre
of mass of the spacecraft and can be expressed as in Eq. 5

rs � r0 � −∑n−1
i�0

Kij(bi + ai+1)

Kij � 1 −∑i
j�0

mj

W

(5)

vs � d
dt
rs (6)

where W is the total mass of the system, rs and vs are the
position vector and linear velocity of the spacecraft with all
vectors expressed with respect to the inertial co-ordinate
system. The position vector and velocity of the rest of the
links can be found using the recursive relation given by Eq. 4.
The differential kinematics of the satellite-manipulator arm
system gives the jacobian matrix of the system which consists
of the manipulator part (Jm) and the satellite part (Js). Thus
the end-effector velocity, veef , and the momentum
conservation can be expressed as in Umetani and Yoshida,
1989.

veef � Js _ϕs + Jm _ϕm (7a)

0 � Is _ϕs + Im _ϕm (7b)

From Eq. 7, the end-effector velocity can be solved as a function
of the manipulator joint rates and generalized jacobian, J* given
by (Jm − JsI−1s Im)

veef � (Jm − JsI
−1
s Im) _ϕm

� Jp _ϕm

(8)

where Is and Im are respectively the satellite and manipulator
inertia matrices expressed in inertial co-ordinate system Umetani
and Yoshida, 1989.

The Kinetic energy, T, can then be expressed as

T � ∑n
i�0

mi(vi · vi) � 1
2
_ϕ
T
M(ϕ) _ϕ (9)

whereM(ϕ) is the mass matrix and ϕ � [ϕTs ϕTm]T . The centripetal
and coriolis vector, C, is given by

C(ϕ, _ϕ) � _M(ϕ) _ϕ − 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

_ϕ
TzM(ϕ)

zϕ1

_ϕ

_ϕ
TzM(ϕ)

zϕ2

_ϕ

.

.

_ϕ
TzM(ϕ)

zϕn

_ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The equation of motion of the free-floating spacecraft
manipulator system can be written as

FIGURE 3 | Home position and several possible trajectories of the end-effector to reach the same target.

FIGURE 4 | Learned and normalized trajectory distribution for joint one.
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M(ϕ)€ϕ + C(ϕ, _ϕ) � [ 0
τ
] (11)

where τ is the control torque to be applied at the manipulator
joints.

4 DATA GENERATION FOR TRAJECTORY
LEARNING

The method introduced here requires data samples for
trajectory learning. A trajectory, ζ, is a mapping of all the

robot configuration (x) from start to goal with time.
Mathematically it can be represented as ζ : [0, 1]→ x where
x ∈ Rd and d corresponds to the number of joints with ζ(0) and
ζ(1) being the start and goal configurations respectively. These
trajectories could be generated by a human expert by
demonstrations Zhu and Hu, 2018; Havoutis and Calinon,
2019. As real hardware orbital simulation of micro-gravity
environment being extremely expensive, we demonstrate the
concept by generating trajectories using an optimal control
algorithm Kirk, 2004. We make use of the redundancy of the
chosen 7-DoF manipulator arm to generate several trajectories
which starts at the home position (Figure 2) and go to a
particular goal state given by the vision system. Once enough
trajectories are generated, the goal state is changed and the
process is repeated until the entire workspace is covered.

The cost function for trajectory generation is given as

J � xTTPtxT + ∫T−1

t0

xTt Qtxt + uT
t Rtut dt (12)

subject to the constraints

_xt � Atxt + Btut

xt(0) � x0

where xt represents the state (position and velocity in task space)
of the manipulator joints at time t. For a space-manipulator, once
the manipulator states have been found out, the satellite states can
be determined from eq. 7 and integration. Here Qt and Rt are
respectively the time varying state and control cost matrices, Pt is
the stabilizing matrix obtained by the solution of algebraic Ricatti
equation at every time instant, t0,T are the initial and final time
respectively. The trajectory data samples in simulation are
obtained by the following methods.

FIGURE 5 | Conditioned trajectory distribution for joint one.

FIGURE 6 | Cost associated with each of the sampled trajectory.
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1. varying the cost matrices thus encouraging certain joint
motions and discouraging certain other joint motions.

2. introducing artificial obstacles (elastic bands Quinlan and
Khatib (1993)) between the start and goal point so as to
force the redundant robot to follow a different trajectory to
the same goal point

3. introduction of noise into the system given by Eq. 12.

5 TRAJECTORY ENCODING AND
REPRODUCTION

The generated trajectory data samples need to be represented in an
efficient manner for future planning and control. It has to be
mentioned that the trajectory planning is carried out when the
spacecraft-robot arm is sufficiently close to the target and is safe to
operate. Here we demonstrate the core idea of this work by
representing the generated trajectories as a probabilistic
distribution. We find that Gaussian distributions fit all the
essential criteria for efficiently representing trajectories as it
depends only on two parameters i.e. mean and covariance. For
reproduction of trajectories to unseen situations, we use the
conditioning property of the Gaussian as explained in Section 5.2.

5.1 Gaussian Trajectory Encoding
The encoding of the trajectories can be expressed as a linear basis
function model as in Eq. 13 whereψt � [ψt _ψt]T is the basis
function (see APPENDIX A), w a parameter vector, plus some
error ε. Such a representation reduces the number of parameters
and facilitates learning. Assuming trajectories to be independent
and identically distributed, the probability of observing a
trajectory, ζ, given the parameter vector w can be written as in
Eq. 14 Paraschos et al., 2018.

xt � [ qt
_qt
] � [ψt

_ψt
]w + εx (13)

p(ζ |w) � ∏
t

N (xt ∣∣∣∣ψtw,Σx) (14)

where ϵx ∼ N (0,Σx) represents the zero-mean Gaussian noise
associated with each observation and xt is the state. There are
several possible choices for the basis function. Here a radial basis
function (or squared exponential) is used for representing stroke
based movements which is ideal for motion planning Paraschos
et al. (2018). The parameter vector w is modeled as another
Gaussian distribution with parameter θ � {μw,Σw} to capture the
variance of the trajectories. (Here μw and Σw are respectively the
mean and covariance of the Gaussian). Using the linear
transformation property of the Gaussian distribution (see
APPENDIX B), the state can be represented asFor the
generated trajectory samples, the parameter vector w can be
estimated as a ridge regression and is given in Eq. 16

p(xt; θ) � ∫N (xt ∣∣∣∣ψtw,Σx)N (w∣∣∣∣μw,Σw)dw
� N (xt ∣∣∣∣μw,ψtΣwψ

T
t + Σx) (15)

wi � (ΨTΨ + λI)− 1 ΨTXi (16)

where Xi is a 1-D concatenated vector (see APPENDIX C) of all
joint values during all time steps from the ith trajectory sample
and Ψ is a block diagonal matrix with each block diagonal being
ψt . The mean and variance of the parameter vector, w, are
estimated as in Eq. 17

μw � 1
N
∑
i�1

N

wi

Σw � 1
N
∑
i�1

N (wi − μw)(wi − μw)T
(17)

where N is the number of demonstrations.
All the above computations could be carried out once the

spacecraft manipulator design is complete and the whole
trajectory planning problem could then be stated as taking the
robot from ζ(0) (home position) to ζ(1) which is the pose of the
target estimated by the vision system.

5.2 Trajectory Planning to Unseen
Situations
The data generation described in Section 4 needs several trajectory
samples to accurately represent the workspace of the spacecraft-
manipulator. However, workspace can have infinite possible
locations of the target theoretically and it is impossible to do data
generation for all possible goal poses. The Gaussian distribution
introduced above can solve this problem by using the conditional
distribution property. A probabilistic trajectory distribution can be
conditioned to follow not only the desired start and goal state but
also the via-points Paraschos et al., 2018. For example, if our
trajectory has to pass through a desired state x*t the new mean
and variance of the conditioned trajectory will be

μ[new]w � μw + L(xpt − ψT
t μw)

Σ[new]
w � Σw − LψT

t Σw
(18)

where L is

L � Σwψt(Σp
x + ψT

t Σwψt)− 1
(19)

and Σ*
x is the desired accuracy to which the state (x*t ) is to be

reached.

5.3 Cost of a Trajectory
The cost of a trajectory is a scalar which estimates how much the
attitude of the spacecraft changes when the robot arm follows a
particular trajectory. It is defined as follows.

Q � c2 Σ _ϕ
T

s
_ϕs + Σ vTs vs (20)

where _ϕs (from Eq. 7b) and vs (from Eq. 6) are respectively the
rate of change of Euler angles1 and linear velocities of the
spacecraft calculated at each discrete time step from initial to

1It is to be noted that angular velocity and rate of change of Euler angles are not the
same. Interested readers may please refer to chapter 3 in Siciliano et al., 2010 for a
detailed discussion
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final pose, c is a angular to linear conversion coefficient which
allows to combine an angular value with a linear value and Σ is the
summation symbol. The minimum cost corresponds to the
trajectory having minimal disturbances.

5.4 Algorithm
The algorithm can be summarised as given below.

Algorithm 1: Algorithm for finding optimal trajectory using
imitation learning

FIGURE 7 | Pose variation of the spacecraft CG during trajectory tracking.
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6 SIMULATION RESULTS

The Denavit-Hartenberg Hartenberg and Denavit (1955)
parameters of the robot arm is shown in Table 1 and the
parameters used for the simulation are shown in Table 2. For
this particular result presented here, the end-effector of the
robot is commanded to a target position of [−2, 0, 0] m in
Cartesian frame.

Figure 3 shows the home position of the robot arm attached to
the spacecraft corresponding to the joint values,(0.0, 5 π

4, 0.0, 0.0,
π
2,−π

2, 0.0). The spacecraft’s Euler angles are (0,
0, 0) at the start and is commanded to any Cartesian position in
the world which is considered safe to carry out the manipulation.
Equation 6 can be used to find the distance of centre of mass from
inertial coordinate system.

The trajectories obtained from the optimal control algorithm
are normalized in the time interval 0–1. The learned trajectory
distribution for joint 1 is shown in Figure 4.

The conditioned trajectory for joint 1 is also shown in
Figure 5.

Twenty trajectories in joint space are sampled out from
the conditioned distribution. For the twenty joint space
trajectories, the corresponding end-effector trajectories in task
space are found out and are also shown in Figure 3. Figure 6
shows the cost of each of the trajectories and the trajectory which has
the minimum cost. For this trajectory, the induced motion on the
spacecraft is shown in Figure 7.

7 CONCLUSION

To the authors’ knowledge, this is the first time imitation
learning is used in trajectory planning of robot arms for free
floating spacecraft. This work addresses the issue of
minimizing attitude disturbance spacecraft bus when the
arm reaches out to capture a debris. The learning is carried

out offline and is computationally very efficient for finding new
trajectories after deployment.

The trajectory learning algorithm presented in this paper
will be potentially tested on a Future Space Debris Removal
Orbital Manipulator which has a similar micro-satellite
spacecraft bus as RemoveDEBRIS Forshaw et al., 2017 but
with a 7-DoF redundant robot arm attached, as shown
in Figure 2. This is the next step towards space autonomy
for on-orbit operations that will be demonstrated by a
potential mission concept that goes beyond
RemoveDEBRIS spacecraft. The overall mission objectives
would be to execute pose estimation, trajectory and motion
planning of the robotic arm, and capture a sample debris in
order.
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APPENDIX

A Basis Function
The basis function used in this work is given by

ψi(z) � exp(−(z−ci)2h2
)

here zt is the phase, ci is the center and h is the bandwidth factor.
Interested readers can refer to Paraschos et al. (2018) for details.

Figure A1 gives a plot of ten basis function centered at [−0.142, 0.,
0.142, 0.285, 0.428, 0.571, 0.714, 0.857, 1., 1.142].

B Linear Transformation Property of
Gaussian Distribution
If a random variable x is normally distributed (N (μ,Σ)), the
linear transformation Ax + c follows the distribution

Ax + c ∼ N (Aμ + c,AΣAT)
C Explanation of the Learning Scheme
To illustrate the learning process, a simple example of 2-DoF
planar robot is considered here. Let θ1 and θ2 represent the joint
angles. The complete trajectory for a single demonstration, ζ,
concatenated as a 1-D vector is represented as

λ1 � [θ1t1, θ1t2, . . . , θ1tn]
λ2 � [θ2t1, θ2t2, . . . , θ2tn]
ζ� [λ1λ2, _λ1, _λ2]Ttn×2nDoF

Here ti are the time points, tn and nDoF are the total time
points and number of degrees of freedom respectively. Let the
number of basis functions be nBf . The matrices ψt and _ψt are of
dimension 2nDoF × (nBf × 2nDoF) each and the matrix Ψ is of
dimension (tn × 2nDoF) × (nBf × 2nDoF). The learning
parameter, wi for one demonstration is then calculated by
formulating as a regression problem and reducing the
loss, (ζ − Ψw)2FIGURE A1 | Radial basis function.
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