5 research outputs found

    Plasma cholesterol levels and brain development in preterm newborns.

    Get PDF
    BackgroundTo assess whether postnatal plasma cholesterol levels are associated with microstructural and macrostructural regional brain development in preterm newborns.MethodsSixty preterm newborns (born 24-32 weeks gestational age) were assessed using MRI studies soon after birth and again at term-equivalent age. Blood samples were obtained within 7 days of each MRI scan to analyze for plasma cholesterol and lathosterol (a marker of endogenous cholesterol synthesis) levels. Outcomes were assessed at 3 years using the Bayley Scales of Infant Development, Third Edition.ResultsEarly plasma lathosterol levels were associated with increased axial and radial diffusivities and increased volume of the subcortical white matter. Early plasma cholesterol levels were associated with increased volume of the cerebellum. Early plasma lathosterol levels were associated with a 2-point decrease in motor scores at 3 years.ConclusionsHigher early endogenous cholesterol synthesis is associated with worse microstructural measures and larger volumes in the subcortical white matter that may signify regional edema and worse motor outcomes. Higher early cholesterol is associated with improved cerebellar volumes. Further work is needed to better understand how the balance of cholesterol supply and endogenous synthesis impacts preterm brain development, especially if these may be modifiable factors to improve outcomes

    Multi-atlas label fusion by using supervised local weighting for brain image segmentation

    Get PDF
    La segmentación automática de estructuras de interés en imágenes de resonancia magnética cerebral requiere esfuerzos significantes, debido a las formas complicadas, el bajo contraste y la variabilidad anatómica. Un aspecto que reduce el desempeño de la segmentación basada en múltiples atlas es la suposición de correspondencias uno-a-uno entre los voxeles objetivo y los del atlas. Para mejorar el desempeño de la segmentación, las metodologías de fusión de etiquetas incluyen información espacial y de intensidad a través de estrategias de votación ponderada a nivel de voxel. Aunque los pesos se calculan para un conjunto de atlas predefinido, estos no son muy eficientes en etiquetar estructuras intrincadas, ya que la mayoría de las formas de los tejidos no se distribuyen uniformemente en las imágenes. Este artículo propone una metodología de extracción de características a nivel de voxel basado en la combinación lineal de las intensidades de un parche. Hasta el momento, este es el primer intento de extraer características locales maximizando la función de alineamiento de kernel centralizado, buscando construir representaciones discriminativas, superar la complejidad de las estructuras, y reducir la influencia de los artefactos. Para validar los resultados, la estrategia de segmentación propuesta se compara contra la segmentación Bayesiana y la fusión de etiquetas basada en parches en tres bases de datos diferentes. Respecto del índice de similitud Dice, nuestra propuesta alcanza el más alto acierto (90.3% en promedio) con suficiente robusticidad ante los artefactos y respetabilidad apropiada.The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that reduces the accuracy of the multi-atlasbased segmentation is the label fusion assumption of one-to-one correspondences between targets and atlas voxels. To improve the performance of brain image segmentation, label fusion approaches include spatial and intensity information by using voxel-wise weighted voting strategies. Although the weights are assessed for a predefined atlas set, they are not very efficient for labeling intricate structures since most tissue shapes are not uniformly distributed in the images. This paper proposes a methodology of voxel-wise feature extraction based on the linear combination of patch intensities. As far as we are concerned, this is the first attempt to locally learn the features by maximizing the centered kernel alignment function. Our methodology aims to build discriminative representations, deal with complex structures, and reduce the image artifacts. The result is an enhanced patch-based segmentation of brain images. For validation, the proposed brain image segmentation approach is compared against Bayesian-based and patch-wise label fusion on three different brain image datasets. In terms of the determined Dice similarity index, our proposal shows the highest segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and provides suitable repeatability of the segmentation results

    Patch-based augmentation of Expectation-Maximization for brain MRI tissue segmentation at arbitrary age after premature birth

    No full text
    International audienceAccurate automated tissue segmentation of premature neonatal magnetic resonance images is a crucial task for quantification of brain injury and its impact on early postnatal growth and later cognitive development. In such studies it is common for scans to be acquired shortly after birth or later during the hospital stay and therefore occur at arbitrary gestational ages during a period of rapid developmental change. It is important to be able to segment any of these scans with comparable accuracy. Previous work on brain tissue segmentation in premature neonates has focused on segmentation at specific ages. Here we look at solving the more general problem using adaptations of age specific atlas based methods and evaluate this using a unique manually traced database of high resolution images spanning 20 gestational weeks of development. We examine the complimentary strengths of age specific atlas-based Expectation-Maximization approaches and patch-based methods for this problem and explore the development of two new hybrid techniques, patch-based augmentation of Expectation-Maximization with weighted fusion and a spatial variability constrained patch search. The former approach seeks to combine the advantages of both atlas- and patch-based methods by learning from the performance of the two techniques across the brain anatomy at different developmental ages, while the latter technique aims to use anatomical variability maps learnt from atlas training data to locally constrain the patch-based search range. The proposed approaches were evaluated using leave-one-out cross-validation. Compared with the conventional age specific atlas-based segmentation and direct patch based segmentation, both new approaches demonstrate improved accuracy in the automated labeling of cortical gray matter, white matter, ventricles and sulcal cortical-spinal fluid regions, while maintaining comparable results in deep gray matter

    Role of deep learning in infant brain MRI analysis

    Get PDF
    Deep learning algorithms and in particular convolutional networks have shown tremendous success in medical image analysis applications, though relatively few methods have been applied to infant MRI data due numerous inherent challenges such as inhomogenous tissue appearance across the image, considerable image intensity variability across the first year of life, and a low signal to noise setting. This paper presents methods addressing these challenges in two selected applications, specifically infant brain tissue segmentation at the isointense stage and presymptomatic disease prediction in neurodevelopmental disorders. Corresponding methods are reviewed and compared, and open issues are identified, namely low data size restrictions, class imbalance problems, and lack of interpretation of the resulting deep learning solutions. We discuss how existing solutions can be adapted to approach these issues as well as how generative models seem to be a particularly strong contender to address them

    Minimally Interactive Segmentation with Application to Human Placenta in Fetal MR Images

    Get PDF
    Placenta segmentation from fetal Magnetic Resonance (MR) images is important for fetal surgical planning. However, accurate segmentation results are difficult to achieve for automatic methods, due to sparse acquisition, inter-slice motion, and the widely varying position and shape of the placenta among pregnant women. Interactive methods have been widely used to get more accurate and robust results. A good interactive segmentation method should achieve high accuracy, minimize user interactions with low variability among users, and be computationally fast. Exploiting recent advances in machine learning, I explore a family of new interactive methods for placenta segmentation from fetal MR images. I investigate the combination of user interactions with learning from a single image or a large set of images. For learning from a single image, I propose novel Online Random Forests to efficiently leverage user interactions for the segmentation of 2D and 3D fetal MR images. I also investigate co-segmentation of multiple volumes of the same patient with 4D Graph Cuts. For learning from a large set of images, I first propose a deep learning-based framework that combines user interactions with Convolutional Neural Networks (CNN) based on geodesic distance transforms to achieve accurate segmentation and good interactivity. I then propose image-specific fine-tuning to make CNNs adaptive to different individual images and able to segment previously unseen objects. Experimental results show that the proposed algorithms outperform traditional interactive segmentation methods in terms of accuracy and interactivity. Therefore, they might be suitable for segmentation of the placenta in planning systems for fetal and maternal surgery, and for rapid characterization of the placenta by MR images. I also demonstrate that they can be applied to the segmentation of other organs from 2D and 3D images
    corecore