22 research outputs found

    A Control Architecture for Unmanned Aerial Vehicles Operating in Human-Robot Team for Service Robotic Tasks

    Get PDF
    In this thesis a Control architecture for an Unmanned Aerial Vehicle (UAV) is presented. The aim of the thesis is to address the problem of control a flying robot operating in human robot team at different level of abstraction. For this purpose, three different layers in the design of the architecture were considered, namely, the high level, the middle level and the low level layers. The special case of an UAV operating in service robotics tasks and in particular in Search&Rescue mission in alpine scenario is considered. Different methodologies for each layer are presented with simulated or real-world experimental validation

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Image-Based Visual-Impedance Control of a Dual-Arm Aerial Manipulator

    Get PDF
    Three new image-based visual-impedance control laws are proposed in this paper allowing physical interaction of a dual-arm unmanned aerial manipulator equipped with a camera and a force/torque sensor. Namely, two first-order impedance behaviours are designed based on the transpose and the inverse of the system Jacobian matrix, respectively, while a second-order impedance behaviour is carried out as well. Visual information is employed both to coordinate the camera motion in an eye- in-hand configuration with the assigned task executed by the other robot arm, and to define the elastic wrench component of the proposed hybrid impedance equations directly in the image plane

    Optimal state observation using quadratic boundedness: application to UAV disturbance estimation

    Get PDF
    This paper presents the design of a state observer which guarantees quadratic boundedness of the estimation error. By using quadratic Lyapunov stability analysis, the convergence rate and the ultimate (steady-state) error bounding ellipsoid are identified as the parameters that define the behaviour of the estimation. Then, it is shown that these objectives can be merged in a scalarised objective function with one design parameter, making the design problem convex. In the second part of the article, a UAV model is presented which can be made linear by considering a particular state and frame of reference. The UAV model is extended to incorporate a disturbance model of variable size. The joint model matches the structure required to derive an observer, following the lines of the proposed design approach. An observer for disturbances acting on the UAV is derived and the analysis of the performances with respect to the design parameters is presented. The effectiveness and main characteristics of the proposed approach are shown using simulation results.Peer ReviewedPostprint (author's final draft

    To Collide or Not To Collide -- Exploiting Passive Deformable Quadrotors for Contact-Rich Tasks

    Full text link
    With an increase in aerial vehicle applications, passive deformable quadrotors are getting significant attention in the research community due to their potential to perform physical interaction tasks. Such quadrotors are capable of undergoing collisions, both planned and unplanned, which are harnessed to induce deformation and retain stability by dissipating collision energies. In this article, we utilize one such passive deforming quadrotor, XPLORER, to complete various contact-rich tasks by exploiting its compliant chassis via various impact-aware planning and control algorithms. At the core of these algorithms is a novel external wrench estimation technique developed specifically for the unique multi-linked structure of XPLORER's chassis. The external wrench information is then employed for designing interaction controllers to obtain three additional flight modes: static-wrench application, disturbance rejection and yielding to the disturbance. These modes are then incorporated into a novel online exploration scheme to enable navigation in unknown flight spaces with only tactile feedback and generate a map of the environment without requiring additional sensors. Experiments show the efficacy of this scheme to generate maps of the previously unexplored flight space with an accuracy of 96.72%. Finally, we develop a novel collision-aware trajectory planner (CATAAN) to generate minimum time maneuvers for waypoint tracking by integrating collision-induced state jumps for both elastic and inelastic cases. We experimentally validate that minimum time trajectories can be obtained with CATAAN leading to a 40.38% reduction of settling time accompanied by improved tracking performance of a root mean squared error in position within 0.5cm as compared to 3cm of conventional methods

    An Omnidirectional Aerial Platform for Multi-Robot Manipulation

    Get PDF
    The objectives of this work were the modeling, control and prototyping of a new fully-actuated aerial platform. Commonly, the multirotor aerial platforms are under-actuated vehicles, since the total propellers thrust can not be directed in every direction without inferring a vehicle body rotation. The most common fully-actuated aerial platforms have tilted or tilting rotors that amplify the aerodynamic perturbations between the propellers, reducing the efficiency and the provided thrust. In order to overcome this limitation a novel platform, the ODQuad (OmniDirectional Quadrotor), has been proposed, which is composed by three main parts, the platform, the mobile and rotor frames, that are linked by means of two rotational joints, namely the roll and pitch joints. The ODQuad is able to orient the total thrust by moving only the propellers frame by means of the roll and pitch joints. Kinematic and dynamic models of the proposed multirotor have been derived using the Euler- Lagrange approach and a model-based controller has been designed. The latter is based on two control loops: an outer loop for vehicle position control and an inner one for vehicle orientation and roll-pitch joint control. The effectiveness of the controller has been tested by means of numerical simulations in the MATLAB c SimMechanics environment. In particular, tests in free motion and in object transportation tasks have been carried out. In the transportation task simulation, a momentum based observer is used to estimate the wrenches exchanged between the vehicle and the transported object. The ODQuad concept has been tested also in cooperative manipulation tasks. To this aim, a simulation model was considered, in which multiple ODQuads perform the manipulation of a bulky object with unknown inertial parameters which are identified in the first phase of the simulation. In order to reduce the mechanical stresses due to the manipulation and enhance the system robustness to the environment interactions, two admittance filters have been implemented: an external filter on the object motion and an internal one local for each multirotor. Finally, the prototyping process has been illustrated step by step. In particular, three CAD models have been designed. The ODQuad.01 has been used in the simulations and in a preliminary static analysis that investigated the torque values for a rough sizing of the roll-pitch joint actuators. Since in the ODQuad.01 the components specifications and the related manufacturing techniques have not been taken into account, a successive model, the ODQuad.02, has been designed. The ODQuad.02 design can be developed with aluminum or carbon fiber profiles and 3D printed parts, but each component must be custom manufactured. Finally, in order to shorten the prototype development time, the ODQuad.03 has been created, which includes some components of the off-the-shelf quadrotor Holybro X500 into a novel custom-built mechanical frame

    Safe local aerial manipulation for the installation of devices on power lines: Aerial-core first year results and designs

    Get PDF
    Article number 6220The power grid is an essential infrastructure in any country, comprising thousands of kilometers of power lines that require periodic inspection and maintenance, carried out nowadays by human operators in risky conditions. To increase safety and reduce time and cost with respect to conventional solutions involving manned helicopters and heavy vehicles, the AERIAL-CORE project proposes the development of aerial robots capable of performing aerial manipulation operations to assist human operators in power lines inspection and maintenance, allowing the installation of devices, such as bird flight diverters or electrical spacers, and the fast delivery and retrieval of tools. This manuscript describes the goals and functionalities to be developed for safe local aerial manipulation, presenting the preliminary designs and experimental results obtained in the first year of the project.European Union (UE). H2020 871479Ministerio de Ciencia, Innovación y Universidades de España FPI 201

    Novel Model-Based Control Mixing Strategy for a Coaxial Push-Pull Multirotor

    Get PDF
    A Coaxial push-pull multirotor is a Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) having 2n (n ∈ IN*) rotors arranged in n blocks of two coaxial contrarotating rotors. A model-based control allocation algorithm (mixer) for this architecture is proposed. The novelty of the approach lies in the fact that the coaxial aerodynamic interference occurring between the pairs of superimposed rotors is not neglected but rather nonlinear empiric models of the coaxial aerodynamic thrust and torque are used to build the mixer. Real flight experiments were conducted and the new approach showed promising results
    corecore