7,042 research outputs found

    On passivity and passification of stochastic fuzzy systems with delays: The discrete-time case

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Takagi–Sugeno (T-S) fuzzy models, which are usually represented by a set of linear submodels, can be used to describe or approximate any complex nonlinear systems by fuzzily blending these subsystems, and so, significant research efforts have been devoted to the analysis of such models. This paper is concerned with the passivity and passification problems of the stochastic discrete-time T-S fuzzy systems with delay. We first propose the definition of passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the stochastic analysis combined with the matrix inequality techniques, a sufficient condition in terms of linear matrix inequalities is presented, ensuring the passivity performance of the T-S fuzzy models. Finally, based on this criterion, state feedback controller is designed, and several criteria are obtained to make the closed-loop system passive in the sense of expectation. The results acquired in this paper are delay dependent in the sense that they depend on not only the lower bound but also the upper bound of the time-varying delay. Numerical examples are also provided to demonstrate the effectiveness and feasibility of our criteria.This work was supported in part by the Royal Society Sino–British Fellowship Trust Award of the U.K., by the National Natural Science Foundation of China under Grant 60804028, by the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers in China under Grant 200802861044, and by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China

    Robust passivity and passification of stochastic fuzzy time-delay systems

    Get PDF
    The official published version can be obtained from the link below.In this paper, the passivity and passification problems are investigated for a class of uncertain stochastic fuzzy systems with time-varying delays. The fuzzy system is based on the Takagi–Sugeno (T–S) model that is often used to represent the complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning. To reflect more realistic dynamical behaviors of the system, both the parameter uncertainties and the stochastic disturbances are considered, where the parameter uncertainties enter into all the system matrices and the stochastic disturbances are given in the form of a Brownian motion. We first propose the definition of robust passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the Itô differential rule and the matrix analysis techniques, we establish several sufficient criteria such that, for all admissible parameter uncertainties and stochastic disturbances, the closed-loop stochastic fuzzy time-delay system is robustly passive in the sense of expectation. The derived criteria, which are either delay-independent or delay-dependent, are expressed in terms of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.This work was supported by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers 200802861044, the National Natural Science Foundation of China under Grant 60804028 and the Royal Society of the United Kingdom

    Robust Multi-Criteria Optimal Fuzzy Control of Continuous-Time Nonlinear Systems

    Get PDF
    This paper presents a novel fuzzy control design of continuous-time nonlinear systems with multiple performance criteria. The purpose behind this work is to improve the traditional fuzzy controller performance to satisfy several performance criteria simultaneously to secure quadratic optimality with inherent stability property together with dissipativity type of disturbance reduction. The Takagi– Sugeno fuzzy model is used in our control system design. By solving the linear matrix inequality at each time step, the control solution can be found to satisfy the mixed performance criteria. The effectiveness of the proposed technique is demonstrated by simulation of the control of the inverted pendulum system

    Robust Multi-Criteria Optimal Fuzzy Control of Discrete-Time Nonlinear Systems

    Get PDF
    This paper presents a novel fuzzy control design of discrete-time nonlinear systems with multiple performance criteria. The purpose behind this work is to improve the traditional fuzzy controller performance to satisfy several performance criteria simultaneously to secure quadratic optimality with an inherent stability property together with a dissipativity type of disturbance reduction. The Takagi–Sugeno-type fuzzy model is used in our control system design. By solving a linear matrix inequality at each time step, the optimal control solution can be found to satisfy mixed performance criteria. The effectiveness of the proposed technique is demonstrated by simulation of the control of the inverted pendulum system on a cart

    Fuzzy self-tuning PI controller for phase-shifted series resonant converters

    Get PDF

    Sampled data systems passivity and discrete port-Hamiltonian systems

    Get PDF
    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for the implementation of a passive master/slave system on a digital transmission line with varying time delays and possible loss of packets (e.g., the Internet), and in the field of haptics, where the virtual environment should `feel¿ like a physical equivalent system

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out
    corecore