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Abstract- A linearized model of the phase-shifted series resonant 

converter is necessary for closed loop design. With fixed PI con-

trol design, the converter does not have good disturbance rejec-

tion capability and cannot always cope with a wide range of un-

certainties. In this paper, a PI self-tuning mechanism based on a 

fuzzy logic scheme is proposed. It corrects the PI gains, initially 

designed using small-signal modeling, to improve converter dy-

namic response and disturbance rejection. The algorithm is 

based on continuous change/adaptation of the PI gains until best 

dynamic response is achieved. Simulation results compare re-

sponses for the PI fixed parameters with the fuzzy-adapted con-

troller gains under different disturbance conditions. 

NOMENCLATURE 

𝑣𝑔 DC supply voltage (V) 

𝑖𝐿 Resonant tank inductor current (A) 

𝑣𝐶  Resonant tank capacitor voltage (V) 

𝑣𝐴𝐵  Inverter Output voltage (V) 

𝑣𝑝 Transformer primary voltage (V) 

𝑣𝑠 Transformer secondary voltage (V) 

𝑛 Transformer turns ratio 

𝐿 Resonant tank inductance (µH) 

𝐶 Resonant tank capacitance (µF) 

𝐶𝑜 Output filter capacitance (µF) 

𝑣𝑜 , 𝑖𝑜 Output voltage and current respectively (V,A) 

𝑅𝐿 Load Resistance (Ω) 

𝑓𝑠 Inverter switching frequency (kHz) 

𝑓𝑜 Resonant frequency= 1/2𝜋√𝐿𝐶 (kHz) 

𝛿 Phase-shift angle between inverter legs (rad) 

𝑣𝑜𝑟𝑒𝑓 Desired output voltage (V) 

𝑘𝑒 Error normalizing coefficient 

𝑘𝑣 Output voltage derivative normalizing coefficient 

𝑒 Controller error signal= 𝑣𝑜𝑟𝑒𝑓
− 𝑣𝑜 (V) 

𝑒𝑛 Normalized error signal  

𝑣𝑜𝑛
̇  Normalized output voltage derivative  

𝑘𝑝
∗, 𝑘𝑖

∗
 Initially designed PI controller gains obtained 

through small-signal analysis 

𝛥𝑘𝑝, 𝛥𝑘𝑖 Change in PI controller gains (outputs of fuzzy 

logic algorithm) 

𝑘𝑝, 𝑘𝑖 Corrected PI controller gains 

I. INTRODUCTION 

HE NON-LINEAR control nature of the series res-

onant converter (SRC) has lead to the development 
of several  linearized small-signal models for analysis, stabil-

ity studies and closed-loop control design [1,2]. Discrete 

time-domain modeling approaches [3-5] and multiple fre-

quency averaged modeling [6-9] have been proposed. These 

models have aided in closed-loop control design, but with 

fixed-parameter controllers designed for a certain steady-state 

operating point of the SRC. With the non-linear nature of the 

converter, and the constantly changing steady-state operating 

point due to supply fluctuations, load variances, component 

tolerances and external disturbances, fixed-parameter control-

lers may eliminate error in output but the dynamic perfor-

mance may not be satisfactory.  

Advanced control strategies have been developed in litera-

ture to improve the performance of dc/dc converters [10-12], 

but they depend on the plant model accuracy. Adaptive con-

trol techniques for phase-shifted SRC have been reported in 

literature such as auto disturbance rejection control [13] and 

passivity based control [14]. A quasi current mode control for 

phase-shifted SRCs has been proposed in [15]. It depends on 

regulating the rectified resonant current to improve the con-

verter dynamic performance. Robust controllers for series 

resonant inverters have also been implemented in literature. A 

load adaptive control algorithm for series resonant inverters 

used for domestic induction heating has been proposed in 

[16]. The algorithm is composed of several modulation tech-

niques; square wave variable frequency modulation and pulse 

density modulation. A comparative study of sliding mode 

control schemes for series resonant inverters with quantum 

modulation is reported in [17]. Sliding mode control systems 

provide both low sensitivity to disturbances and simple design 

given by reduced order dynamics. 

Most of the above controllers, although superior to conven-

tional PI types, need either an accurate plant model or a relia-

ble instrumentation scheme. Fuzzy logic controllers, however, 

do not. PI gains adjustment can be done by a scheme based on 

fuzzy logic algorithm. In order to account for sensor noise, 

model uncertainties and shifts in operating points, the linguis-

tic characteristics of fuzzy control provide a very good ap-

proach to the uncertainty problem. Fuzzy rules derivation, by 

principle, relies on the experience of human expert [18]. This 

paper presents a fuzzy logic based approach for PI self-tuning 

of phase-shifted SRC. Initial values for PI controller gains 

𝑘𝑝
∗, 𝑘𝑖

∗
 are designed by linearization of the SRC small-

signal model around a specific operating point. A fuzzy logic 

algorithm is then designed for controller parameter adaptation 

to improve dynamic response and disturbance rejection.
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Fig. 1.  Closed loop control configuration for phase-shifted SRC. 

II. SYSTEM DESCRIPTION  

Fig. 1 illustrates the closed loop control architecture for 

the phase-shifted SRC. The system is simulated using switch-

ing models for the power electronic converters together with 

control environment in Simulink/Matlab software for the 

closed loop system. Initial design of the controller PI gains 

𝑘𝑝
∗, 𝑘𝑖

∗
 is carried out using small-signal model of SRC. This 

is briefed in section III and detailed in [19]. A fuzzy logic 

scheme is used to self-adapt the PI controller gains according 

to system output for best dynamic response and disturbance 

rejection. Details of the fuzzy logic control structure are dis-

cussed in section IV.  

III. INITIAL PI CONTROLLER DESIGN USING SMALL SIGNAL ANALYSIS 

Small-signal analysis of SRCs has been extensively cov-

ered in literature. This section only briefs the use of discrete 

time domain small-signal modeling in closed loop design of 

phase-shifted SRCs. This is fully detailed in [19].  State-plane 

analysis is first used to derive a generalized state-space model 

for the phase-shifted SRC. This model is discretized, normal-

ized, perturbed and linearized around a specific operating 

point to obtain the small-signal model. The control parameter 

is the phase shift angle 𝛿.  A generalized small-signal state-

space model results in the form of, 
 

�̂�(𝑘 + 1) = 𝐴�̂�(𝑘) + 𝐵�̂�(𝑘)                      (1) 

where, 

�̂�(𝑘) = [𝑖̂𝐿 �̂�𝑐 �̂�𝑜]𝑇= State-vector of small-signal model 

with perturbed state variables, 

 𝐴 =System small-signal matrix, and 

 𝐵 =Small-signal Input vector. 

Hence, a small-signal transfer function of phase-shift to out-

put voltage can be obtained, 
 

𝑇𝑝(𝑠) =
�̂�𝑜(𝑠)

�̂�(𝑠)
= [0 0 1][𝑧𝐼 − 𝐴]−1𝐵             (2) 

The closed loop configuration in Fig.1 can, therefore, be illus-

trated in terms of control systems as shown in Fig.2. 
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Fig. 2.  Small-signal closed loop control structure for phase-shifted SRC. 

 

By selecting a certain operating point with specified loading 

conditions, the PI controller 𝑇𝑐(𝑠) can de designed using 

Bode plot analysis as in [19]. 𝑇𝑐(𝑠) takes the form, 
 

𝑇𝑐(𝑠) = 𝑘𝑝
∗ + 𝑘𝑖

∗

𝑠
                          (3) 

where, 
𝑘𝑝

∗, 𝑘𝑖
∗
 are the PI controller gains initially designed at a given 

operating condition. The fuzzy-logic scheme is used to im-

prove system dynamic response, by producing a change 

around these initial values, as the operating conditions change 

and external disturbances apply.  

IV. FUZZY LOGIC CONTROL DESIGN 

This section details the design of the rule-based fuzzy logic 

controller used to improve the transient response of the SRC 

via PI controller gains adaptation. The inputs to the fuzzy 

controller are the normalised error signal 𝑒𝑛 and normalised 

output voltage derivative 𝑣𝑜𝑛
̇ . The fuzzy controller state vari-

ables are the fuzzy sets associated with 𝑒𝑛 and 𝑣𝑜𝑛
̇ . The fuzzy 

controller outputs are the accumulated changes in the propor-

tional and integral gains (𝛥𝑘𝑝, 𝛥𝑘𝑖) from initial designed val-

ues 𝑘𝑝
∗ and 𝑘𝑖

∗
. This is obtained via feedback of corrected 

gains (𝑘𝑝, 𝑘𝑖) as shown in Fig. 3b. 𝑘𝑝 and 𝑘𝑖 are the actual PI 

gain values in the voltage feedback loop (Fig. 3a). The fuzzy 

procedure assumes that controller gains variation span is a 

limited range. The limits of 𝑘𝑝 and 𝑘𝑖 are determined using 

the stability limits of the system from the small-signal analy-

sis in the previous section. 

A. Fuzzification Algorithm and Fuzzy Control Rules 

The two inputs are 𝑒𝑛 and 𝑣𝑜𝑛
̇ . 

 The ‘normalized error variable’ has three linguistic values 

with their associated fuzzy sets: error positive (𝑒𝑝), error 

zero (𝑒𝑧) and error negative (𝑒𝑛).  

 Similarly, the ‘normalized output voltage derivative’: de-

rivative positive (𝑑𝑝), derivative zero (𝑑𝑧) and derivative 

negative (𝑑𝑛). 
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Fig. 3.  (a) General layout of closed loop controller, (b) Fuzzy tuning mecha-

nism for PI controller gains. 



 

 

The two controller outputs are 𝛥𝑘𝑝 and 𝛥𝑘𝑖.   

 The ‘change in proportional gain’ output has five fuzzy 

sets: large positive proportional (𝑙𝑝𝑝), medium positive 

proportional (𝑚𝑝𝑝), zero proportional (𝑧𝑝), medium nega-

tive proportional (𝑚𝑛𝑝) and large negative proportional 

(𝑙𝑛𝑝). 

 Similarly, the ‘change in integral gain’ output: large posi-

tive integral (𝑙𝑝𝑖), medium positive integral (𝑚𝑝𝑖), zero 

integral (𝑧𝑖), medium negative integral (𝑚𝑛𝑖) and large 

negative integral (𝑙𝑛𝑖). 

Five membership functions were chosen for the fuzzy 

controller outputs to provide the appropriate change in PI gain 

in accordance with change in output response. This ensures 

gradual and smooth tuning of the PI controller gains to avoid 

closed loop instability.  

The membership grades for the fuzzy controller input and 

output variables are shown in Fig. 4. They are chosen to be 

triangular and symmetrical. L in the figure denotes maximum 

error or maximum output voltage derivative multiplied by 

their normalizing gains 𝑘𝑒 and 𝑘𝑣 respectively. Limits 𝐿 for 

the output sets (𝛥𝑘𝑝 and 𝛥𝑘𝑖) are obtained from the small-

signal stability analysis described in section III. µ is the 

membership degree of the fuzzy set members. The fuzzy rules 

in Table I summarise the set of implemented fuzzy control 

rules. Nine fuzzy control rules exist with an implied AND 

operation between the two consequent parts. An example is 

given by, 
Rule 1: If 𝑒𝑛 is 𝑒𝑝 AND 𝑣𝑜𝑛

̇  is 𝑑𝑝 THEN 𝛥𝑘𝑝 is 𝑧𝑝 AND 𝛥𝑘𝑖 

is 𝑧𝑖.                                                                                       (4) 

Rule 2: If 𝑒𝑛 is 𝑒𝑝 AND 𝑣𝑜𝑛
̇  is 𝑑𝑧 THEN 𝛥𝑘𝑝 is 𝑚𝑝𝑝 AND 

𝛥𝑘𝑖 is 𝑚𝑝𝑖.                                                                            (5) 
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Fig. 4.  Membership grades of: (a) inputs (Normalized error and output deriv-

ative) and (b) outputs (change in 𝑘𝑝 and 𝑘𝑖 gains). 

TABLE I 
FUZZY RULE TABLE 

𝒆𝒏 
𝒗𝒐𝒏

̇  
𝒆𝒑 𝒆𝒛 𝒆𝒏 

𝒅𝒑 𝑧𝑝 𝑚𝑝𝑝 𝑙𝑝𝑝 

𝒅𝒛 𝑚𝑝𝑝 𝑧𝑝 𝑚𝑝𝑝 

𝒅𝒏 𝑙𝑝𝑝 𝑚𝑝𝑝 𝑧𝑝 
(a) 𝜟𝒌𝒑 

𝒆𝒏 
𝒗𝒐𝒏

̇  
𝒆𝒑 𝒆𝒛 𝒆𝒏 

𝒅𝒑 𝑧𝑖 𝑚𝑝𝑖 𝑙𝑝𝑖 

𝒅𝒛 𝑚𝑝𝑖 𝑧𝑖 𝑚𝑝𝑖 

𝒅𝒏 𝑙𝑝𝑖 𝑚𝑝𝑖 𝑧𝑖 
(b) 𝜟𝒌𝒊 

The fuzzy control rule design has been performed accord-

ing to basic control knowledge of diverging and converging 

system responses without any mathematical plant model. 

While designing the rule-base, the following important factors 

have been taken into account [18], 

 When error is largely positive with negative output volt-

age rate (or vice versa), the system is diverging away from 

the equilibrium point and a large positive increase in con-

troller gains is required. 

 When error and output voltage rate are both positive (or 

vice versa), the system is converging toward the equilibri-

um point. Controller action should be minimised to pre-

vent the system from oscillating further, hence, lowering 

the values of the controller gains. 

 For small/zero values of the error and its derivative, the 

system is assumed to be near the equilibrium point. There-

fore, the controller should operate with the nominal values 

of the gains, which is manifested as zero change in the 

gains in the rule table. 

 

B. Fuzzy Inference Engine (Implication and Aggregation) 

The inference engine of the fuzzy logic controller matches 

the preconditions of rules in the fuzzy rule base with the input 

state linguistic terms and performs implications [20]. The 

firing strengths 𝛼1, 𝛼2 … . 𝛼9 of the rules 1 to 9 are obtained 

using Zadeh AND operation i.e. performing a T-norm with 

min operator. For example, for a given error and output deriv-

ative, 

𝛼1 = min (µ𝑒𝑝, µ𝑑𝑝), 𝛼2 = min (µ𝑒𝑝 , µ𝑑𝑧) and so on     (6) 

A min implication is then performed followed by a max 

aggregation. According to Zadeh, this is known as a min-max 

aggregation. An illustrative example of the procedure is 

shown in Fig. 5 using only the first two rules. However in real 

control, all nine rules are involved in calculation. 
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Fig. 5.  A graphical presentation of a rule-based inference procedure. 

C. Defuzzification 

The result of fuzzy inference is a fuzzy output set. Defuzzi-

fication extracts the crisp output value from the resultant out-

put fuzzy set. Controller crisp output values for 𝛥𝑘𝑝 and 𝛥𝑘𝑖 

are calculated using the centroid method or the center of area 

(COA) principle,  

𝑦 =
∑ µ𝑖𝑦𝑖

∑ µ𝑖
                                       (7) 

where, 𝑦 represents the crisp value of the fuzzy controller 

output (𝛥𝑘𝑝 or 𝛥𝑘𝑖), 𝑦𝑖  is a discrete element of an output 

fuzzy set, and µ𝑖 is its membership grade. 

V. RESULTS AND DISCUSSION 

The phase-shifted SRC closed loop voltage control (Fig. 1) is 

implemented in Matlab/Simulink software. Simulation pa-

rameters are summarised in Table II. The initially designed PI 

controller gains (from small-signal analysis) are 𝑘𝑝
∗ = 5 and 

𝑘𝑖
∗ = 1000. Closed loop step response of the system is as-

sessed as follows: 

 Light load to heavy load transition with no supply voltage 

disturbance (Fig. 6). 

 Light load with supply voltage disturbance (Fig. 7).  

 Heavy load with supply voltage disturbance (Fig. 8). 

Results show that for both light and heavy loads, the fuzzy-

adapted algorithm has improved the system dynamic perfor-

mance in response to a sudden supply voltage change. Output 

voltage settling time is lower with the adapted scheme com-

pared with the fixed initially designed PI parameters. Alt-

hough the quicker response has been a result of higher gains 

applied, overall system stability is not reduced and steady 

state output is not oscillatory. This can be explained from the 

fuzzy logic rule-base since as the system reaches equilibrium 

(𝑒𝑛 = 0 𝑎𝑛𝑑 𝑣𝑜𝑛
= 0̇ ) the controller outputs (𝛥𝑘𝑝, 𝛥𝑘𝑖) are 

zero and hence the PI gains stabilize on equilibrium values 

just reached. In addition, the converter responds in a quick 

and stable manner to the light-to-heavy load transition. The 

transient response of the output voltage at the start of the sim-

ulation is determined by the SRC output filter time constant 

𝜏 = 𝑅𝐿𝐶𝑜 ≃ 1 𝑚𝑠. 

TABLE II 

SIMULATION VALUES 
 

Parameter Value 

DC supply voltage,  𝒗𝒈 
100V (initially) 

70V (after transition) 

Resonant tank inductance, 𝑳 100 µH 

Resonant tank capacitance, 𝑪 0.28 µF 

Resonant frequency, 𝒇𝒐 30 kHz 

Inverter Switching frequency, 𝒇𝒔 40 kHz 

 Transformer turns ratio, 𝒏 1 

Output filter capacitance, 𝑪𝒐 100 µF 

Load Resistance, 𝑹𝑳 
188.5 Ω (light) 

9.425 Ω (heavy) 

Desired output voltage, 𝒗𝒐𝒓𝒆𝒇
 30 V 

 



 

 

Fig.6.  Closed loop step response of phase shifted SRC; light to heavy load 

transition. 

 

 

Fig.7.  Closed loop step response of phase shifted SRC; light load with sup-

ply voltage disturbance 

 

 

Fig.8.  Closed loop step response of phase shifted SRC; heavy load with 

supply voltage disturbance 

CONCLUSION 

A self-tuning PI controller has been designed based on 

fuzzy logic scheme. The latter is designed according to basic 

control knowledge of closed loop systems. The proposed 

fuzzy logic scheme uses the normalised error and output volt-

age normalised derivative to provide an accumulative change 

in PI controller gains initially designed using small-signal 

analysis. Since the initially designed gains give best response 

at the operating conditions they were designed at, a controller 

with adaptive nature is needed to correct the PI gains as oper-

ating conditions change. The fuzzy logic algorithm performs 

this function. Results show that the fuzzy-adapted PI scheme 

improved converter transient response in terms of lower set-

tling times for output voltage in response to different disturb-

ances. Though PI gains are increased to satisfy the quicker 

response, system stability has not been affected and steady 

state output is not oscillatory. The paper verifies the robust-

ness and simplicity of fuzzy logic algorithms in control sys-

tems with adaptive gain requirements.  
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