13 research outputs found

    Compensation of position errors in passivity based teleoperation over packet switched communication networks

    Get PDF
    Because of the use of scattering based communication channels, passivity based telemanipulation systems can be subject to a steady state position error between master and slave robots. In this paper, we consider the case in which the passive master and slave sides communicate through a packet switched communication channel (e.g. Internet) and we provide a modification of the slave impedance controller for compensating the steady state position error arising in free motion because of packets loss

    SMC framework in motion control systems

    Get PDF
    Design of a motion control system should take into account both the unconstrained motion performed without interaction with environment or other system, and the constrained motion where system is in contact with environment or has certain functional interaction with another system. In this paper control systems design approach, based on siding mode methods, that allows selection of control for generic tasks as trajectory and/or force tracking as well as for systems that require maintain some functional relation like bilateral or multilateral systems, establisment of virtual relation among mobile robots or control of haptic systems is presented. It is shown that all basic motion control problems - trajectory tracking, force control, hybrid position/force control scheme and the impedance control - can be treated in the same way while avoiding the structural change of the controller and guarantying stable behavior of the system In order to show applicability of the proposed techniques simulation and experimental results for high precision systems in microsystems assembly tasks and bilateral control systems are presente

    Bilateral Teleoperation of Mobile Robot over Delayed Communication Network: Implementation

    Get PDF
    In a previous paper we proposed a bilateral teleoperation framework of a wheeled mobile robot over communication channel with constant time delay. In this paper we present experimental results. Our goal is to illustrate and validate the properties of the proposed scheme as well as to present practical implementation issues and the adopted solutions. In particular, the bilaterally teleoperated system is passive and the system is stable in the presence of time delay. Internet has been used as the communication channel and a buffer has been implemented to maintain a constant time delay and to handle packet order

    An Energy-Based Approach for n-dof Passive Dual-user Haptic Training Systems

    Get PDF
    International audienceThis paper introduces a dual-user training system whose design is based on an energetic approach. This kind of system is useful for supervised hands-on training where a trainer interacts with a trainee through two haptic devices, in order to practice on a manual task performed on a virtual or teleoperated robot (for example for an MIS task in a surgical context). This paper details the proof of stability of an Energy Shared Control (ESC) architecture we previously introduced for one degree of freedom (d.o.f.) devices. An extension to multiple degrees of freedom is proposed, along with an enhanced version of the Adaptive Authority Adjustment (AAA) function. Experiments are carried out with 3 d.o.f. haptic devices in free motion as well as in contact contexts in order to show the relevance of this architecture

    Haptic Tele-operation of Wheeled Mobile Robot and Unmanned Aerial Vehicle over the Internet

    Get PDF
    Teleoperation of ground/aerial vehicle extends operator\u27s ability (e.g. expertise, strength, mobility) into the remote environment, and haptic feedback enhances the human operator\u27s perception of the slave environment. In my thesis, two cases are studied: wheeled mobile robot (MWR) haptic tele-driving over the Internet and unmanned aerial vehicle (UAV) haptic teleoperation over the Internet. We propose novel control frameworks for both dynamic WMR and kinematic WMR in various tele-driving modes, and for a mixed UAV with translational dynamics and attitude kinematics. The recently proposed passive set-position modulation (PSPM) framework is extended to guarantee the passivity and/or stability of the closed-loop system with time-varying/packet-loss in the communication; and proved performance in steady state is shown by theoretical measurements.For UAV teleoperation, we also derive a backstepping trajectory tracking control with robustness analysis. Experimental results for dynamic/kinematic WMR and an indoor quadrotor-type UAV are presented to show the efficacy of the proposed control framework

    Passive bilateral feedforward control of linear dynamically similar teleoperated manipulators

    No full text
    Abstract—This paper presents a passive bilateral feedforward control scheme for linear dynamically similar (LDS) teleoperated manipulators with kinematic scaling and power scaling. The proposed control law renders the teleoperator as a passive rigid mechanical tool with programmable apparent inertia to the human operator and the work environment by utilizing bilateral force feedforward and kinematic feedback control. The passivity of the closed-loop system is robust to force measurement inaccuracies and model uncertainty. Thus, interaction stability of the teleoperator with any passive environment is guaranteed. Coordination error and the overall motion aspects of teleoperation are controlled individually. The proposed control law is also applicable to general nonlinear robotic teleoperators if sufficiently high kinematic feedback gains are used. The proposed control schemes have been validated experimentally for both LDS and non-LDS systems. Index Terms—Apparent inertia, decomposition, dynamic similarity, feedforward, kinematic scaling, passivity, power scaling. I

    HAPTICS IN ROBOTICS AND AUTOMOTIVE SYSTEMS

    Get PDF
    Haptics is the science of applying touch (tactile) sensation and control to interaction with computer applications. The devices used to interact with computer applications are known as haptic interfaces. These devices sense some form of human movement, be it finger, head, hand or body movement and receive feedback from computer applications in form of felt sensations to the limbs or other parts of the human body. Examples of haptic interfaces range from force feedback joysticks/controllers in video game consoles to tele-operative surgery. This thesis deals with haptic interfaces involving hand movements. The first experiment involves using the end effector of a robotic manipulator as an interactive device to aid patients with deficits in the upper extremities in passive resistance therapy using novel path planning. The second experiment involves the application of haptic technology to the human-vehicle interface in a steer-by-wire transportation system using adaptive control

    Passive Bilateral Feedforward Control of Linear Dynamically Similar Teleoperated Manipulators

    No full text
    This paper presents a passive bilateral feedforward control scheme for linear dynamically similar (LDS) teleoperated manipulators with kinematic scaling and power scaling. The proposed control law renders the teleoperator as a passive rigid mechanical tool with programmable apparent inertia to the human operator and the work environment by utilizing bilateral force feedforward and kinematic feedback control. The passivity of the closed loop system is robust to force measurement inaccuracies and model uncertainty. Thus interaction stability of the teleoperator with any passive environments is guaranteed. Coordination error and the overall motion aspects of teleoperation are controlled individually. The proposed control law is also applicable to general nonlinear robotic teleoperators if sufficiently high kinematic feedback gains are used. The proposed control schemes have been validated experimentally for both LDS and non-LDS systems

    Kinesthetic Haptics Sensing and Discovery with Bilateral Teleoperation Systems

    Get PDF
    In the mechanical engineering field of robotics, bilateral teleoperation is a classic but still increasing research topic. In bilateral teleoperation, a human operator moves the master manipulator, and a slave manipulator is controlled to follow the motion of the master in a remote, potentially hostile environment. This dissertation focuses on kinesthetic perception analysis in teleoperation systems. Design of the controllers of the systems is studied as the influential factor of this issue. The controllers that can provide different force tracking capability are compared using the same experimental protocol. A 6 DOF teleoperation system is configured as the system testbed. An innovative master manipulator is developed and a 7 DOF redundant manipulator is used as the slave robot. A singularity avoidance inverse kinematics algorithm is developed to resolve the redundancy of the slave manipulator. An experimental protocol is addressed and three dynamics attributes related to kineshtetic feedback are investigated: weight, center of gravity and inertia. The results support our hypothesis: the controller that can bring a better force feedback can improve the performance in the experiments
    corecore