430 research outputs found

    A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem

    Full text link
    We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the dual-porosity-Stokes problem. This coupled problem describes the interaction between free flow in macrofractures/conduits, governed by the Stokes equations, and flow in microfractures/matrix, governed by a dual-porosity model. We prove that the HDG method is strongly conservative, well-posed, and give an a priori error analysis showing dependence on the problem parameters. Our theoretical findings are corroborated by numerical example

    A Multigrid Multilevel Monte Carlo Method for Stokes–Darcy Model with Random Hydraulic Conductivity and Beavers–Joseph Condition

    Get PDF
    A multigrid multilevel Monte Carlo (MGMLMC) method is developed for the stochastic Stokes–Darcy interface model with random hydraulic conductivity both in the porous media domain and on the interface. Three interface conditions with randomness are considered on the interface between Stokes and Darcy equations, especially the Beavers–Joesph interface condition with random hydraulic conductivity. Because the randomness through the interface affects the flow in the Stokes domain, we investigate the coupled stochastic Stokes–Darcy model to improve the fidelity. Under suitable assumptions on the random coefficient, we prove the existence and uniqueness of the weak solution of the variational form. To construct the numerical method, we first adopt the Monte Carlo (MC) method and finite element method, for the discretization in the probability space and physical space, respectively. In order to improve the efficiency of the classical single-level Monte Carlo (SLMC) method, we adopt the multilevel Monte Carlo (MLMC) method to dramatically reduce the computational cost in the probability space. A strategy is developed to calculate the number of samples needed in MLMC method for the stochastic Stokes–Darcy model. In order to accomplish the strategy for MLMC method, we also present a practical method to determine the variance convergence rate for the stochastic Stokes–Darcy model with Beavers–Joseph interface condition. Furthermore, MLMC method naturally provides the hierarchical grids and sufficient information on these grids for multigrid (MG) method, which can in turn improve the efficiency of MLMC method. In order to fully make use of the dynamical interaction between these two methods, we propose a multigrid multilevel Monte Carlo (MGMLMC) method with finite element discretization for more efficiently solving the stochastic model, while additional attention is paid to the interface and the random Beavers–Joesph interface condition. The computational cost of the proposed MGMLMC method is rigorously analyzed and compared with the SLMC method. Numerical examples are provided to verify and illustrate the proposed method and the theoretical conclusions

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    Modeling and a Domain Decomposition Method with Finite Element Discretization for Coupled Dual-Porosity Flow and Navier–Stokes Flow

    Get PDF
    In This Paper, We First Propose and Analyze a Steady State Dual-Porosity-Navier–Stokes Model, Which Describes Both Dual-Porosity Flow and Free Flow (Governed by Navier–Stokes Equation) Coupled through Four Interface Conditions, Including the Beavers–Joseph Interface Condition. Then We Propose a Domain Decomposition Method for Efficiently Solving Such a Large Complex System. Robin Boundary Conditions Are Used to Decouple the Dual-Porosity Equations from the Navier–Stokes Equations in the Coupled System. based on the Two Decoupled Sub-Problems, a Parallel Robin-Robin Domain Decomposition Method is Constructed and Then Discretized by Finite Elements. We Analyze the Convergence of the Domain Decomposition Method with the Finite Element Discretization and Investigate the Effect of Robin Parameters on the Convergence, Which Also Provide Instructions for How to Choose the Robin Parameters in Practice. Three Cases of Robin Parameters Are Studied, Including a Difficult Case Which Was Not Fully Addressed in the Literature, and the Optimal Geometric Convergence Rate is Obtained. Numerical Experiments Are Presented to Verify the Theoretical Conclusions, Illustrate How the Theory Can Provide Instructions on Choosing Robin Parameters, and Show the Features of the Proposed Model and Domain Decomposition Method

    Decoupled, Linear, and Energy Stable Finite Element Method for the Cahn-Hilliard-Navier-Stokes-Darcy Phase Field Model

    Get PDF
    In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn—Hilliard—Navier—Stokes equations in the free flow region and Cahn—Hilliard—Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions. © 2018 Society for Industrial and Applied Mathematics

    Decoupling methods for the time-dependent Navier-Stokes-Darcy interface model

    Get PDF
    In this research, several decoupling methods are developed and analyzed for approximating the solution of time-dependent Navier-Stokes-Darcy (NS-Darcy) interface problems. This research on decoupling methods is motivated to efficiently solve the complex Stokes-Darcy or NS-Darcy type models, which arise from many interesting real world problems involved with or even dominated by the coupled porous media flow and free flow. We first discuss a semi-implicit, multi-step non-iterative domain decomposition (NIDDM) to solve a coupled unsteady NS-Darcy system with Beavers-Joseph-Saffman-Jones (BJSJ) interface condition and obtain optimal error estimates. Second, a parallel NIDDM is developed to solve unsteady NS-Darcy model with Beavers-Joseph (BJ) interface condition, which is much more complicated than BJSJ interface condition. We overcome the major difficulties in the analysis which arise from nonlinear terms and BJ interface condition. Furthermore, a Lagrange multiplier method is proposed under the framework of the domain decomposition method to overcome the difficulty of non-unique solutions arising from the defective boundary condition. Meanwhile, we propose and analyze an efficient ensemble algorithm, which can significantly improve the computational efficiency, for fast computation of multiple realizations of the stochastic Stokes-Darcy model with a random hydraulic conductivity tensor. Furthermore, we utilize the idea of artificial compressibility, which decouples the velocity and pressure, to construct the decoupled ensemble algorithm to improve computational efficiency further. We prove that the proposed ensemble methods offer long time stability and optimal error estimates under a time-step condition and two parameter conditions --Abstract, page iii
    • …
    corecore