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ABSTRACT

In this research, several decoupling methods are developed and analyzed for approxi-
mating the solution of time-dependent Navier-Stokes-Darcy (NS-Darcy) interface problems.
This research on decoupling methods is motivated to efficiently solve the complex Stokes-
Darcy or NS-Darcy type models, which arise from many interesting real world problems
involved with or even dominated by the coupled porous media flow and free flow. We first
discuss a semi-implicit, multi-step non-iterative domain decomposition (NIDDM) to solve
a coupled unsteady NS-Darcy system with Beavers-Joseph-Saffman-Jones (BJSJ) interface
condition and obtain optimal error estimates. Second, a parallel NIDDM is developed to
solve unsteady NS-Darcy model with Beavers-Joseph (BJ) interface condition, which is
much more complicated than BJSJ interface condition. We overcome the major difficulties
in the analysis which arise from nonlinear terms and BJ interface condition. Furthermore, a
Lagrange multiplier method is proposed under the framework of the domain decomposition
method to overcome the difficulty of non-unique solutions arising from the defective bound-
ary condition. Meanwhile, we propose and analyze an efficient ensemble algorithm, which
can significantly improve the computational efficiency, for fast computation of multiple real-
izations of the stochastic Stokes-Darcy model with a random hydraulic conductivity tensor.
Furthermore, we utilize the idea of artificial compressibility, which decouples the velocity
and pressure, to construct the decoupled ensemble algorithm to improve computational
efficiency further. We prove that the proposed ensemble methods offer long time stability

and optimal error estimates under a time-step condition and two parameter conditions.
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1. INTRODUCTION

Many interesting real-world problems are involved with or even dominated by the
coupled porous media flow and free flow, which can be accurately described by the so
called Stokes-Darcy or Navier-Stokes-Darcy type models. The Stokes-Darcy interface
model has attracted significant attention from scientists and engineers due to its wide
range of applications, such as interaction between surface and subsurface flows Discacciati
(2004a); Discacciati and Quarteroni (2004a); Hoppe et al. (2007); Layton et al. (2002),
industrial filtrations Ervin et al. (2009); Hanspal et al. (2006), groundwater system in karst
aquifers Cao et al. (2010a,c); Gao et al. (2018); Han et al. (2014), and petroleum extraction
Arbogast and Brunson (2007); Arbogast and Lehr (2006); Hou et al. (2016).

Moreover, many engineering and geological applications require effective simula-
tions of the coupling of groundwater flows (in porous media) and surface flows. Accurate
simulations are usually not feasible due to the fact that it is physically impossible to know
the exact parameter values, e.g., the hydraulic conductivity tensor, at every point in the
domain as the realistic domains are of large scale and natural randomness occurs at a small
scale. Consequently, these uncertainties must be taken into account to obtain meaningful
results. The usual way is to model the parameter of interest as a stochastic function that
is determined by an underlying random field with a prescribed (usually experimentally
determined) covariance structure, and then recast the original deterministic system as a
stochastic system. As a result, numerical approximations that involve repeated sampling
and simulations pose great challenges on the computer resources and capability.

It is not surprising that many different numerical methods have been proposed and
analyzed for the Stokes-Darcy model, such as domain decomposition methods Boubendir
and Tlupova (2013); Cao et al. (2011); Chen et al. (2011); Discacciati et al. (2002a);

Discacciati and Quarteroni (2004a); Discacciati et al. (2007); He et al. (2015); Vassilev



et al. (2014), Lagrange multiplier methods Babuska and Gatica (2010); Gatica et al. (2009,
2011); Huang et al. (2012); Layton et al. (2002), discontinuous Galerkin methods Girault
and Riviere (2009); Kanschat and Riviére (2010); Lipnikov ef al. (2014); Riviere (2005);
Riviere and Yotov (2005), multigrid methods Arbogast and Gomez (2009); Cai et al. (2009);
Mu and Xu (2007), partitioned time stepping methods Kubacki and Moraiti (2015a); Mu
and Zhu (2010a); Shan and Zheng (2013a), coupled finite element methods Camano et al.
(2015); Cao et al. (2010a); Karper et al. (2009); Marquez et al. (2015), mortar finite
element methods Galvis and Sarkis (2007); Girault ef al. (2014), boundary integral methods
Boubendir and Tlupova (2009); Tlupova and Cortez (2009), least square methods Ervin
et al. (2014); Lee and Rife (2014); Miinzenmaier and Starke (2011), the Lattice Boltzmann
method Fattahi er al. (2016), and so on. Recently, the Navier-Stokes-Darcy model has
attracted scientists’ attention, including the steady state problem Badea et al. (2010); Cai
et al. (2009); Chidyagwai and Riviere (2009); Discacciati and Quarteroni (2009); Girault
and Riviere (2009); Hadji e al. (2015) and the unsteady problem Cesmelioglu et al. (2013);
Cesmelioglu and Riviere (2008, 2009). Compared with the extensively studied Stokes-
Darcy model, the unsteady Navier-Stokes-Darcy model is still in great need of continued
efforts for developing and analyzing efficient, stable, and accurate numerical methods.

In this dissertation, based on the key idea of the non-iterative DDM for the Stokes-
Darcy model Cao et al. (2014), we first propose and rigorously analyze a semi-implicit,
multi-step, non-iterative DDM to solve the unsteady Navier-Stokes-Darcy system by using
finite elements for spatial discretization. Robin boundary conditions between the Navier-
Stokes domain and the Darcy domain are constructed by directly re-organizing the terms
in the three interface conditions, including the BJSJ condition. Compared with the tra-
ditional iterative domain decomposition, which applies a domain decomposition iteration
at each time step for the interface information, the non-iterative DDM takes advantage of
the solutions obtained in previous time steps to directly predict the interface information

without any iteration at the current time step. Multi-step backward differentiation formulae,



which can improve the accuracy in time with unconditional stability, are used for the tem-
poral discretization, and spatial discretization is effected by using finite element methods.
The k-step backward differentiation formulae (1 < k < 5) with finite elements in spatial
discretization are analyzed in a general framework using the multiplier technique while
mathematical induction proof is utilized to handle the term arising from the nonlinear ad-
vection. Compared with the implicit temporal discretization in Cao et al. (2014), we use a
semi-implicit scheme to linearize the nonlinear term of Navier-Stokes equation. Moreover,
we also develop a parallel, non-iterative, multi-physics domain decomposition method to
solve the sophisticated time-dependent NS-Darcy system with BJ interface condition and
defective boundary condition. Beavers-Joseph interface condition needs special treatments
in both the analysis and the construction of the Robin boundary conditions for the domain
decomposition. The nonlinear advection also increases the difficulty of the analysis. There-
fore, the analysis for the proposed method in this dissertation is much more difficult than that
of Cao et al. (2014) and thus needs significant extra efforts, which will be illustrated in detail
in the analysis section. Based on the solid foundation built for the domain decomposition
method of the NS-Darcy system with BJSJ (BJ) interface condition, we further propose the
Lagrange multipliers to deal with this model with a defective boundary condition whose
solutions are not unique under the same framework of the domain decomposition method.
One interesting finding is that the Lagrange multipliers are time dependent functions instead
of constants.

On the other hand, the ensemble algorithm has been extensively studied and tested
for ensemble simulations to account for uncertainties in initial conditions and forcing terms
Jiang (2015); Jiang et al. (2015); Jiang and Layton (2014, 2015); Jiang and Schneier (2018);
Mohebujjaman and Rebholz (2017); Neda et al. (2016). Some recent works include incor-
porating model reduction techniques to further reduce computational cost Gunzburger et al.
(2017a, 2018a) and devising ensemble algorithms to account for various model parame-

ters of Navier-Stokes equations Gunzburger et al. (2017b, 2018b), Boussinesq equations



Fiordilino (2018), and a simple elliptic equation Luo and Wang (2018). In this disserta-
tion, we will further develop an efficient ensemble algorithm for the fast computation of
multiple realizations of the stochastic Stokes-Darcy model with random hydraulic conduc-
tivity (including the one in the interface conditions), source terms, and initial conditions.
The solutions are found by solving two smaller decoupled subproblems with two common
time-independent coefficient matrices for all realizations, which significantly improves the
efficiency for both assembling and solving the matrix systems. The fully coupled Stokes-
Darcy system can first be decoupled into two smaller sub-physics problems by the idea of
partitioned time stepping, which reduces the size of the linear systems and allows parallel
computing for each sub-physics problem. We prove that the ensemble method is long time
stable and first-order in time convergent under a time-step condition and two parameter
conditions. Furthermore, we utilize the idea of artificial compressibility to further decouple
the velocity and pressure in the Stokes equation, which further reduces storage require-
ments and improves computational efficiency. We prove the long time stability and the
convergence for this artificial compressibility ensemble method. Numerical examples are
presented to support the theoretical results and illustrate the features of the corresponding

algorithm, including the convergence, stability, efficiency, and applicability.

1.1. MODEL INTERFACE PROBLEMS

In this section we introduce the NS-Darcy model with interface conditions and
defective boundary conditions. For a brief introduction, we consider the following time-
dependent NS-Darcy model with interface conditions and a defective boundary condition
on a bounded domain Q = Qp |J Qg c RY, (d = 2,3). See Figure 1.1.

In the porous media region Qp, let i p denote the fluid discharge rate in the porous
media, K = KI denote the hydraulic conductivity tensor, fp denote the sink/source term,
and ¢p denote the hydraulic head. Specifically, ¢p = z + ’;—Z where pp is the dynamic

pressure, z is the height, p is the density, and g is the gravity constant. Then the porous



Qp

NEPZE

Qg

Figure 1.1. Sketch of porous median domain Qp, fluid domain Qg, and the interface I'.

media flow is assumed to satisfy the following Darcy equation:

Up ~KVép, (1.1)

d¢p -
—_/—— +V.
o1 + up

fo, t €[0,T). (1.2)

Eliminating % p, we obtain a second-order equation for the Darcy flow:

0
%_v.(n{wm = fo, 1 €[0,T]. (1.3)

In the fluid region Qg, let U denote the fluid velocity, ps denote the kinematic

H
pressure, f s denote the external body force, and v denote the kinematic viscosity of the
fluid. Before we introduce the complicated Navier-Stokes equation, we first consider the

relatively simple Stokes equation.

H
aug

ot

~V-T(@s.ps) = fste[0.T], (1.4)

H
V-MS

0. (L.5)

Then we can consider the Navier-Stokes equation:

ou

ot fs t€[0,T], (1.6)

>+ (@s-Vds—V-T(@s.ps)

_)
V-MS

0. (L.7)



where T(i's, ps) = 2vD(u s) — psl is the stress tensor and D(ws) = 1/2(Vids + Vi g) is
the deformation tensor.

Assume that the hydraulic head ¢p and the fluid velocity % g satisfies the homoge-
neous Dirichlet boundary condition except on I, i.e., ¢p = 0 on the boundary 0Qp\I" and
U s = 0 on the boundary dQg\I'. Assume that the hydraulic head ¢p and the fluid velocity

U s satisfy the following initial conditions:

¢D(0’ X, y) = ¢0(X,y) and _M)S(O’x’y) :_M)O(x’ y) (18)

1.1.1. The NS-Darcy System with Interface Conditions. In this section, we con-
sider a coupled Navier-Stokes-Darcy system with interface conditions. Let T = Qp N Qg
denote the interface between the fluid and porous media regions. Along the interface I', we

first impose the following two well-accepted interface conditions:
Us-Hs=—tp-THp, —ns- (T(ds,ps) - Hs) =g, (1.9)

where 775 and 77 p denote the unit outer normal to the fluid and the porous media regions
at the interface I', respectively. These two interface conditions are for the continuity of
normal velocity and the balance of force normal to the interface. Other equivalent interface

conditions are

— B
KV¢-rnp=rng-ns,

(YV\/E
~T(ds,ps)7is = ¢ns+ ———[us—(ds-7s) s, (1.10)

ytrace(IT)

where I1 denotes the permeability of the porous media, « is the Beavers-Joseph constant
Beavers and Joseph (1967b), and _n)s = —7 p denotes the unit normal vector on I" towards

Qp.



Remark 1 Note that (1.10) is equivalent in the following two traditional interface conditions

in the literature:

~T(ds,ps)iis-1s=¢
CVV\/i —

H
~T(d 5, ps) s T=——1ilg"T,

Vtrace(I)

where T denotes the unit tangential vector on the interface I'.

Moreover, the following boundary conditions are considered:

~T(@s,ps)ts =0 on AQs\T, (1.11)

KVe¢-7p=0 on dQp\T. (1.12)

(1.10) is the Beavers-Joseph-Saffman-Jones (BJSJ) interface condition Jiger and Mikelic
(2000); Jones (1973); Saffman (1971a). If we consider the much more complicated Beavers-
Joseph (BJ) interface condition Beavers and Joseph (1967b), which is imposed in the

tangential direction on the interface, we have

CL’V\/E

~1; - (T(ds,ps) Hs) = ————1; (Us—Up) (1.13)
vtrace(]])
where 7; (j = 1,---,d — 1) denote mutually orthogonal unit vectors tangential to the

interface I', and [] = %.

1.1.2. The NS-Darcy System with the Defective Boundary and Interface Con-
ditions. Figure 1.2 illustrates a simple system with defective boundary conditions. For
example, in a simplified typical karst aquifer system, the free flow is confined in the under-
ground conduit while porous media is surrounding the conduit. The region occupied by the
conduit and the porous media are denoted by Qs and Qp, respectively. On the boundary of

m
Qg, we particularly consider I's = 0Qg\I' = | S; for the defective boundary condition.
i=0



Figure 1.2. Typical components of a karst aquifer.

The governing equations and interface conditions are still (1.3)-(1.13). However,
it is often difficult to obtain the velocity data on I's for different applications, but easier
to obtain flow rates Q; on the boundary S; Formaggia er al. (2002); Roscoe et al. (1997).
Hence we consider the following prescribed flow rate condition on I's = 0Qg\I' = Lnj Si:

i=0

/7S-75 ds=Q;, fori=0,1,---,m, (1.14)
Si

where the flow rates Q; (also called velocity fluxes) are functions of time.
The other boundary and initial conditions we consider for the model are the same

as in Section 1.1.1.

1.2. ORGANIZATION OF THE DISSERTATION

In this dissertation, we will discuss the three fundamental aspects for the devel-
opment of decoupling methods for time-dependent Stokes/Navier-Stokes-Darcy interface
model: semi-implicit multi-step non-iterative DDM to solve the unsteady NS-Darcy system
with BJSJ interface condition and defective boundary condition; parallel non-iterative multi-

physics DDM to solve the time-dependent NS-Darcy system with BJ interface condition



and defective boundary condition; and efficient ensemble algorithms for fast computation
of multiple realizations of the stochastic Stokes-Darcy interface model. The rest of this
dissertation is organized as follows.

In Section 2, we introduce a semi-implicit, multi-step, non-iterative domain decom-
position method to solve a coupled time-dependent NS-Darcy system with BJSJ interface
condition and the defective boundary condition. Multi-step backward differentiation for-
mulae, which can improve the accuracy in time with unconditional stability, are used for the
temporal discretization, and spatial discretization is effected by using finite element meth-
ods. A semi-implicit scheme is proposed to linearize the nonlinear convection. In order
to prove the convergence of the finite element solution of the proposed method, we derive
the error estimate in L? norm for the joint Stokes-Darcy Ritz-projection without using H?
regularity assumption of the elliptic problem corresponding to this joint Ritz-projection.
Furthermore, for the NS-Darcy system with defective boundary conditions whose solutions
are not unique, a Lagrange multiplier method is proposed under the framework of the semi-
implicit, multi-step, non-iterative domain decomposition method. One interesting finding
is that the Lagrange multipliers are time-dependent functions instead of constants. Nu-
merical examples are provided to illustrate the proposed methods and verify the theoretical
conclusions.

In Section 3, a parallel, non-iterative, multi-physics DDM is prosed to solve a time-
dependent NS-Darcy model with BJ interface condition and defective boundary condition.
In this method, in order to avoid the traditional iteration for the domain decomposition
method at each time step, the interface information, which is needed for the Robin type
transmission conditions at the current time step, is directly predicted based on the numerical
solution of the previous time steps. We use a series of technical treatments to overcome the
major difficulties in the analysis that arise from nonlinear terms and BJ interface condition.

Furthermore, we develop a Lagrange multiplier method under the framework of the domain
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decomposition method to overcome the difficulty of non-unique solutions arising from the
defective boundary condition. Numerical examples are provided to illustrate the features of
the proposed method.

In Section 4, we first propose and analyze an efficient ensemble algorithm for fast
decoupled computation of multiple realizations of the stochastic Stokes-Darcy model with
random hydraulic conductivity (including the one in the interface conditions), source terms,
and initial conditions. This proposed algorithm results in one common coefficient matrix
for all realizations at each time step, which allows the use of efficient iterative or direct
methods for solving the linear systems at greatly reduced computational cost. Moreover, it
also decouples the original coupled problem into two sub-physics problems, which reduces
the size of the linear systems to be solved and allows parallel computation of the two
sub-physics problems. Furthermore, based on the idea of the ensemble method, we utilize
the idea of artificial compressibility and partitioned time-stepping methods to construct a
new decoupled ensemble algorithm to solve the stochastic Stokes-Darcy interface model.
We prove these ensemble methods are long time stable and convergent under a time-step
condition and two parameter conditions. Numerical examples are presented to support the
theoretical results and illustrate the application of these algorithms.

In Section 5, we draw some conclusions for this dissertation. Some future plans are
also discussed in this section.

This dissertation consists of material from one published paper Jiang and Qiu (2019).
Some minor changes to the preprints have been made in this dissertation in order to increase
the readability of the dissertation; no fundamental changes to the preprints have been made

in this dissertation.
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2. SEMI-IMPLICIT MULTI-STEP NON-ITERATIVE DDM TO SOLVE
NS-DARCY MODEL WITH BJSJ INTERFACE CONDITION

In this section, a semi-implicit multi-step non-iterative domain decomposition
method (NIDDM) is proposed to solve a coupled unsteady NS-Darcy system. Without any
iteration at each time step, the results in the previous time steps are utilized to directly pre-
dict the interface information for decomposing the Navier-Stokes and Darcy sub-domains.
Multi-step backward differentiation formulae, which can improve the accuracy in time with
unconditional stability, are used for the temporal discretization, and spatial discretization
is effected by using finite element methods. We use the semi-implicit scheme to linearize
the nonlinear convection. As preparation for proving the convergence of the finite ele-
ment solution of the proposed method, we derive the error estimate in L? norm for the
joint Stokes-Darcy Ritz-projection without using H? regularity assumption of the elliptic
problem, corresponding to this joint Ritz-projection. The k-step backward differentiation
formulae (1 < k < 5) with finite elements in spatial discretization are analyzed in a gen-
eral framework of multiplier technique, while a mathematical induction proof is utilized to
handle the term arising from the nonlinear advection. Furthermore, a Lagrange multiplier
method under the framework of the semi-implicit, multi-step NIDDM is presented to deal
with the unsteady NS-Darcy system with BJSJ interface condition and defective boundary
(DB) condition. One interesting finding is that the Lagrange multipliers are time dependent
functions instead of constants. Numerical examples are provided to illustrate the proposed

methods and verify the theoretical conclusions.
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2.1. REVIEW OF DDM FOR STOKES/NS-DARCY MODEL

At the beginning of our work, we first review some representative work for solving
the Stokes/NS-Darcy model by using domain decomposition methods. As an efficient
numerical tool to solve partial differential equations in parallel, non-overlapping domain
decomposition methods have a key step which is to define the values on the interface
between subdomains. In the literature, two major ideas were utilized for this difficulty: one
is to apply the iterative domain decomposition method for elliptic equations at each time
step Cai (1994); Daoud and Wade (2001); Dryja (1991); Gander et al. (2001); Lions (1988);
Qin and Xu (2008); Quarteroni and Valli (1999); Xu and Zou (1998); the other one is to
take advantage of information gained in the previous time steps to predict the values on
the interface at the current time step, such as the explicit/implicit domain decomposition
(EIDD) method Dawson et al. (1991); Dawson and Dupont (1994); Du et al. (2001/02) and
the stabilized EIDD method Zhuang and Sun (2002). In general, the second idea saves on
both computation and communication costs because it is non-iterative. The key issue for
this idea is how to obtain optimal accuracy and better stability because it uses lagged results
from the the previous time steps, and explicit treatment instead of iterations to predict the
interface values.

It is well-known that Ritz projection plays a key role in the error estimates of finite
element solutions for parabolic problems Thomée (2006); Wheeler (1971). Therefore, error
estimates of the joint Stokes-Darcy Ritz-projection, which includes interface terms, have
been often utilized as assumptions without proof in the existing articles of the Stokes-Darcy
model Cao et al. (2014); Cesmelioglu and Riviere (2008, 2009); Chen et al. (2013b);
Kanschat and Riviére (2010); Layton et al. (2002); Mu and Zhu (2010a); Riviere and Yotov
(2005); Shan and Zheng (2013a); Vassilev and Yotov (2009). In Cao ef al. (2010a), a brief
proof is provided for the joint Ritz-projection error estimate with a H> regularity assumption

of the elliptic problem corresponding to the joint Ritz-projection.
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On the other hand, a parallel, non-iterative, multi-physics domain decomposition
method (DDM) was proposed in Cao et al. (2014) for the Stokes-Darcy model with BJSJ
interface condition. The convergence of the backward Euler scheme of this domain de-
composition method for the Stokes-Darcy model was proved in Cao et al. (2014) based
on some assumptions on the joint Ritz-projection error estimates. The convergence of the
multi-step backward differentiation (BDF) schemes of this domain decomposition method
for the Stokes-Darcy model was analyzed in Gunzburger et al. based on a complete L™
error analysis of the separate Ritz-projections for Stokes and Poisson equations. In Chen
et al. (2013b, doi: 10.1007/s00211-015-0789-3), three two-step and three-step methods are

proposed for long term stability, but there is no analysis for their spatial discretization.

2.2. BASIC IDEA OF SEMI-IMPLICIT MULTI-STEP NON-ITERATIVE DDM

In this section, based on the key idea of the non-iterative DDM for the Stokes-Darcy
model Cao et al. (2014), we propose and rigorously analyze a semi-implicit multi-step
non-iterative DDM to solve the unsteady NS-Darcy system by using finite elements for
spatial discretization. Compared with the traditional iterative domain decomposition, which
applies a domain decomposition iteration at each time step for the interface information,
the non-iterative DDM takes advantage of the solutions obtained in previous time steps
to directly predict the interface information without any iteration at the current time step.
Compared with the implicit temporal discretization in Cao et al. (2014), we use a semi-
implicit scheme to linearize the nonlinear term of the Navier-Stokes equation. We will also
consider the general k-step (1 < k < 5) BDF schemes for the temporal discretization and
carry out a rigorous analysis for them under a general framework of the multiplier technique
of Nevanlinna and Odeh Nevanlinna and Odeh (1981), which has been used to analyze
parabolic problems recently in Akrivis (2015); Akrivis and Lubich (2015). Moreover,
in order to analyze the convergence of the finite element solution of the proposed DDM

method, as the first work, we prove the approximation properties of the joint Stokes-Darcy
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Ritz-projection in L? norm rigorously without using H? regularity assumption. On the other
hand, in order to overcome the difficulty of non-unique solutions arising from the defective
boundary conditions of the NS-Darcy model, Lagrange multipliers are utilized under the
framework of the semi-implicit multi-step non-iterative DDM to enrich the algorithm for
handling the defective boundary conditions. One interesting finding is that the Lagrange
multipliers are time-dependent functions instead of constants. Numerical examples are
provided to illustrate the optimal convergence, stability, and applicability of the proposed
method.

There are three major difficulties in the error estimates of the joint Ritz-projection
in L? norm and the semi-implicit multi-step non-iterative DDM. Firstly, in practice the
H? regularity assumption may not be valid for certain types of problems, hence it may be
difficult to prove it mathematically. In fact, the interface terms reduce the regularity of the
elliptic problem corresponding to the joint Ritz-projection by an arbitrarily small order, ¢.
Therefore, in this article we rigorously prove this H>° regularity, which is more general
in practice, and use it to derive the error estimate for the joint Ritz-projection. Secondly,
due to the semi-implicit feature of the temporal discretization and the needs of the joint
Ritz-projection, there is a mismatch between the numerical solution of the semi-implicit
scheme and the joint Ritz-projection of the analytic solution. In order to overcome this
difficulty, we need to utilize the fully implicit scheme to bridge these two key components
in the error estimation. Thirdly, the nonlinear advection of the Navier-Stokes equation leads
to a term that is difficult to be bounded in the analysis. Hence the mathematical induction

is constructed in the proof to deal with the nonlinear advection.
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2.3. FORMULATION OF THE SEMI-IMPLICIT MULTI-STEP NON-ITERATIVE
DDM

Let the domain Q be divided into quasi-uniform triangles that fit the boundary 9Q2
and the interface I'. Correspondingly, the domains Qp and Qg are divided into quasi-
uniform triangles, respectively.

Let (V' (Qs), V"1 (Qs)) denote the Taylor-Hood finite element space of H!(Qs) X
L*(Qs) of polynomial degree r > 2 subject to the triangulation of Qg. This finite element

space satisfies the inf-sup condition

Cl(gn, V - vn)l .
lanllzay < sup B Vg, € ViT@g),
VhEVr(Qs) ” Vh”Lz(QS)

hence it is stable for solving the Navier-Stokes problem Girault and Raviart (1986b); Gun-
zburger (1989a). Let V;(Qp) be the finite element subspace of H '(Qp), consisting of
continuous piecewise polynomials of degree r.

Let t, := nt,n = 0,...,N, be a uniform partition of the time interval [0,7T], with
time step 7 := T/N. For any given integer 1 < k < 5, weletd; (j = 0,...,k) and y;

(j=0,...,k—1) be the coefficients of the polynomials
Lira-gy = z difl, F[1-0-0f =35y

Then the following approximation results hold for all ¢ € C**!([0,T]; L*(X)) and v €
Ck([0,T]; L*(X)); see ?:

< CTk||6tk+1(,0||c([0,T];L2(X)) for n > k, (21)
L2(X)

k
1
H; Z dj‘p("t”—j) - at‘p("ln)

k—

Z V( - 1—]) V(- ty)

=0

< CTk”atkv”C([O,T];LZ(X)) for n > k, (22)
L*(X)
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here the || - : = . , X = Qp, Q I', and th tant C i
where the || - [lcqor.c20x)) gganTH l20x) p, Qg or I, and the constant C is
independent of 7 and n.

2.3.1. Framework of Semi-implicit Multi-step Non-Iterative DDM. First, we

define the following function spaces

Xs = {Ve[H' Q9] | V =00ndQs\I'}
Qs = L*Qs)
Xp = {¢y € H'(Qp) | ¥ =00ndQp\T'}

L*(0.T;Qs) = {¢:¢(t,)€Qs, Y1 €[0,T]}

9
H'(0,7; Xp,Xp,) = {¢:¢ € L*(0,T;Xp) and a—‘f € L*(0,T; X},)}
H'(0,T; X5, X{) = {¢:¢ € L*0,T;Xs) and ‘Z—f e L*(0,T; X{)}.

Here, X}, and X are the dual spaces of Xp and Xs. For the domain D (D = Qg or Qp), (,*)p
denotes the L? inner product on the domain D, and (-, -) denotes the L? inner product on the

interface I or the duality pairing between (H&éz(l"))’ and H'/ 2(l"). P; denoted the projection

00

onto the tangent space on I', i.e. Py i = Z;lz_ll u - 7;)7t;. With these notations, the weak

formulation of the coupled NS-Darcy model with BJSJ interface condition is defined as

follows: find (—LZS,pS) € Hl(O,T;XS,Xg) x L*(0,T;Qs) and ¢p € HI(O,T;XD,X’D) such
that

(%,_V))Qs + g(aéLlD,lﬂ)QD + Cs(Us, W s, V) +as(U s, V) + bs(V. ps) + gap(¢p. )

Vd

av
+{gpp, V - T s) —g(Us - Ts, ) +

vtrace(]])

= ¢(fp¥)ap + (Fs.7)ag. YV € Xs, W € Xp, 2.3)

bs(is,q) =0,V q € Qs, (2.4)

<PT_M>S’ PT_V)>
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where the bilinear forms and the trilinear form are

ap(¢p,¥) = (KVep, V)ap, as(ds, V) = 2v(D(H 5),D(V))as

bS(V’ q) = _(V '—V), Q)QS’ CS(—I’ZS’_I’ZS’_V)) = ((_M)S ’ V)7S’_V>)

This weak formulation is similar to that of Cao et al. (2014), but takes the nonlinear
advection.

In order to solve the coupled NS-Darcy problem utilizing the domain decomposition
idea, we naturally consider Robin boundary conditions for the Darcy and the Navier-Stokes
equations by following the idea in Cao et al. (2014). First we consider the following two

Robin-type conditions for the Navier-Stokes equations:
s (T(ds.ps)-Hs)+ s Ts=&  onT, (2.5)

for given function & € L2(0,T; L*(T')). Then, the corresponding weak formulation for the

Navier-Stokes system is to find UseH 10,T; Xs, Xé) and pg € L*(0,T; Q) such that

o
0—f,7)9s +Cs(Us, s, V) +as(Us, V) +bs(V,ps)+ (s s,V - 1)

CZV\/E

+W<PT_M)S,PT_V>> = (7)5,_\/))95 + <§S,_V> ‘_Vl)s>, V7V e X, (2.6)

bs(is.q) = 0,V q € Qs (2.7)

(

On the other hand, we consider the following Robin condition for the Darcy system:

KV¢p-Tp+gép=¢p  onT, 2.8)
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for a given function &p € L*(0,T; L*(T")). Hence, the corresponding weak formulation for

the Darcy system is to find ¢p € H'(0,T; XD,Xb) such that

O0ép

(W,l//)gp +ap(ép,¥) +{gdp,¥) = (fp.¥)ap + Ep.¥), V¥ € Xp.  (2.9)

The Navier-Stokes and Darcy systems with Robin boundary conditions can be combined
into one system. Indeed, it is easy to see that if £p and &g are given, then there exists a

unique solution (</)D,—u>5,p5) e H'(0,T; Xp, X)) X H'(0,T; X, Xg) x L?(0,T; Qs) such that

o d

(§’_V>)Qs + g(%#’)% +Cs(Us, Us, V) +as(is, V) +bs(V,ps) + gap(¢p, )
Vd
+(ds sV - Hs)+g{dp. ) + L<PT_M>S, PV = g(fo. )y
vtrace([])

2 = - = —
+(fs, V)ag + (s, V - Hs) +gép.y), VY € Os, V € X, (2.10)
bs(is,q) =0,V q € Qs, (2.11)
¢p(0) = ¢o, Ws(0) = Uy. (2.12)

Similar to Proposition 3.1 in Cao et al. (2014), it is easy to show that the solutions
of the coupled NS-Darcy system are equivalent to solutions of the decoupled system if the

following compatibility conditions are satisfied:
ép=Tis THs+gpp, &s=Tds Ts—gpp. (2.13)

These compatibility conditions provide the key tool to predict £p and &g on the interface at
each time step based on the results from the previous time steps.

Motivated by the Robin-type domain decomposition conditions (2.5) and (3.7), we
propose the following full discretization scheme of the semi-implicit multi-step non-iterative

domain decomposition method: find (@ WPy € _V)Z(QS) X V; ~1(Qy) and ¢ € Vi (Qp)
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(n=k,---,N) such that

k k-1
1 —1-
;Zd] "I V) g Z)/] v Vh)Q +as(i’,V ) + bs(V p, )
J=0 j=0
+(Wly T Vi) + Bl — (i W s, Vi — (Vi Ts)is) (2.14)
-
= (F5, 7V Q +<Z?’/§n T,

(V- uh,qh) = o (2.15)

Z dit, . en) g, + ap(@h on) + (B en) (2.16)

= (/b en)a, + <Z YiEpn ),

where B8 = \/% and &¢,, &7, are defined as

g =Tul Hs— ¢, Eh =Tl s + ¢ (2.17)
Here, the boundary condition (1.11) and (1.12) are considered. For the approximations
(—) b ph, h) (n =0,---,k—1) of the first k — 1 time steps, one can utilize the initial
condition at n = 0, Runge-Kutta method with high enough orders, and the k — 1 step
backward differentiation method to determine them. More details of the example of the
three-step method can be found in Cao et al. (2014).

2.3.2. Lagrange Multiplier Method under the Framework of Semi-implicit
Multi-step Non-iterative DDM. If the defective boundary condition (1.14) is utilized
on the boundary of Qg, then we propose the following Lagrange multiplier method un-

der the framework of the semi-implicit, multi-step, non-iterative domain decomposition:

at the n'" step, find (@",p") € V' (Qs) x VI (Qs), ¢! € V/(Qp) (n = k,--+ ,N) and
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A={4(}", € L*(0, 7)™ such that

( Jj= Od_”>2 j’_v)h)ﬂs + ~§o/l?+l -/.Sl_v)h ._’/BS ds + ( O y]—”’ = V—)n )
1=

- -

+as(uh,V p) + bs(V i pf) + (Wl - Hs, Vi - T s)
- - — - =

+B(U" — (U T s, Vi — (Vi) s)

= (£, Vn)q +<Z]07’j £ T ).

3 m
.ZO,U?H /Si_\}h '_”)S ds + (V _M)Z’ qh)QS — Z})N?HQi,
i= P
K 1
(= Zﬁ:o didy 7 pn)a, +ap(@hon) +(Bhon) = (fen)q, + (Z? 0 Yi€on T on).

where YV, € V" (Qs),¥ g € V71 (Qs),V @ € V" (Qp) and pt! € R

2.4. JOINT STOKES-DARCY RITZ-PROJECTION

In this section, we work with the following assumptions, with given integers 1 <

k<S5andr > 2.

(A1) (Physical parameters) The physical parameters v, g and 8 are positive, and K is a

symmetric and positive definite matrix, satisfying
2 —1| g2 d
Kl6]° <K&-& <« 65, VEERY,

for some positive constant k.

(A2) (Regularity of the domains) The boundaries of the domains Qp and Qg are both
piecewise smooth, and the interior angles of the corners of the domains Qp and Qg

are all strictly between O and 7.
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(A3) (Regularity of the solution) The problem (1.3)-(1.12) has a unique solution that is

sufficiently regular, i.e.,

e CN[0,T]; H™(Qs)) N CH([0,T]; LA(Qs)) N C*([0,TT; H' (Qs)),
p € C'([0,T]; H (Qs)) N CX([0,T]; L*(Qy)),

¢ € C'([0,T]; H(Qp)) N C**1([0,T]; LA(Qp)) N C*([0,T]; H'(Qp))

(A4) (Accuracy of the starting values) The given starting values (77 b @p),n=0,... k-1,

satisfy
—n _ —=ny2 n N2
Onait (IF - uh”Lz(Qs) + 1), - ‘/’h”U(QD))
k-1
+ Y (V@ =Wl + IV @) = FliZaq,) < Cule + HHI720)2,
n=0

for some positive constant 6 € (0,1/2) and Cx, where (ﬁZ,ﬁZ,EZ) denotes the joint
Stokes-Darcy Ritz-projection of (@”,p",¢") := (U (- t,), p(-,ta), (-, 1)), defined in
(2.19).

For (i, p,¢) in H'(Qg) x L*(Qs) x H'(Qp) and (V,q,¢) in H'(Qg) x L*(Qs) X

H'(Qp), we define the tangential projection
Ptan_l'Z ::_Z’Z - (_I/t) -_n>5)_n>5
and a bilinear form

a(—ljap’ ¢,_V),q,(;0) : = aD M,_V>) + bS(77pS) + (V '_u>,CI)QS +ﬁ<Ptan—u)aPtan_V)> (218)

+<¢,_V) _I’I>S> + aD(¢’ 90) - <_I/l) '_I’l>S, 90> + (_M),_V))QS + (¢’ QO)QD'
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Then the joint Stokes-Darcy Ritz-projection of (i,p,¢) € H'(Qs) x L*(Qs) X
H'(Qp), denoted by R,(il, p, ¢), is defined as the unique element (Wh Py &p,) € Vi (Qp) X

_v)Z(QS) xVy ~1(Qy) satisfying the following equation:

a(d =W p —Dpd — 13V ne G 1) = 0, (2.19)

where ¥ (V , gn, @) € Vi(Qp) X_V>2(Qs) X VZ‘I(QS). Note that (2.19) is equivalent to the

following equations:

(2vD(w - ﬁh)’D(_V)h))QS — (P =PV Vias + BPan(¥ =), Pan V 1)

+ (P =y Vi Ty + (W =W Vi)as =0, YV, € V1(Qs),
< (2.20)
(V- (& —W)qn) =0, YaqneV(Qs),

(KV(¢ — 1), Veon)q, — (@ —0p) - T s,0n) + (@ = bpoon)ap =0, Yon € Vi(Qp),

Now we present the conclusion on the approximation property of the joint Stokes-

Darcy Ritz-projection.

Theorem 1 Under assumptions (A1)-(A2), for (i, p, ¢) € H' *1=9(Qg)xH" =4 (Qg)xH"*1=%(Qp),

the joint Stokes-Darcy Ritz-projection, defined in (2.19), obeys the following estimates:

7 = Wnllzag) + 19 — dnll2p) (2.21)

< Csh™ 1720 ([ llgro1-sag) + IPNlEs @) + 10110 ()

M@ = nllgiag) + 1P = Prllrzag) + 16 = @nllanap) (2.22)

< Csh™ (I llggr+1-sag) + 1P Ilr-0 (@) + 18 ll5r+1-50):

Wl g + 125 I226g) + 1801l @p) (2.23)
—

< C(Id |l aq) + 1PNl2g) + 111 @)

Wkl (s) < CUTE -5 (g) + 1Pllar-s0s) + 181157175 0,)- (2.24)

where 6 € (0,1) can be arbitrarily small.
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As a key preparation step for proving the main theoretical conclusion on the conver-
gence of the proposed semi-implicit multi-step non-iterative domain decomposition method,
we will prove the approximation property of the joint Stokes-Darcy Ritz-projection, i.e,
Theorem 1. We will first analyze the regularity of the Stokes-Darcy problem.

2.4.1. Regularity of Stokes-Darcy Problem. In this subsection, we consider the

coupled Stokes-Darcy problem:

-V (2vD(w)—ol) +w={f in Qg,
V-w=0 in Qs,
(2.25)
—(2vD(w) = o) - 75 =0 on Q\T,
—(ZVD(W) - O'I[) '75 = —lﬁ_l’l)S + ,B(W — (W _n)5)_n)g) on I,
and
V- KVy)+y¢ = f in Qp,
KVy - 7p =0 on Qp\T, (2.26)

KVy -TWp=w-7s on I.

and prove the following proposition.

Proposition 1 Under assumption (A1)-(A2) and for any given 6 € (0,1/2), there is weak

solution (w, o) of the coupled system (2.25)-(2.26) which satisfies

IWllg2-sag) + lollg-sg) + I llm2-0 ) < CUIEa-50g) + 1 f la-5(0p))- (2.27)

The proof of Proposition 1 is based on the following lemma.
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Lemma 1 (Regularity results of the Darcy problem and the Stokes problem) Under as-

sumption (A1)-(A2), any weak solution of the equation

V- KVy)+¢ =f in Qp,

KVy - 7p=F on 0Qp
satisfies
Jp
1YW l2-5ap) < Cllf la-sp) + CZ | Fllg2-s(rp, ;) for 6 €(0,1/2), (2.28)
j=1
whereI'pj, j = 1,---,Jp, denote the smooth pieces of the boundary 0Qp.

Similarly, under assumption (A1)-(A2), any weak solution of the stationary Stokes

equation:
-V-2vD(w)—-ocl)+w=~F in Qg,
V-w=G in Qg,
DWW s —orig=g on 0Qsg,
satisfies

||W||H2—5(QS) + ||0'||H1—5(Qs)

Js (2.29)
< Clfllu-s(a) *+ IGllm-si0) + € D lglhz-oqry ) for 6 € (0.1/2)
j=1
where I's j, j = 1,---,Js, denote the smooth pieces of the boundary 0€s.

The regularity result (2.28) is a consequence of (23.3) in Dauge (1988) and Theorem
5.2 and Lemma 5.3 in Dauge et al. (2007), and (2.29) is a consequence of Corollary 4.2(N-N

case) in Orlt and Sindig (1995); also see corollary 2.1 in Li.
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Remark 2 Due to the existence of corners of g at the intersection between I and 9,
(2.29) does not hold when 6 = 0. In the case of 6 = 0, (2.29) needs to be changed to the

following form:

G
IWllz2q) + lo |l g < CUEllL2q) + |Gl @q) + ”;”LZ(QS))

2

Js
+C llgllg 2 ) + I lL2(rs )
j; ( S,_/) \/ﬁ ( S,_/)

where p = p(x) denotes the minimal distance from x to the corners of 9Qg; see (Li,
corollary 2.1). Due to the existence of the term ||g/ \/ﬁlle(rS’j) in the inequality above,

Proposition 1 does not hold in the case 6 = 0 unless
—y s+ B(w—(w-Ts)rs) =0 atthe corners of dQs.
Proof of Proposition 1: By applying (2.28) of Lemma 1 to the problem (2.26), we obtain

WY lla2-5ap) < Cllf la-sp) + ClIW - llgi2-sry < Cllfl-5(0p) + ClIWIE1-5(0g)-

Choose g := -y s + B(W — (W - T s) 1 s) and apply (2.29) of Lemma 1 to the problem
(2.25). We obtain

IWllg2-5qg) + lollm1-s(qy)
< C(llfllH‘5(Qs) + C||g||H1/2—6(F)

< C(Ifllg-s(qq) + CUW g5y + WllE1-5(05))s
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where the trace inequality is used in the last step. The sum of the last two inequalities yield

IWllg2-5ag) + lolla-sag) + I |2-0(0))

< C(|Iflla-sq) + 1/ la-50p)) + CUWY lp1-5ag) + IWllg1-52))
< C([Iflla-sq) + 1/ la-5(0p)) + CUWY g @q) + W (g))

< C(Iflla-sq) + 1 f la-50p)) + CUIE Il @5y + I1f I @py)

< CUlIfllg-s(aq) + 1f l-s@p)) + CUIElls gy + I1f lH5@p))

= C(Iflla-2iq) + 1 lla-s@p)) + CUIE s @5y + 1 a5y )

= C(|Ifllg-sag) + 1 f l-5(p))s

where “~" indicates equivalent norms. The equivalence of norms between H°(Qg) and
Hg(QS), 6 € (0,1/2), is a consequence of (McLean, 2000, Theorem 3.40).
2.4.2. Proof for Theorem 1. Now we prove Theorem 1 by using Proposition 1 and

the following two Lemmas. Recall

Lemma 2 (Girault and Scott (2003), Existence of the Fortin projection operator) There

exists a projection operator 1, : H (Qg) — _v);l(Q s), called the Fortin projection, satisfying

(V- (V - 5V).qn)as = 0, VY e H'(Qs), qn € Vi '(Qs), (2.30)
IV = I,V llgrag) < CH 7V lgresiag), YV € H(Qs), 1=0,1, 5 € [0,1],  (2.31)

IV 1) < CIIV i) VYV e H'(Qq). (2.32)

There exists a projection operator I, : H'(Qp) — V' (Qp), called the L? projection,

satisfying
e = Ingllus@p) < CH' ™ lelgiq,) Yo € H (Qp), (2.33)

forall0 <s<1<I<r+1.
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For the simplicity of notations, we use the same notation I, to denote the L>

projection from L?(Qg) onto 174 ~1(Qy), which satisfies
lg = Ingllmsg) < Ch™lgliag, V€ H'(Qs), (2.34)

forall0<s<1<I[<r.

From the definition (2.18), we see that the bilinear form a is coercive:
||_I/t) - ﬁh”IZ_Il(QS) + ”¢ - 5h||§11(QD) < C(Z(_I/t) - ﬁh,P - ﬁh’¢ - 5;1;_“) —_Lt>h,p —DPh @ — ¢h)
By substituting _v>h = H;fu’ —_u>h, qn = Inp — pp and ¢, = I,¢ — ¢}, into (2.19), we obtain

0= a(d = p,p =Py, ® = G W& =", Inp = pi In = 61)
=a(d —Up,p =D — Gy U — UnsD — Phird — Bir)
+a(d = p,p = Ppd = syl =W yp = p. Indp — ¢)
=a(il —Up,p =D — Gps U — Upap — Phod — b1)

+alu _ﬁh’p _Ihp’¢_$h;nh—u> _—M>,IhP_P,Ih¢ - ¢)’

where we substitute g, = Ip — p;, into (2.30) and add it into the above equality at last step.

The equation above implies

I - ﬁh”%[l(gs) + ¢ - ah”i[l(QD) < Ca(d =W, p = Pppo ¢ = 16 =W n.p = - — dn)
= —Ca(d =0n,p = Inp,¢ = s W =, 1p = p.Ing = ¢)
< C(I = Wallwi ) + 1P = Inpllr2cag) + 16 = Sullanop))
(7 =4 gy + 1P = Plliizag) + I1nd = dllaap))
< C(I — Wl g + 18 = Bnllerap))
(0,7 =4 |l o) + 1np = Pl + 11n¢ = Sl

AT =T Wy + 1 = P12y, + 106 = D1, )
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Then we can get the estimate immediately

||_u> — ﬁhHHl(QS) + ¢ — ah”Hl(QD)

< C(IM % =4 llnag) + 1P = Pllz2g) + 11nd = dllgiap))- (2.35)
Moreover, (2.19) implies that for arbitrary V), € Hy(Qs),

(p =D V-V )l < CIVC =)z on VY nllizag) + Clle = Snlliza 1V iz
+ ClM = Wallz) IV wllezary + CIE = allezioq IV allizy)

<Cl[w - ﬁh”Hl(QS)”Wh”LZ(QS),

where we have used (P. F. Antonietti and Smears, 2016, (12)) and Poincaré inequality. By

the inf-sup condition, the last inequality implies

1P = Pallizg) < CITE = Whllgi o) (2.36)

Combining (2.31), (2.33), (2.35), and (2.36) together, we can get (2.22) and (2.23).

To prove (2.21), we define a dual bilinear form:

aw, oV, q,9) = a(V,q, 0; W0, )
= (2VD(W)9 D<_V)))QS - (V © W, Q)Qs + (O-,V '_V))Qs + IB(PtanWa Ptan_V))F

+(W- T, ) + (KVy, Vo), - W,V -Ts)+ (w,_v))QS + (. 9)q,-
Choose (w,o,¢) € H . (Qp) x H'(QS) X LZ(QS) to be the solution of the dual problem
aw, a0V, q,9) = (U —Up, V)ag + (¢ = G P)aps (2.37)

where VY (V, ¢, ¢) € H/(Qs) x L2(Qs) x H'(Qp).
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Equivalently, (w, o, ) is the solution of (2.25)-(2.26) withf = %/ —uj, and f = ¢—¢,,

and Proposition 1 implies

1Wllz2-sag) + I llm1-00g) + I lH2-5(02) (2.38)

< C(I% - Whllg-s(qq) + ¢ = Eulla-sp))-

Hence, by choosing7 =7 —u, and p=q¢- Eh in (2.37) and using (2.22) and (2.38), we

have

7 =4l ) + 116 = Bul2aoy) = W00 T ~Thp = Pod — $)

= a(d —Wp,p = Pp ¢ — ¢ W, 0 4)

= a(d =W, p - Iip,¢ — ¢); W — Iyw, 0 — Lo,y — Inh)

< C(I =Wl ag) + 1P = InPllr2g) + 16 = Sl p))
(W = Wl qq) + lo = il 2q) + W = I llg(a,))

< (I =Wl ag) + 1P = Inpllr2g) + 16 = Sl p))
(IWllz-s0g) + 1 llz1-s(g) + 1 llg2-50,)h" ~°

< C([% - Wnllgag + 1P = InPllzs) + ¢ — ulliiay))
(I = Upllg-s(ag) + 116 = Sullg-scap))h' ™°

< C(IM = Wl qg) + 1P = Inpll2ag) + 16 = billaiap))

(I = Wnllzag) + 16 = Brlli2ap)h' 2
which leads to

1@ = nll2ag) + 16 = Bullize,) < CH UM = Whllmqsy  +Ip = Inpllizag)

+1¢ = Bullrap))-

The last inequality, together with (2.22), implies (2.21).
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Let L;, denote the Lagrange interpolation operator onto the finite element space

_V)Z(Qs) (with » > 2). Then (2.22) implies

- = - = — -
ILntd —apllg g < 1Lntd =t llm g + 1 — allar g

< Csh" (I llggr+1-s(0ag) + 1P lrrr-60ag) + 1181l rrs1-5(cap0))-
By using inverse inequality of the finite element space, we have

ILy 7 = pllwrg) < CH LA E — hllg )

< Gl (M llgr+1-s(0ag) + 1P -6 (0ag) + 1181l rs1-5(cap))-
Furthermore, the Lagrange interpolation operator satisfies
Ly u __”)“Wl»‘”(QS) < Chr_l_6||_u)||Hr+1—6(QS) < Chl_(s”_”)HHrH—é(Qs)-
Hence the last two estimates imply

— - = - - —
lanllwie@qg) < I1Lntd = Unllwreqg) + I1Lnd =t llwie@qg) + 1 [lwe@g)

< C(IIW llgr+1-5(6a) + 1P llrr-6cag) + N@llgrs1-6(ap)s

which proves (2.24). Hence, the proof of Theorem 1 is completed.

2.5. CONVERGENCE ANALYSIS

In this section, we prove our main theorem of the convergence for the finite element
solution of the proposed semi-implicit multi-step non-iterative DDM. Now we state the main
theoretical result for the convergence of the semi-implicit multi-step non-iterative domain

decomposition method.
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Theorem 2 Under assumptions (A1)-(A4), there exist positive constants 1y, hy and C, such
that when v < 19 and h < hy, the system (2.14)-(2.16) has a unique solution, which satisfies

the following estimate:

- =n 2 —n 2
LDy (Ir, - W ll72 ) + ¢} — ¢h||Lz(QD))
N
+1 3 (IV@ ) = w22, + 1Y) = B2,
n=k

S C(Tk + hr+l—26)2.

In the following analysis, we will prove Theorem 2 with ¢ denoting the fixed constant
in assumption (A4). To simplify our notations, we let C denote a generic positive constant,
€ denote an arbitrary positive constant such that £ € (0,1/2), and C, denote a generic
positive constant which depends on &.

Before we prove the main theorem, we need to present some lemmas. First, based
on (2.2) and (2.23), one can obtain the following conclusion, which will be used in the proof

of Theorem 2 in the next section.

Lemma 3 Under assumption (A1)-(A3), we have

k—1

|| Z ylﬁh(’ tn—l—j) - ﬁh(" t")”LZ(F) < CTk s (239)
j=0
k—1 _ _

1> 75 tn1) = @uCt)] 2y < CT* (2.40)
j=0

Proof of Lemma 3: Since the joint Stokes-Darcy Ritz-projection is a linear map from

(d,p,¢) to (Wn, Py, &), it follows that 9¥u, = (0Fw),, where ((8)%),.(0Fp),.(0Fs),)

denotes the joint Stokes-Darcy Ritz-projection of (8tk7 ,0kp, ok ).
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By applying (2.2), we have the following estimate

k-1

| Z Yiun(s tao1-j) — ﬁh(',tn)”Lz(r) < CtMN0fmllcqory iy = CTN@OF),lleqory. ey
=0

< CT* (104 oy sy + 110F Plicqortcz@sy

+ ||atk¢”C([0,T];HI(QD)))

where we have used (2.23) in the last step above. This completes the proof of (2.39), and
the proof of (2.40) is similar.

Second, we recall the following result of BDF methods in Lemma 1.1 of Akrivis
(2015) and Lemma 2 of Akrivis and Lubich (2015); see also Dahlquist (1978); Nevanlinna
and Odeh (1981).

Lemma 4 For any given integer 1 < k < 5, there exists a constant n € (0,1) such that

N |-

k k-1
dig" (" — ") DT( D, & e ) n>k,
J=0 i,j=0

for any sequence ¢", n =0,1,...,N, where D,¢" := %((p” — ¢" 1) and (g;;) is a symmetric

positive definite k X k matrix such that

k-1 k-1

Kz.fiz <

1=

k-1
g€y <K' )& VEER i=0.. . k-1
j,j=0 i=0

~

for some positive constant k.

Besides Lemma 4, we shall also use Korn’s inequality (c.f. John and Layton (2002)):

||D(7)||Lz(gs) > 6’||V7||Lz(QS), for some constant § > 0, (2.41)
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Young’s inequality:

a? bl I 1
ab< —+ —, Vp,qe[l,o] suchthat —+ — =1, (2.42)
P q P q

interpolation inequality (cf. Proposition 1.1.14 and Exercise 1.1.16 in Grafakos (2008)):

1-6 6 1
Mooy < I Iy with 5=+ 2= 0€l01], 2<psq @4
and the trace inequalities:
IWllz2r) < €llVWIL2q) + Co~ IWll2g), Vw e H'(Qg), (2.44)
lellzzm) < €llVellzay) + Ce ' llellzqp) Ve H'(Qy), (2.45)

where & € (0, 1) can be arbitrarily small.
Then we evaluate the weak formulation (2.6)-(2.7) and (2.9) at #,, and rewrite it into

the following equations:

k

1 —1-7 n n

;Zdj—u’" )+ (Y BT VI ) g+ as(@" V) (2.46)
=0

j= j=
+bs(V &) + (U W, Vi Ty + " — (U TR H s Vi — (Vi T Hs)

= (£5,Vn)qq + E6Vn-Ts)+ (ElVa)g, + (Ex: Va)g,» ¥V € Vi(Qs),

O

(V-7 qn)q, =0, VauneV, ' (Qs) (2.47)
1 < .
(; Z did" en) g, +ap(@",en) + (", 1) (2.48)
j=0

= (fDn’ Soh)QD + <§ln)9 ()D]’l> + (Eg’ Qoh)QD, V ‘,Dh € VZ(QD),

where £¢ =u" Ty — ¢, &) =u" T+ ¢
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The truncation errors of temporal discretization are

El =1 3h o dium™ - 07 (1), Elf = L350 dig" = 8i4(-1),

Ejy = (Sjogyid"™ '~ =" - v,
In view of (2.1), we have
I1E; 1205) + IES ll22(0p) < CT* (2.49)

As mentioned in the last section, the joint Stokes-Darcy Ritz-projection is a key to our error

analysis. Substituting (2.20) into (2.46)-(2.48), we obtain

k-1
Z _n_J Q + Z%“n v, Vh)Q +as(uh, V) (2.50)
]:O
+bS(_>h PR+ T V) + B — (s s, Vi~ (Vi 7))
= (f%, _v>;,)Q + (g Vi Ts) + (E o, + (EN )Qs
k=1
Z di@, =TT ) + (v V@ =TV h) g
=0
k-1 . .
"‘(Z Vj(ﬁ’;z_l_] - ) Vﬁz’_")h)gs + (W - ﬁh,_\}h)gs’ VTV € V(Qs),
=0
(V- ﬁ,’;,qh) =0, YagneV Q). (2.51)
Zd v en)q, + ap(@hen) + (Bhenr (2.52)

= (fDn’ Soh)QD + <Erll)h’90h> + ( ¢"Ph Qp + Zd (¢ - ‘pn_j),‘ph)QD

+(¢ = P en)g, Vo€V Qp),

where

Esp =) -THs—@p, Epy =1 -+ (2.53)
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_) — p—
Lete}  := u'l) -y, €, = pi-p, and e}

he = ¢’;l —Ez denote the error between

the finite element solution and the joint Stokes-Darcy Ritz-projection of the solution. Then

the difference between (2.14)-(2.16) and (2.50)-(2.52) gives

Z di€, 1 V1) o +2v(DE)L ) DV i) g, — (€h,2V - Va)g, (2.54)

H
+<ehu ) nS’ Vh ’ nS> +ﬁ<Ptane2u,Ptath>

—<Zy,<§"” En Vi ns>+<Zw§’§h“ o Th-Ts)

j=0

Z dj (_n_] —)n_j)’—")h)gs - (E::l,—‘}h)gs - (Ezlzf’—v)h)gs - (—”) - ﬁh’—")h)g

S

k-1
—( D v v, ZYJ_’" Vel o, YR € TVQs),
j=0
(V-€pan)g, =0 YaneV,” 1(QS). (2.55)
! kd nej KVe! .V n 2.56
(;Z i€ h)ay, + (KVe, . Ven) o, + (€, 4 @n) (2.56)
j=0

k=1 k=1
n—1— —n—1-j —n—-1-j —=n
= O i€ =Epn eny + O viEpn  —Eppn)
j=0 j=0
| < -
—n=J n—j n - r
_(; Z di(¢, ~ = ¢"7), ()Dh)QD - (E¢, Qoh)QD - (¢ = Ops ‘ph)QD’ Y on €V, (Qp).
j=0
From (2.55), we can get
(€] .V - (€], — mels g = 0
Using this identity and substituting V', = e - nke" into (2.54), we obtain

Z d]ehu ehu - Ukez ul)QS +2v (D(ez,u)’D(ez,u - nke;lz,_ul))gs (2.57)

1N = -
+<eh,u ’ n S5 (e;ll,u - ﬂkeZ,Ml) - n S> + :8<Ptane7,’u’ Ptanez’u - UthaneZ;)

=i+ h - —-Jy—Js—Js— J7.



36

The corresponding terms of J;(i = 1,...,7) are

—n—1-j

Ji = (Z;( 0 7’/(5;;:1_] Esp (€, —mel ) 1 S)

Sy o= (Zf oyjfghl K ESh’(ehu — el - s)

J= (L35 ;@) S, (e}, — mel ) g,

Ja:= (Ew(e’zu — kel J5 = (Ey (€, —meel g,

Jo = (Zf 5)/172 1= -ve) (€, — el )Qs

Jr=(Zh e T v (e, —nke;;}))gs, Jg = (0 - el —meel) o

The left side of (2.57) will be estimated by using the multiplier technique of (Nevan-
linna and Odeh, 1981, see Lemma 4). The details are carried out below for the convenience

of the readers. Note that

(D(ez,u)’ D(ez,u - nke’;z,_ul))ﬂs = (D(ez,u)’ D(e};l,u)) - nk (D(e’;z u)’ D(ez;l))Qs
Nk
> [ID(€h,)I120) ~ 5 D€ )~ 5 IDEGDIE o

= (1= 0D, + DB IDE I g )

- -1y — - - - -1 =

(€, s (€, —nie, ) Tis) =€, ~THs€ ~Hns)—me,,  ns, eZu i)
Nk 1 _>

2 ”ehu : nS”LZ(F) ||eh,u : S||L2(F) ||en : S”LZ(F)

(nkT

= (1 - nk)”ehu ' nS”LZ(F) D ” hu : nS”LZ(F))

-1 1
<Ptanez’u’ Ptanez’u - UthaneZ,u ) = (Ptanez’u, Ptane’;,u> - nk(PtaneZ w Ptanehu )

1
2 ”Ptanehu”LZ(r) ”Ptanehu”Lz(r) ”Ptanehu ”Lz(]—)

T

- (1 - nk)llptanehu”LZ(r) D ( ”Ptan hu”LZ(r))
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By using Lemma 4 and the last three estimates, (2.57) reduces to

T
Z gl] e/’lu’ hu )Q ”D(ehu)”LZ(Q ))

77k

T
2 ”ehu ' S”LZ(F)

+D: (- = I Pan€ 2 ) (2.58)

+(1 - r]k)(ZVHD(ehu)”LZ(Q ) + ”ehu . nS”Lz(F) +ﬁ”Ptanehu”L2(r))

< |1l + [Ja| + | S5] + [Ja| + |J5] + [Js| + |J7] + | J3].

Similarly, substituting ¢;, = e — ke, y ! into (2.56), we obtain

-1 -1
Z d,eh¢ €~ My ) (KVeZ’Q,,V(eZ,(Z§ ~ Nk€lyy ))QD + (€l g €hg ~ M€l )

= J9+110—111 —Jio—Ji3 (2.59)
where
1- = 1
1- —n-— / —n— J —=n _
Jo = (Z yj(fn ~ —épn T )e, @ - ke, (,,) Jio = (Z Yi€ bh fph,eZ,q; - nkeZ,qi%
Jj=0

1 k

_ _ gn—j\ ,n n-1 _ n o n _ n-1
Ju = T ZO ¢ )’eh’(p nkeh’(z,)QD, Ji2 = (E¢aeh’¢ nkeh’(lg)QD

Jiz= (-9 s€ o~ Tk€), ¢)

Note that

(KVeh ¢’V(eh o nke )) (KVeZ’q},VeZ ¢)Q —Uk(KVé’Z ¢,Ve,’l"_¢3)QD
> (KVeZ’q},VeZ’d))QD - ?(KVeZ’gb,VeZ,qb)Q 5 (KVeZ(;,Ve" 1)QD

T
=(1- nk)(KVeZ"ﬁ,VeZ’(b)QD + %DT (KVeZ’gb, VeZ,qj)QD

-1 -1
<€Z,¢,€Z,¢ - nkeZ,¢> = (eZ,¢’eZ,¢)F - nk(e;zl,gs’ez,(p )r

Mk 1 n—12
2 ||eZ’¢||L2(F) - Tlleh,(p”LZ(r) - ?” }rll,qﬁ ||L2(F)

T
= (1= mlleg, 4lI7 o) + DT(T”eZ«»”iZ(r))'
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By using Lemma 4 and the last two estimates, (2.59) reduces to

77kT nkT )
Z gij eh¢,eh¢ 5 (KVeM,VeM)QD + T”eZ,qﬁHLZ(r)) (2.60)
i,j=0

(1= m)(KVe) . Vel ) + (1= mlle 22y < 1ol + 1ol + 111 + il + 17131
Define

le Ogl]( ) Zl] ()glj( h?ﬁ’ Z¢]) +%”D(e )”LZ(Q)

kT T kT NkT
+5- ”ehu *n SHLZ(F) + ”Ptanehu”Lz(l—) + T(Kvezydyvez’(p) + ”eh¢”L2(r)‘

By Lemma 4, we can obtain

0 2 Zg,, eZu"eZuJ as t Zg’f €h>Ch )
ij—O i,j=0
> Z 1€}/ 172 )+KZ 1€} 1720, 2.61)

Then summing up (2.58) and (2.60) yields

DT(DZ + 2V(1 r]k)”D(ehu)”L2(Q ) ( Uk)(KV€h¢, Ve;lz,¢)QD S Z]lil |J]| (262)

In the rest of the proof, we estimate the right side of (2.62), in which the do-
main integrals will be estimated in a standard way by using Holder’s inequality and the
interface integrals on the right side of (2.57) will be estimated by using the trace inequal-
ities (2.44)-(2.45) in terms of the norms of L?*(Qg) and H'(Qys). The extrapolation errors
Zf 0 ngghl E E’;h and Zf;é 7jE"D_hl_j - EnDh will be estimated by Lemma 3.

To estimate the nonlinear terms involved in the right side of (2.62), we need to use

a mathematical induction assumption:

17 40 < I leqortzes) + 2- (2.63)
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We shall assume that (2.63) holds for 0 < n < m — 1 with some kK < m < N. Such an
induction assumption will help to estimate the product of three terms involved in the right
side of (2.62), provided one of the three terms would be from the last time step (using
explicit scheme). We will use this mathematical induction in the estimation of (2.62) for
n = m and use the estimated results to prove that (2.63) also holds for n = m. Using (2.17),
(2.53), (2.61), the Cauchy-Schwarz inequality, trace inequalities (2.44)-(2.45), the triangle

inequality, and Young’s inequality, we have, for k < n < m,

il = (S e -8, (e,, D) )|

k— 1-j = —1
< S lvilley ™ - Tis - gey ||L2(F)||eh L ey e
J= ¢ :

< Oy (€712 + e 212, 1)

(2.64)
<eXi(Ive,,

+ ||Ve

||L2(Q ) ”LZ(Q ))

+Co Ty (1) 1P, + N ||L2(QD>)

< sz o (IIVe, + Ve, + Co(OF + @71,

||L2(Q ) ||L2(Q ))

—n-1-j

k— " -
|J2| = |<Zj ~0 Yi€sh ‘;:Sh’(e;ll,u - Ukez’ul) —”)S>|

—n—-1-i =

= ”Zk o Vi€sn fSh”LZ(r)“eZ,u k€, ||L2(F)
< Crk”eh . e ||L2(r) [using Lemma 3] (2.65)
= CTk(‘9||V(eZ w T IK® )”LZ(QS) +Ce HeZ w T K®, HL2(QS))

< Cr* 4 eHV(eh " nkeh u + C8||ez’

)”LZ(QS) w’ nkeh,_ulnLZ(QS)

<t +e 3k ||Ve, ! + Co(D + D,

,u ||L2(Qs)

|l = |(E3, CHE Zu] Qs| = HE:Z”LZ(QS)”eZ,u - nkeZ,_u]“L2(§25)

< CT"”eZ,u — ke u1||L2(QS) [using (2.49)] (2.66)

< Ct¥ 4 C(@) + o,

|J5|=| (ehu—nke )QS|
< Zk . ),J—>n 1-j _ n||L2(QS)||V7n||L°°(Qs)“ez,u - UkeZ;lllwgS) 067
< CeMlep , — e 20, [using (2:2)]

< Ctk 4+ (@) + i,
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|Jel = |(Zf Oy]_)n = Vehu (ehu k€, )QS|

< Z? o [l “_u)n_l_j”L“(Qs)HveZ,u”Lz(QS)”eZ,u - nkeZ,_ul”L“(QS)

< Cnveh u”LZ(QS)”eh u nkeZ,_ul||L4(Qs) [USing (263)]
< C||ve; u||L2(QS)||eh u " Tke _1”2/;95)”%1 w K€, Hi/;zgs)

< C||Vez,u||L2(Qs)||eZ,u ke, u1||1L/;EQS)”eZ,u — ke, ul”ii/?(ﬂs)

[using Sobolev embedding H 1(Qg) — L5(Qy)]

= ||VeZ u||L2(QS)(C‘9||eZ,u ke, ”LZ(QS) + ‘9”eh w ke, ”Hl(gs))

< eHVe + e||e" — ke, + Cg ||eZ’u

h u”LZ(Qs) B ”H‘(QS) keZ,_u ||L2(QS)
< 3521 ~o|Ve, uJHLZ(QS) +Ce Zl ~ollen ]||L2(QS)

< 332 -0 ||Ve HLZ(QS) + Co(Q)) + 0171,

n—1

k—
|‘I7| _| Z_] Oy] hu K Vuh’(ehu_nkehu )Qg|

< Heh_u_]HLZ(QS)HV nlliee@glley Nz qs)
< CZ;?:O e ||L2(Q ) [using (2.24)]

< C(O) + @g—l),

|Js] = | (@ - up. e, — leeZ’_ul)QS| < |- Wl €], — kel 2
< Chr+1_25||ez u nkez,_ul lL20s) [using (2.21)]
< Ch2r+2-46 4 C”eh - Ukeh | ”LZ(QS)
< ChY #2740 4 (@) + D!,

ol = (A2 v ™ = et — el )| Isimilar to 1]
<A ylllen, ™ s + gez;j‘f lezyllef o = el

< Szk o(“Wh_u]”LZ(Q y ¥ ”V"’ LZ(Q )+ Cel®y, + ),

—n-1-j —=n _
[0l = (252 ¥i€pn ~ — Epmef 4 =Myl
—n-1-j —n 1
< || Z] =0 7]§Dh §Dh||L2(F)|leZ,¢ - nke;,ll’¢ ||L2(F)

< Gt + 835 |IVey, | + Co( + @771), [similar to J]

”LZ(Q )

ol = |(Ejs ety = ey s ) o, | < NEG2@p)llef o = mkehy 2@

IA

Ct + C(@) + dr~"),  [similar to J4]

T3l = |(¢ = pp.e)f o ~ ke, . Q | < ch?r2- 45+C(d>" @71, [similar to Jg]

40

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)



41

Now for (2.62), it remains to estimate |J3| and | J;1|. Since % 25?:0 a’jﬁ';l_j = (% 25?:0 dj_Lt)”‘f)h

is the first component of the joint Stokes-Darcy Ritz-projection of

1 in-i Lk gopn=j Lk gl gn=j
(7 j=0di U2 Xio dip" s 2 Ljoo di¢ )-

Therefore, under assumption (A3), Theorem 1 implies

1S i e 1< R B
”; E ,dj(“Z St j)”LZ(QS) = ”(; E ,dj—”)n_])h T E dj_”m J“LZ(QS)
j=0 Jj=0 J=0

sl iy
< Ch (|- > diwn| Hr @)
=0

k

1 .

H™+1(Qg) + ||; ZO d]pn J|
J:

k

+Chr+l—25”l Z d]¢n—]|
T =0

< Chr+]—25(||at

HH'I(QD)

@ corpariasy * 19Plleqorimm@sy) + 10 lleqorymr@ny)

+1-26
<Ch ,

and similarly,

1 vk —n=j —j 1-2
|? ijo di(¢p, " —¢" J)||L2(QD) < Ch2,
Using the Cauchy-Schwarz inequality, the above two inequalities, Young’s inequal-

ity, and (2.61), we have

| ok —n—j  —pj 1
|5 = (2 j:odj(llZ b ), (€}, — ey, )QS|

IA

12 250 @ =) o e, = mei )
< Chm_%”eﬁ,u B nke’;z,;l”Lz(Qs) (2.75)

< Ch2r+2-46 4 ”eZM - UkeZ;”iz(Qs)

2r+2-45 -1
< Ch™* + C(D} + @70,



il = (20 (@) =" )el =iy, |

—n—j _ _
< |25 di@h = 6" Dizamlel s~ mel Mz
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< Ch’“'z‘slle’;l’(b - nke;‘l’;llle(QD) (2.76)

< Ch2r+2-40 4 C||e’;l’¢ - nkez;; ||52(QD)

< Ch¥ % 4 C(@) + .

Substituting the estimates (2.64)-(2.76) into (2.62), we obtain: for k < n < m,

D @) +2v(1 - nk)llD(eZ,u)H2 +(1 - nk)(KVe” Ve;’m)QD

L2(Qs) h.¢
< Co(t + W20 1+ Co(@) + Op) + £ X5 (| Ve ”ims) +[|Ve, s ”isz))'
Summing up the equations above for n = k,. . .,{, and using assumption (A4), we have

l
o Y- nk>(zvnD<ez,u>niz<Qs) +(KV} V6], ),
n=k

£
< Co(72k 4 R¥H240) 4 £ Z Co(@! + @71
n=k

Kk
TeT Zk ZO(HveZ;] ”iz(QS) + ||V€Z,'¢;’ HiZ(QD))
n=k j=

¢
< Co(t2K 4 242740y 4 ¢ Z Ce(DF + @11 + eCE(r* + WH1720)?
n=k

4
2 2
+etk Z(||Vef;w||L2(QS) Ve g, Yh<C<m
n=k

By using assumption (A2) and Korn’s inequality (2.41), the last inequality reduces to

14
f,+ 7 ) (1= 102081 V€,, [0 ) + k0l 47
n=k

t
< (Co +28CH) (T + W) 47 Y Co(@) + 057
n=k

4
+etk Z(HVeZ’ulliz(gs) + ”Verﬁ”iZ(QD))’ Vk<l<m,
n=k
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By choosing sufficiently small g, the last term on the right-hand side above can be controlled

by part of the left-hand side,

£
etk > (Ve Iz 00 + IVeh o120,
n=k

4
< 5 Y (=) (2v0l1Ve), 1720 + %0l Vel )
n=k

N~

Then the above two inequalities lead to

4
]
O+ 2 > (1 =m0 (29019, g + 0ll Vel gliEa, )

n=k (2.77)

{
<CEH+ P vy C@+ @), Ve<e<m.
n=k

Then Gronwall’s inequality implies the existence of a positive constant 7; (independent of

m) such that when 7 < 7 we have

m
T _
Jmax @ + - D (1 =1 (2v0lV€} |12 ) + K0llVeh 417, ) < CEH+ B72740),

T n=k

In other words, we have

m

2 2 2 2
max (e, 17 ) + leh 120, + 7 D (196, 120, + 19604l )
- n=k
S C(TZk + h2r+2—46). (278)

In the case of T < h, the inverse inequality and (2.78) imply

e} lzsag) < Ch™V2 M€, ll2g) < CHVP( + WH1720) < ChoVA(RE + W1 %0)

< C(hk—l/Z + hr+1/2—25)_
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In the case of T > A, the Sobolev embedding H' (Qs) — L*(Qs) and (2.78) imply

€} llzas) < Cller Ny < CUIEN lI2@g) + 1Y€ llr2@g) < CT7 2" + HH1720)

< C(Tk_1/2 + Tr+1/2—26)‘

For both cases, there exist positive constants 7, and /; (independent of m) such that when

7T <1 and h < hy, we have ||e;’iu|| 14@s) < 1, which implies that

—m = I EE—
My ="d " l13qq) < g lliag) + 0 =4 " |aqq) < 1+ 10, =614y

IA

1+ C|[uj) —_u>’"||H1(QS) [using the Sobolev embedding H'(Qs) < L*(Qs)]

IA

1+Ch™°.  [using (2.22)]

Hence there exists a positive constant /4, (independent of m) such that when h < hy, we
have ||—u>’}:’ el 14Qg) < 2. This completes the mathematical induction on (2.63) in the
case T < 19 := min(ty,2) and h < hg := min(hy, hy). In this case, (2.63) holds for all
0 < n < N. Since all the generic constants in our proof are independent of m, it follows

that (2.78) holds for m = N. This completes the proof of theorem (2).

2.6. NUMERICAL EXAMPLES

In this section, we will present examples to illustrate the features of the proposed
method. The Taylor-Hood element pair will be used for the Navier-Stokes equations, and
the quadratic finite element will be used for the second order formulations of the Darcy
equation. All numerical results below are for 7" = 1.

2.6.1. Numerical Examples for Semi-implicit Multi-step NIDDM with Interface
Conditions. Consider the model problemon Q = [0, 7]X[—-1, 1], where Qp = [0, 7]x[-1,0]

and Qg = [0,7] X [0,1]. @« = 1,v =1, g = 1, z = 0. The boundary condition functions and



the source terms are chosen such that the following functions are the exact solutions.
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op = (¥ — e V)sin(x)e’, Us = [%sin(27ry)c0s(x),(—2 + izsinz(ﬂy))sin(x)]Te’, ps = 0.
Vs

First,we will list the results of the semi-implicit multi-step non-iterative DDM with

K =KI, K = 1, which s a single-step method in Table 2.1, by setting 7 = 8h3. These results

match the regular expectations of accuracy order arising from backward Euler method and

quadratic elements, i.e, O(h> + 1) for L norm and O(h? + 7) for H' norm and hence verify

the theoretical results in Theorem 2.

Table 2.1. Errors of the single-step method for T = 873,

I[2 =

rate

I—”)h__”)|1

rate

llpn = pllo

rate

ll¢n — dllo

rate

lpn — ol

rate

1/4

2.9838 x 102

6.3157 x 1071

2.5485 x 1071

2.6561 x 1071

6.2370 x 10!

1/8

3.6977 x 1073

3.01

1.6725 x 1071

1.92

2.8500 x 1072

3.16

3.7390 x 102

2.83

1.0422 x 107!

2.58

1/16

4.5806 x 1074

3.01

42874 x 1072

1.96

3.2192 x 1073

3.14

47400 x 1073

3.06

1.9654 x 102

2.40

1/32

5.6751 x 107

3.01

1.0813 x 1072

1.99

3.7633 x 1074

3.09

5.9341 x 107*

291

4.4095 x 1073

2.15

1/64

7.0311 x 10°°

3.01

2.7270 x 1073

1.99

4.4746 x 107

3.07

7.4290 x 1073

3.00

1.1663 x 1073

1.92

For the two-step method, we choose 7 = A, and Table 2.2 provides errors for different

choices of A for the semi-implicit non-iterative domain decomposition method with k£ = 2.

Since the accuracy order O(7?) is expected for the temporal discretization and 4 is chosen

to be the same as 7, the second order convergence rates in Table 2.2 are expected for the

utilized quadratic and linear finite elements.

Table 2.2. Errors of the two-step method for 7 = A.

2 =],

rate

[, =],

rate

llpn = pllo

rate

ll¢n = ¢llo

rate

¢ — ¢y

rate

1/4

3.0606 x 1072

rate

6.3617 x 107!

rate

1.9401 x 107!

rate

1.1446 x 107!

rate

3.5789 x 107!

rate

1/8

4.6203 x 1073

2.72

1.6846 x 107!

1.92

3.1171x 1072

2.33

3.2467 x 1072

1.82

9.6824 x 1072

1.89

1/16

8.5377 x 10~*

2.43

43164 x 1072

1.96

6.3608 x 1073

2.29

8.5831x 1073

1.92

2.5123 x 1072

1.95

1/32

1.9327 x 107*

2.14

1.0886 x 1072

1.99

1.5366 x 1073

2.04

2.2051 x 1073

1.96

6.3961 x 1073

1.97

1/64

47286 x 107°

2.03

2.7299 x 1073

2.00

3.8463 x 1074

2.00

5.5648 x 1074

1.99

1.6107 x 1073

1.99
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For the three-step method, by setting 7 = & we can get the Table 2.3 with k = 3. We
can observe the third order convergence rates for % and ¢ in L? norms, which are consistent
with the theoretical expectation in Theorem 2 for the accuracy order, i.e., O(h* + 73) for
quadratic finite elements in L? norms.

Table 2.3. Errors of the three-step method for 7 = A.

h ||711—7||0 rate I—I'Zh__u)h rate | lpn—pllo | rate | |lgn—¢lly | rate |pn = @1, rate
1/4 129397x1072| - [63190x10°7| — |1.7011x10° 7| — [5.0992x1072| — [27626x10°T| —
1/8 37079 x 1073 [ 2.99 | 1.6730 x 1077 | 1.92 | 2.2059 x 1072 | 2.95 | 4.7639 x 1073 | 3.42 | 6.7329 x 1072 | 2.04
1/16 | 45978 x 107* [ 3.01 | 4.2876 x 1072 | 1.96 | 2.3572x 1073 [ 3.23 [ 6.3881 x 10~* | 2.99 | 1.6863 x 1072 | 2.00
1/32 | 5.6955 x 107 | 3.01 | 1.0813 x 1072 | 1.99 | 2.6322 x 107* | 3.16 | 7.7080 x 107 | 3.05 | 4.2241 x 1073 | 2.00
1/64 [ 7.0773x 107 | 3.01 [ 2.7112x 1073 [ 2.00 | 3.1520 % 107> | 3.06 | 6.7330 x 107° | 3.21 | 1.0574 x 1073 | 2.00

Second, we list the numerical results of the semi-implicit multi-step NIDDM with
a more realistic hydraulic conductivity K = K1, K = 1073. Since the results of single-step
and two-step methods are similar to those of the three-step method, we will only illustrate the
three-step method due to the page limitation. We choose 7 = A and list the corresponding
errors in Table 2.4. From this table, we can find that the proposed method is still optimally
convergent with respect to the chosen finite elements. That is, for quadratic finite elements,
we see the third order accuracy in L? norm and second order accuracy in H' norm while

the expected accuracy order in temporal discretization is the third order.

Table 2.4. Errors of the three-step method for K = 107 and 7 = h.

h | @n="dll, [rae] @0 =[ [rate] lipn—plly | rate| lign=¢llo | rate| [gs—¢l, |rate
1/4 [1.0171x107* | — [1.1041x 1077 | — | 1.6843x 1073 | — [23789x 1072 | — [29996x 1071 | —
1/8 | 1.2895x 107 | 2.98 | 2.4518 x 107* | 2.17 | 2.1424 x 107* | 2.97 | 3.1274 x 1073 | 2.93 | 6.9957 x 1072 | 2.10
1/16 [ 1.6356 x 107 | 2.98 | 6.1825x 107> | 1.99 | 2.6457 x 107> | 3.01 | 4.0371 x 107* | 2.95 | 1.7106 x 1072 | 2.03
1/32 [ 2.1445% 1077 [ 2.93 | 1.5494 x 107 | 2.00 | 3.3029 x 107° [ 3.00 | 5.0419 x 107 | 3.00 | 4.2734 x 1073 | 2.00
1/64 | 2.6834 x 1078 | 3.00 | 3.8737 x 10™° [ 2.00 | 4.1235x 10~7 | 3.00 | 6.3102 x 107° | 3.00 | 1.0691 x 103 | 1.99

2.6.2. Results of the Lagrange Multiplier Method for Defective Boundary Con-
ditions under the Framework of Semi-implicit Multi-step Non-iterative DDM. In this
example, we apply the proposed Lagrange multiplier method for defective boundary condi-

tions to a local simulation of the subsurface flow merging from two conduits into one while
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communicating with the surrounding porous media flows. The computational domain is a

unit square divided into the porous media domain Qp and the free flow Qg. Let Qg be the

polygon ABCDEFGHI1J where A = (0,1),B = (0,3/4),C = (1/2,1/4),D = (1/2,0),E =
(3/4,0),F = (3/4,1/4),G = (1,1/4),H = (1,1/2),I = (3/4,1/2), and J = (1/4,1). Let
Qp = Q/Qg, Sy = ABUJA, S, = DE,and S, = GH. Choose T = 1, @ = 1,v = 1,
g =1,z=0,and K = KI. The boundary condition data and source terms are chosen to
be 0 except Q; on S; (i = 0,1,2). We subdivide Q into a rectangle whose height and width
equal 7 = 1/M, where M denotes a positive integer, and then subdivide each rectangle into
two triangles by drawing a diagonal. For this numerical experiment, we choose M = 32
and 7 = h. Three-step backward differentiation is selected for the temporal discretization.
Next, we will provide the numerical results at 7 = 1 for the algorithm.

Figures 2.1 and 2.2 illustrate the numerical solutions at the end time 7" = 1 by setting
K =1, K = 1073 for three tests. In the first test, we set Q1 = Q> = —1 and Qp = 2 so
that the total inflow rate is equal to the total outflow rate. In the second test, we keep the
same Qp and Q, but set Qg = 1 so that the total inflow rate is larger than the total outflow
rate. This causes more water to be pushed out of the conduits into the porous media, which
happens during a rain season. In the third test, we keep the same Q| and O, but set Qg = 3
so that the total inflow rate is smaller than the total outflow rate. More outflow causes more
water to flow into the conduits from the porous media, which is what happens during a dry
season. These phenomena are expected due to the chosen unbalanced inflow and outflow

rates for the conduit.
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Figure 2.1. Streamlines when K = 1 for Q| = —1, Q> = —1, and different Qp: Q¢ = 2 (left),
Qo = 1 (middle), and Q¢ = 3 (right).

Figure 2.2. Streamlines when K = 1073 for 01 = -1, O, = —1, and different Qy: Qg = 2
(left), Qo = 1 (middle) and Qp = 3 (right).
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3. PARALLEL NON-ITERATIVE MULTI-PHYSICS DDM TO SOLVE
NS-DARCY MODEL WITH BJ INTERFACE CONDITION

In this section, a parallel non-iterative multi-physics DDM is proposed to solve a
time-dependent NS-Darcy model with Beavers-Joseph interface condition and defective
boundary condition. In order to deal with the Beavers-Joseph interface condition, we need
some special treatments in both the analysis and the construction of the Robin boundary
conditions for the domain decomposition. The backward Euler scheme is first utilized
for the temporal discretization while finite elements are used for the spatial discretization.
The convergences of this domain decomposition method are rigorously analyzed for the
time-dependent NS-Darcy model with the BJ interface condition. Based on the above
preparation, we further develop a Lagrange multiplier method under the framework of the
DDM to overcome the difficulty of non-unique solutions arising from the defective boundary
condition. In order to improve the accuracy for the temporal discretization, a three-step
backward differentiation scheme is used to replace the backward Euler scheme. Compared
with the first scheme, the second one allows us to use the relatively larger time step to reduce
the computational cost while keeping the same accuracy. Numerical examples are provided

to illustrate the features of the proposed method.

3.1. BASIC IDEA OF DDM TO SOLVE NS-DARCY SYSTEM WITH BJ INTER-
FACE CONDITION

Recently, the attention of scientists has been attracted to the NS-Darcy model,
including the steady state problem Badea et al. (2010); Cai et al. (2009); Chidyagwai and
Riviere (2009); Discacciati and Quarteroni (2009); Girault and Riviere (2009); Hadji et al.
(2015); He et al. (2015) and the unsteady problem Cesmelioglu et al. (2013); Cesmelioglu

and Riviere (2008, 2009). Compared with the extensively studied Stokes-Darcy model, the
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more difficult time-dependent NS-Darcy model is still in great need of continued efforts to
develop and analyze stable, accurate, and efficient numerical methods, especially for the
model with more realistic and difficult boundary/interface conditions. In fact, itis difficult or
expensive in many applications to measure the fluid flow velocity for the boundary conditions
but much easier and more cost-efficient to obtain flow rates on the boundary Heywood et al.
(1996); Roscoe et al. (1997). Therefore, the corresponding defective boundary conditions
were considered for the Navier-Stokes equation Formaggia et al. (2002). More recent
development for defective boundary problems can be found in Ervin et al. (2014); Ervin
and Lee (2007); Formaggia and Vergara (2012).

Furthermore, there are two choices for the interface condition in the tangential
direction: the original Beavers-Joseph (BJ) interface condition Beavers and Joseph (1967b)
and the simplified Beavers-Joseph-Saffman-Jones (BJSJ) interface condition Jager and
Mikelic (2000); Jones (1973); Saffman (1971a). Itis true for some cases that the contribution
of the Darcy flow in the tangential direction is heuristically much smaller than that of Stokes
flow on the interface, and hence the BJSJ simplification can be used. There are related
theoretical works in Chen et al. (2010) using the Brinkman-Stokes model as the starting
point and periodicity in the horizontal (along the interface) direction. They demonstrated
that the BJ interface condition is more accurate than the BJSJ interface condition or its
further simplifications. The error is not necessarily small for all parameters, and it could be
of order 1 for the lower values of the hydraulic conductivity/permeability/porosity.

In this section, based on the key ideas of Cao et al. (2014), which were a fundamental
development for the simple Stokes-Darcy model with BJSJ interface condition, we first
develop a parallel non-iterative multi-physics domain decomposition method to solve the
sophisticated time-dependent NS-Darcy system with BJ interface condition. In order to
avoid the traditional iteration for the domain decomposition at each time step, the interface
information at the current time step is directly predicted based on the numerical solution

of the previous time steps. The major difficulties in both the analysis and the construction
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of the Robin boundary conditions arise from nonlinear terms and BJ interface condition,
including a series of technical treatments and the final special norm used in the discrete
Gronwall’s inequality for the analysis of full discretization. Therefore, the analysis for
the proposed method in this article is much more difficult than that of Cao et al. (2014),
and thus needs significant extra efforts, which will be illustrated in detail in the analysis
section. Finite elements are used for the spatial discretization. Backward Euler and three-
step backward differentiation schemes are used for the temporal discretization. Based on
the solid foundation built for the domain decomposition method of the NS-Darcy system
with BJ interface condition, we further propose the Lagrange multipliers to deal with the
defective boundary conditions under the same framework of the domain decomposition
method. One interesting finding of this section is that the Lagrange multipliers are time

dependent functions instead of constants.

3.2. THE PARALLEL NON-ITERATIVE MULTI-PHYSICS DOMAIN DECOMPO-
SITION METHOD

In this section, we consider the time-dependent NS-Darcy with BJ interface con-
dition in Section 1.1.1. We will first present the coupled weak formulation and introduce
Robin boundary conditions of the Darcy and Navier-Stokes systems on the interface I" for
the domain decomposition. Then we will present the parallel non-iterative multi-physics
domain decomposition method with a backward Euler scheme in temporal discretization,
whose stability and convergence will be analyzed in Section 3.3.

3.2.1. Formulation for the NS-Darcy with BJ Interface Condition. First, by
recalling the function spaces and notations in Section 2.3.1, we can get the weak formulation

of the coupled NS-Darcy model with the BJ interface condition as follows:
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find (@5, ps) € H'(0,T; X5, X§) x L*(0,T; Qs) and ¢p € H'(0,T; Xp, X},) such that
Tis d¢p (—> - - (—> )+ b (—>
TR V)ag + g(wdﬂ)QD +Cs(us, s, V)+as(us, V) +bs(V,ps)+ gap(ép,¥)
CYV\/E
+(gpp, V - Ts) —g(Us - Ts, ) + (P.(d s +KVep), P, V)

ytrace([])

= s(p¥)ap + (F5.7)ag. YV € Xs, W € Xp, (3.1)

bs(is,q) =0,V g € Qs. (3.2)

(

This weak formulation is similar to that of (3.1) and (3.2), but takes the nonlinear advection
and Beavers-Joseph interface condition into account.

In order to solve the coupled NS-Darcy problem utilizing the domain decomposition
idea, we naturally consider Robin boundary conditions for the Darcy and Navier-Stokes
equations by following the ideas in (2.5) and (2.8). However, the Robin boundary conditions
need to be modified according to the Beavers-Joseph interface condition.

First we consider the following two Robin-type conditions for the Navier-Stokes

equations
avVd
- T(T(_Z’ZS,pS) 75) - —PT_M)S = é:ST onT, (33)
vtrace([])
N5 (T(ds.ps) - Hs)+Us-Hs=E&  onT, (3.4)

for two given functions £s,, & € L>(0,T; L*(T")). Then, the corresponding weak formulation

for the Navier-Stokes system is to find _l/t>5 e H l(O,T;XS, Xé) and pg € LZ(O,T; Qs) such

that V7V € X5, ¥V g € Os:

6%

$’_V))Qs + Cs(i 5,1 5,V) + as(Ws, V) + bs(V,ps) + (Ws - 75,V - Hs)

avVd

+—

ytrace([])

bs(ii's,q) = 0. (3.6)

(

(P s, P V) = (73,7)95 + (€5, V ) — (€5t PV, (3.5)
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On the other hand, we have the same Robin condition for the Darcy system:
KV¢p-Tp+gpp=ép  onT, (3.7)

for a given function &p € L*(0,T; L*(T")). Hence, the corresponding weak formulation for

the Darcy system is to find ¢p € HY(0,T; XD,XI’)) such that

O0¢p

(Wﬂ/’)ﬂo +ap(ép,¥) +{gdp,¥) = (fp.-¥)ap + ép.¥), V¥ € Xp.  (3.8)

The Navier-Stokes and Darcy systems with Robin boundary conditions can be com-
bined into one system. There exists a unique solution (ng,_u> s,ps) € H 1(O,T; Xp, Xl’)) X
H'(0,T; Xs, X{) X L*(0,T; Qs) such that

o ]
—5,7)95 + g(%,!ﬁ)m +Cs(Us, s, V) +as(is, V) +bs(V,ps) + gap(ép,¥)

ot
avVd
+(s - Ts, V- Hs)+glppwr) +

vtrace(]])

(

<P‘r_u>S, PT_V)> = g(fD"vb)QD

+(F sV )as + €7 - Ts) + 8Ep.r) — (Ese PV), Y € Q5. € Xs, (3.9)
bs(is,q) =0, ¥ q € Qs, (3.10)
¢p(0) = o, Us(0) = Uo. (3.11)

Similar to Proposition 3.1 in Cao et al. (2014), it is easy to show that the solutions
of the coupled NS-Darcy system are equivalent to solutions of the decoupled system if the

following compatibility conditions are satisfied:

avVd
ép=TUs - Ts+8pp, s =Us s —gdp, sy = ———P-(KV¢p).  (3.12)

ytrace(]])

These compatibility conditions provide the key tool to predict £p, £, and &g, on the interface

at each time step based on the results from the previous time steps.
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3.2.2. The Non-iterative Domain Decomposition Method. Recalling the function
spaces in Section 2.3.1, suppose we have finite element spaces Xp, C Xp, Xs» C Xs, and
QOsn C Qs. Here, we assume that Xs, € Xs and Qg, C Qg satisfy the following inf-sup

condition: there exists a constant y > 0 such that

. bs(V,q)
lnf _—

(3.13)
0£4€0sn 77 e x, ||7||1 llgllo

Define P, : Xp — Xpj and P, : X5 — Xgj, to be the regular orthogonal projections. We

have the following regular approximation capability for them:

1Pr¢ = ¢llo < Ch"|I¢ll,, YV ¢ € H' (Qp), (3.14)

[Py =7, < Ch"|[W]|.. VU € [H (Qs)]". (3.15)

Then the semi-discretization of the decoupled systems (3.8) and (3.5)-(3.6) is to find ¢, €

HY(0,T; Xpy), W € H(0,T; Xs3) and p;, € L%(0,T; Qsy) such that

2 ey + an(@in) + 80n) = Ui, + Eont) 3.16)
(TE0 3 0y + Co @) + T ) + s T+ bs( o)

+\/%<Pﬁih, P = (FsV0as + iV sy = Esen PV w17
bs(t 1 qn) = 0. (3.18)
¢n(0) = Pugo, Un(0) = Byido, (3.19)

where V ¥, € Xpy, V—V)h € Xsn, VY qn € Qsn, and

o @V
S vtrace(]])

gDh :7/1 '_n)S + g¢h’ gSh :_I/t)h '_I’l>5 - g¢h’ PT(KV¢h)
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Based on the compatibility conditions above and the backward Euler scheme in
temporal discretization, now we present the following full discretization for the parallel non-
iterative multi-physics domain decomposition method. At the n'” (n = 0,1,2,--- ,N — 1)

time iteration step,

1. compute

CYV\/E
ytrace(]])

é‘g :_M)Z '_”l)S + g(pz’ é—'g,l :—M)Z ._n>S — g¢;;, é—‘ng = PT(KV¢,;1) (320)

by using the initial conditions ¢2 = Pp¢o and _u)h = Ph_u>(), and the numerical

. n
solutions ¢} and Uy at g,

2. independently solve

¢n+l ¢n
(— Un)ap + ap(@f L wn) + (gdr ) = (A wnay + (Ep ),

Y Y € Xpn (321)
_u)n+1 _—)I’l . 1
(hT Vi)ag + CS(_Wr _>n+ Vi) + as(_)h Vi) + bS(_V>haPZ+1)

n d n
+(1l ), . T V- Ts)+ A<PT_M)/Z+1’PT_V>}Z>

ytrace([])

= (f"+1 Vidas + (€8 VT s) — (€8 PV ), YV 1 € Xy (3.22)
bs(@ qn) = 0, Y gn € Qs (3.23)

—n+
for qb’;l“, u, "and p”“.

3.3. CONVERGENCE ANALYSIS FOR THE DECOUPLED SYSTEM

In this section, we will analyze the convergence for the parallel, non-iterative, multi-
physics domain decomposition method proposed above. The major difficulty is to bound

the terms arising from the nonlinear advection and the BJ interface condition. In order to
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deal with the nonlinear terms, we recall the following inequlities Cesmelioglu ez al. (2013);

Gao et al. (2018): there exists constants C; and C; depending only on Qg, such that

vl < Gil[Vvllo,  [Ivllzs < Calvl, (3.24)

where v € Xg. Based on the work in Cesmelioglu et al. (2013); Gao et al. (2018), we have

the following lemma.

Lemma 5 Assume that both W s and i , satisfy the following smaliness condition:

Vil < —— Vit e[0T]. 3.25
IVl sC3C? [0, 7] (3.25)
Then, we have the estimate
v
(@ - Vv,0)l < SIVVlollVollo ¥ v,w € Xs. (3.26)

Proof 1 By using Holder's inequality and (3.24), we have

(@ - Vv,o)l <[ lvlllwls < Glalvliwl < CECIVE oI T[] Yeollo

< zIIVvliolIVello.

3.3.1. Convergence Analysis for the Semi-discrete Solution. We will follow the
well-known framework of the energy method to analyze the convergence of the semi-
discrete solution Douglas and Dupont (1970); Thomée (2006); Wheeler (1973). The major
difficulties in the analysis are caused by the nonlinear advection and the Beavers-Joseph
interface condition. Let C be a generic constant independent of 4 and At, whose value

might be different from line to line.
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Assume Xpj, and X, consist of piece-wise polynomial of degree k and Qg consists

of piece-wise polynomial of degree k — 1. For the analysis in the NS-Darcy system, we

introduce the projection operator P = (P1,P2,P3) : Xp X Xg X Qs — Xpj X Xsi X Qsp such

that for any ¢ € Xp, W € Xs, p € Qs and a rescaling constant 7, the projection satisfies

nap(P1¢

—n((Pru

— ¢.un) + as(Pyd =W,V ) + (g(P1g — ).V - T s)

=70) - Ts.n) + BP((Pridl =) + KV(P1¢p — ¢)), PV )
+bs(V 1, P3p —p) =0, VY ¢ € Xpp, Vi € Xsi- (3.27)
bs(Pyil =, qn) = 0,V qu € Qs (3.28)

avVd
Vtrace(]])

we have the following

where 8 =

Lemma 6 For any i

Similar to Proposition 4.1 and Proposition 4.3 in Cao et al. (2010a),

properties for the projection operator P.

€ Xs, p € Os, we have

IP1¢ = Sl aormy + P2 —_“)”Lq(QT;Hl) +P3p = pllLaor:12)
< Chr_l(”(ﬁ”LCI(O,T;H”) + ”_M)HL‘/(O,T;HV) + ”p”Lq(O,T;H"l))’ q = 1, (329)
IP1¢p — ¢||Lq(0,T;L2) + ||P2—M> __u>||Lq(()’T;L2) + h||P3p - p”Lq(O,T;LZ)
< CH (18l aozerry + 1@ | oo reaary + 1PN Lo @ = 1, (3.30)
p 0"¢ "¢ . w9 a"p  9"p
Yo o L2(0T;H") Yo o L2(0.T:H") Yo o L2(0T;L2)
< Chr—l (||¢||Hm(O,T;H’) + ”_I/Z”H’"(O,T;Hr) + ||p||Hm(O’T;Hr71)) ,m>0, (3.31)
om om am—> am—> oM om
St P~ +h Bt~
orm Ot | a2 ot o™ |l 2or.2) orm O™ || 2712
< CH (||¢||Hm(o,T;H,) 12 o orry + ||p||Hm(0,T;Hr-1)), m> 0. (3.32)

Then, the error estima

tes for the semi-discrete approximations are given as follows:



58

Theorem 3 Assume that ¢, € H'(0,T; H*'(Qp)) and U s € H'(0,T;[H"*'(Qs)]¢). Then

llgn = ¢pllo +|[Wn—usl|, < CH" (||¢D||H1(0,T;Hr+l(QD)) + ||75||H1(O,T;[Hm(gs)]d)),

where O < r < k + 1. Here k is the degree of piece-wise polynomial of Xpj, and Xs,.

Proof 2 Taking w = ¥, € Xpy, in (3.8), plugging &p into (3.8), and subtracting (3.16) from
(3.8), we have

0¢p — 0
(%’wh)ﬂp +ap(¢p — Pn.¥n) + (§(Pp — Pn).¥n)

= ((Ws—un)  Ts+8dp—dn)¥n), V¥ ¥n € Xph. (3.33)

Taking V =V, € Xsp and g = qi, € Qsy, in (3.5) and (3.6), plugging &s and Es,
into (3.5), and subtracting (3.17)-(3.18) from (3.5)-(3.6), we have

(9(75—_’/!)/1)—) - -5 = - - =
(T,Vh)gs+cs(75—Mh,us,vh)+cs(7h,us—uh,vh)

+as(ds =W p Vi) +bs(Vips —pn) —bs(hs — U pqn) + ((Us—Up) - g Vi Ts)
+ﬁ<P‘r (_M)S __u)h) aPT_V>/’l>

=((Ws—"un) - Hs—8dp—dn) Vi Hsy— (BPKV($p — ¢1n)). Pr V). (3.34)
Define
0 =Pi¢p — dn, p=¢p—Pi¢p. (3.35)
Then we can split the error ¢p — ¢ = 6 + p. Define
G\ =P W5~ B1=THs—Pills, 02=Pips—pi p2=ps—Psps.(3.36)

ﬁ
Then_u)g —_u)h =06, +_p)1 and ps — pp = 62 + pa.
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Plugging (3.35) and (3.36) into (3.33) and (3.34), we have

H
ot > Vs TG,

— -
+Cs(0 1+ P, Us, Vi) +Cs(Up 61+ P 1, V1) +n(g(0+ p),wn)

H
Wnap +as(61+ P17V ) +nap(0 + p.un)

— —
+{(01+P1) - Ts, Vi Ts)+ B(Pr (91 +_,0)1) PV ) + bs(V i, 02 + p2) (3.37)
H
~bs(61+P1,qn)
A 2 S SN - -
=n{(01+p1) - nsg+gO0+p)Lyn)+{(01+p1) - ns—g@+p), V- ns)

~(BP-(KV (8 + p)), PV 1)

where 1 is the rescaling parameter. By using (3.27) and (3.28), we obtain

a(6 - I —
(% Vias +1( ( (; P)’wh)QD +as(61,V ) +nap(6,y)

+CS(_9)1 + LS Vi) + Csmh,_Q)l +PL V) + (g0 V- Ts)
—> - —
(61 - T s W) + BP: 6 1, PV 1) + bs(V 1,,02) — bs( 6 1,q1) (3.38)

= —(BP(KV, PV ).

. — - .
Choosing Y, =6, vV, = 61 and g, = 0, in (3.38), we can get
(991 — - - - L, =
(— 6 1)ag +77( Q)QD +as(61,01)+nap(8,0)+Cs(0 1+ p1,Us, 01)

- — — —
+CS(—)h, 61+7p1, 91)+ (80,61 -Ts)—n(b1 - s,0)+B(P(61+KVO),P 1)

Ip1 =
(at

ap
0 1)as — U(E,H)QD'

_)
Since the estimates of p and p | are given by Lemma 6, 6 and 6 | are the main objects of

the analysis.
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Hence, considering the given estimates of p and p |, we have

nd IOl 1d)r H

2 dt
+B(P(6 ) + KV@),PT 61)

- o — -
+nap(6,0) +as(61,61)—n(61 - 7s,0)+(gb, 61 Ts)

Ip1 —

— — — — 0
= ~Cs(61+p1us, 61)—Cs(ip 61+ p1,61)— 77(—/),9)91, (—— o

, 01)as (3.39)
|5 ]
1],

By using (3.25) and (3.26), the Holder inequality, and the Young’s inequality, we can obtain

IA

|CS(91+ PI,US,91)|+|CS(_>h,01+ 91,91)|+77

the following conclusions for the nonlinear terms:

— —
ICs(P1, ds, 61)+ Cs(Un p1, 61)

IA

4 — 4 —
§||V731 lolIV 6 1llo + §||V70>1 llol1V 6 1llo

v N
= Z||V?1||0||V91||0

V. - 4
IV ullg + SIVA G, (3.40)

14 —> v —>
§||V9 113 + §||V9 1l
v —>
= ZIVails. (3.41)

IA

— - - -
|Cs(61,71s, 61)+ Cs(tp, 61, 61)]

IA

By plugging (3.40)-(3.41) into (3.39) and using the Young’s inequality and Poincaré in-

equality, we have

I |

+2ﬂ<PT< g+ Kve>, J

+2nap(6,0) + 2615(—9>1,—6’>1) - 277<—9)1 s, 0) + 2(89,—9)1 T s)

v, _— — v (9p1
< SXIVFUG +nlolE + 811G+ ZITBIG +nll 21 + 1223
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By using (4.2) in Cao et al. (2010c), we can obtain the following conclusion to treat the BJ

interface condition for small enough v and large enough n:

2nap(6,0) + ZaS(—Q)l’—Q)l) ~ 277<—9>1 s, 0) + 2(89,_51 A s)

— -
+2ﬁ<P‘r(91 + KVG)’PT 0 1>

Y

v = |1 —
|| - sl - s,

where C3 > 0 is a constant. Hence,

15 \V |
< Clol3+ \f H

Integrating (3.42) from O to t and applying Gronwall’s inequaltiy, we get

2

H ol v palp. (3.42)

ot

0

6wl + 7.0

< c[nioi+ 7.0 + (

Then by Lemma 6, we finish the proof.

!

Wlné) il
0

3.3.2. Convergence Analysis of the Fully Discrete Approximate Solution. The
following theorem states that the first parallel non-iterative domain decomposition method
is unconditionally stable and has optimal rates of convergence. The major difficulties in
the analysis arise from nonlinear terms and BJ interface condition which need a series of
technical treatments and the final special norm used in the discrete Gronwall’s inequality

for the analysis of full discretization.
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Theorem 4 If ¢pp € H'(0,T; H*(Qp)) N L=(0,T; H*(Qp)) N H*(0,T; L*(Qp)),
W5 € HY(0,T; HX(Qs)) N L™(0,T; H*(Qs)) N H*(0,T; LX(Qs)), ép € H'(0,T; L)), and

&g € HY(O,T; LA(T)), then

67 = #nll, + [ ~ 7 ste),

t Il A2 "
SCeCTAt[/ a‘é’) dt+/
0 or= |y 0 ot lor
ty 2=
+/ 0“us 0és
0

tn In
3 dt + / — dt + /
o= o 0 or 0

ot
+CeCTh2[ / "2e| 4 . / 8|
0 ot ) 0 ot )

+ max oGl + max ([s(s), + lps(s)l) | (3.43)

a@ dt

v
ot

d|

1

Proof 3 We follow the standard energy method framework Douglas and Dupont (1970);
Thomée (2006); Wheeler (1973) to analyze the error of fully discrete approximations. For

the Darcy part, taking ¥ =y, € Xpy, in (3.8) and subtracting (3.8) from (3.21), we have

O =0 dgpltasr)
At ot

+g(@1 = Pp(tas) ) = (€p — Ep(tar1), W) Yn € Xpp.  (3.44)

( Wnap + ap(@) = pltas1), i)

We can define 8" and p" as follows:

0" = ¢Z - Pl‘pD(l‘n) and pn = P1¢D(tn) - ¢D(tn)~ (345)

so we can get ¢ — ¢p(tn) = 0" + p". Here, p" is bounded because of Lemma 2 and we can

get the similar estimates like (6.29) in Cao et al. (2014).

lp"llo < CH* ligp (@I, - (3.46)
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We also need to define some notations for Navier-Stokes equation as follows:

=Wy —Pods(ta), B =Py s(ty) — W s(t), (3.47)

05 = pl — Paps(tn), P5 = P3ps(ty) — ps(tn), (3.48)

then 72 — U s(ty) = _0>’11 +?’1’ and py — ps(ty) = 05 + p3. From (6.35)-(6.36) in Cao et al.

(2014), we can get the estimates about /_o)’ll and pf.

B2, + 2182, < CR([ s, + Ipsall,) (3.49)

o< CR([Es(tn)||, + lIps)lly). (3.50)

e

Also, we have the following relations for the approximations of the coupling func-

tions. Subtracting &p in (3.12) from (3.20), we have
n —n , —n) = n n
§D—§D(tn):(91+pl)-n5+g(9 oy (3.51)
Define

, Wil = Ep(tar1) — €p(tn) (3.52)

n+l _ ¢D(tn+1) - ¢D(tn)) ‘9¢D(tn+1)
Wl = Pl —
At ot

Then, (3.44) becomes, ¥ Y, € Xpp,
0n+l —g"

( At
= W) + (0B T + (O + o)) — Wy, (3.53)

W), +ap@ + ") + (g0 + o)y
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For the Navier-Stokes part, choosing_v> = _v>h € Xgpin (3.5) and q = qp € Qsy in

(3.6), then subtracting (3.5) and (3.6) from (3.22) and (3.23) separately, we obtain

T = IR s(tee) =
Lo — Uy Us(thel) > n+l — —n+l - -
( A[ - atn > V h)QS + CS u h —Uu S(t}’H—l)’ u h - u S(ln+l)’ v h)

+1
+as(uy = U s(tas1), Vi) + bs(V i pi' = ps(tus1))
+1 +1
(@ =T slten) - HVn ) + P (W5 =T slte)) PV W)

= (&5 — Estun1)s Vi - T s) — (€0 — Eseltus1)s PoV i), (3.54)

1
bs(ily = Ws(tu1)sqn) = 0. (3.55)

Subtracting &s in (3.12) from (3.20), we have
H
&~ &5t = (01 +731) s =g (@ + ). (3.56)

For the special treatment for BJ interface condition, which is one of the major difficulties,

we have

Egen — Eseltnen) (3.57)
BP: (KV¢}) = BP: (KV¢p(tns1))
BPr (KV (¢}, = ¢p(tn+1)))
BPr (KV (¢, = P1¢p(t) + P1gp(tur1) = ¢p(tas1) = P1ép(tas1) + P1p(tn)))
(

BP. (KV(0" + p"' — (Py¢p(ts1) — P1<I5D(tn))) :

_)
We can define W' and w*' as follows:

3 4
— — —
N Us(tnr1) — Us(ts)\ Ous(turr)
= P — .
"3 2 At or (3.58)
Wit = Eg(tyar) — Es(tn)- (3.59)
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Then, (3.54) and (3.55) become

- -,
9n+1 9 n
(L Pwag + Cs (07 + B 01 + Gl 617 + 10T

— —
+1 |, —=n+l = +1 +1 +1, =2+l 25 5 =
+as(07 + PV ) + bs (Vi 05 + o) )+<(9? +p7 )'”S>Vh'”S>

+ﬁ<P‘r (_0>}1’L+1 _>}’L+1) P vh)

=~V = T Ty + (07 BY) s - (0" + o) V- )
~(BPr (KV(0" + 0™ = (P19 (tast) ~ Prén (1)), PV, (3.60)
bs(67 1 + B qn) = 0. (3.61)

Combining (3.53) and (3.60)-(3.61), we get

- -

gn+l _gn 9 n+l 9 .
7](— l//h)QD +(—t —V)h)QS +CS(9n+1 —p>n+1 —>n+ 0n+1)

+CS(_>S(tn+l) 0 n+l +p n+1 6n+1)+77aD(9n+1 +pn+1 ';l’h)"‘aS(g’H—l +$>r11+1 _>h)
+bs(Vi, 05" + p5*!) + 55(9"” + 21 an) + (g0 + p").yn)
(@ B A V0 )+ BePe (077 BI) PV (3.62)
= - yn) = WLV ) = Wi Y T s) — W un)

n Ly — n n —n  —n — n ny 7 —
(07 + p7)-rs+g" +p ),tﬁh>+<(91 + p1)~ nsg—gO" +p"), Vp-rs)

—(BPRV(" + p"* ), PV i) + (BPKV(P16p(tns1) — P1édp (tn)), PV ).

Before using (3.27)-(3.28), we need to add some terms on both sides in (3.62) as follows:

- -,

0n+l o" 9 n+l 9 . . —
,](— lﬂh)QD +(— _V>h)(25 +CS(9 +1 +’—0>1+1’—>n+ 6 +l)

+Cs(@stne), 07 + B 0T +nap@* + o™ gn) + as (07 + BTV
+bs(V i 05 + pih) + bs(—é’)Trl + 87 qn) + (g™ VT s) — (BT W s )
(P s + (0" + p ) + ((—9>?+1 _Pm“) s —gp" Vi Ts)

HB(P (G 4B PV R) = =m0 ) = FAT LT = LV ) = g
(07 + B s + 80" + o) + (07 +7>";) s =g (O" + "), Vn - Hs)

—(BPKV(O" + p"*), PV 1) + (BPKV(P1¢p(tns1) — Pidp(tn)), PV ).
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-

By using (3.27)-(3.28) and setting g, = 01, V, = 6 ’1’” and qp, = Qg”, we have

g+l _ gn _9) +1 ——9)” R . A
- 1 1 1, =2n+l 0 1
sl e (8 B A

+Cs(@s(tnen), 077 + B + nap(@*,0") + (67,767

n( 6" gy, + (

_H7<?n+l '_n)S +g(9”+1 +pn+1)’9n+1> +ﬁ<PT_9>111+1’PT_9)r11+1> (363)
+<(9n+1 +$>111+1 —)S _ gpn+l _9>n+1 75}

(W1+1 9n+1) <—)gz+l 9n+1) < n+1 9n+1_—n>S> 77<W2+1 9n+1>
(G + B T + 80"+ p0 )+ ((T5+7) Hs - g 0"+ ).} )

—(,BPTKVG",PT—H)?”) + (BP KV (P1¢p(tns1) — P1ép(ty)), Pr—9)111+1>-

In order to make use of (4.2) in Cao et al. (2010c) to deal with the difficulties from the BJ
interface condition, we need to add some terms on both sides of the above inequality to

re-write it as follows:

n

H
0 - — -
1’ 0;11+1)QS +naD(9n+l’9n+l) +a5(9111+1, Q}iHl)

, 9n+1 )QD +

gn+l _ gn ’1’+1 —_9>

At At
+<g9n+1’_6,>n+l '_I”L)s) _ n<_6,>n+l .7S,0n+l> +ﬂ<PT(_9>}il+l + KVG"”),PT_H)’I’”)

n(

n<0n+1 '_n>S +g0n+l 0n+1> n(?n+1 ‘75 +gpn+l,0n+1>

IA

_<9;11+1 s — g™ 6n+1 ) - <—p>;11+1 e _gpn+1’_0>}11+1 )
HCs(@ + By O+ 1Cs (st 01 + B0
(W1+l 9n+1) n( g+l 0n+l> (_)gH—l 0n+1) < n+l 0n+1 _n>S>

(07 - Ts+ 80" 0"") + (BT T+ gp, 0"
+(_9>'1’ Hs - g9”,_9>’f+1 Hey+ (P Hs - gP",—Q)'fH )
+B(PKVO™ P 6"y — (BPKVE" P ")

+{(BPKV(P1dp(tns1) — P1obp(tn)), Pr 6741,



By using the Schwarz inequalities and Young inequalities, we can get

n(—H)]’” R+ gom ety < g

L =00 12 82 12
OG- + 2600 G+ 10" G

n+l

(e s +gp"th ey <

L2 12 82 12
6_2”9’1“— ||0,1"+252||9n+ ||o,r+ E_zllpn+ ”0,1" >
2
T+l — 1 Zn+l — L =2 T n+l)2 8 12
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By using the above inequalities, we have
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2 €

—(BPKEVO", P, 7y + (BPLKV(P1 6 (ins1) - Piép (1)), Pr 6771).

— -
7+1)QS +naD(9n+l,9n+l) + aS(Qqu, 91&1)

67
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Now we need to handle the difficulties arising from the nonlinear terms and interface
terms. For the nonlinear terms in the above inequality, we follow the idea of (3.40)-(3.41)

in semi-discretization analysis to obtain the inequalities as follows:

— —
ICsCo a0, 61 + Cs(Us(tner), 1L 67

< SIVAT oIV o + SIVAT IV E T o

= ZIVET Ve o < SIVETHIE + SIVATIE, (3.65)
Cs(F 7T + Cs (i s(tn). 61701

< ZIVETIG+SIVOTIE = SV eI, (3.66)

For interface terms, by trace theory and Young’s inequality, we can get

1
~
C
2

2 2 2
o o = €lle™ o 9o, < 67 + &4 ||V9"“||o]’

[, = [ sl
0,I' &4
C

1
10" l5r < Clle"lo IV6"lo < 5 [;4 ||e"||é+84||ve"||§],
2 1
7], = <[[7: i Ei
o,r &4

Similar to the proof of (4.2) in Cao et al. (2010c), we have
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<
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B(PRVO™ PG| + |B(P(RVE"), P 6 77)]
_)
+{(BP KV (P1¢p(tus1) — P1dp(ta)), P 67|
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< THV@MI”(% t IVETHs + T||VQ"||§ + T,/ IVép..|IZ dt
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where Cy is proportional to Nk and (4.13) in Shan and Zheng (2013a) is used in the last

step.
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Based on the above preparation for the treatment of BJ interface condition, we can utilize

(4.2) in Cao et al. (2010c) to advance the proof as follows. For small enough v, we can

choose e, €3, and €4 to obtain

2ap(0™,0") + 2a5(67, ) — (G T, 07y + 2(g07 G R )

F2R(P (6" + KV, P o
2C(1 + n)eg + 2Crves
€
2C(1 + n)es + 3Cyves
€

\%

Cn(Se; +4€6)ey +

] v

+

3
Zv + C(562 + 463)64 +

H
] IV 67115

12 n+l)2
—Gl6" I5 = G367 g

Then, substituting (3.69) into (3.68), we have
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, then we can consider the special normn ||6" ||% +

2
o (n = 1,...,N) for the distcrete Gronwall’s inequality
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Summing above inequality fromn = 0 to N — 1, we have
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]:0 J
— 12 L2 LR 2 2 +1712
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Then by Lemma 6, we complete the proof of (3.43).

3.4. THE LAGRANGE MULTIPLIER METHOD UNDER THE FRAMEWORK OF
DOMAIN DECOMPOSITION FORNS-DARCY SYSTEM WITH THE DEFEC-
TIVE BOUNDARY

With the foundation built up in the previous sections, in this section we propose
the Lagrange multiplier method under the framework of the parallel non-iterative multi-
physics domain decomposition for the NS-Darcy system with BJ interface condition and the
defective boundary condition. Based on the weak formulation with Lagrange multipliers,
we utilize the three-step backward differentiation scheme for the temporal discretization

and finite elements for the spatial discretization.
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First, we present the following coupled weak formulation with Lagrange multipliers
for the NS-Darcy system with the defective boundary, which is defined in Section 1.1.2:
find (s, ps) € H'(0,T; X5, X{) X L*(0,T; Qs), ¢p € H'(0,T; Xp, X},) and A = {4,(1)}", €
L?(0,T)™*! such that

(25 )+ 5222 w>QD+ZA<z>/ s ds + Cs(T 5. T5.7) + a5, )

+bs(V,ps) + gap(¢p.¥) + (gpp. V - Hs) — g(Us - Hs.¥)

vV
P KV P;
. m< (s + KV gp), Pr7)

= g(fD’ '*/’)QD + (7Sa_v))Qs7 V—V) € XS7 l// € XD’ (371)

D i) /S VR ds+bs(ils.q) = ) wi0i ¥ q € Qs,pu = {0}y € LX(0,T)".
i=0 i i=0

For problem (3.71) to be solvable, the following compatibility conditions must be satis-

fied Heywood et al. (1996):

/TZO T sds = 0i(0), i=0,1,---,n. (3.72)

Si

Second, based on the Robin boundary conditions (3.3)-(3.4) and (3.7), we propose
the following decoupled weak formulation with Lagrange multipliers for the NS-Darcy
system with BJ interface condition and the defective boundary: for V ¢ € Xp, V7V €

Xs,Y g € Qs,

0
( ¢D Wap +ap(@p.y) + (gdp.¥) = (fp.¥)ap + (DY), (3.73)
8 S —V>)Qs + Z A (f)/ Hsds+Cs(Us, s, V) +as(is, V) +bs(V,ps)
- - = a’V‘/_
TRV - P s, P,
+(is - Ts,V T+ '—trace(H)< Us, P V)
= (7)5,7)95 + (s, V ) — (€5t PV, (3.74)

De) [ 7T ds+bs(sa) = D ui w= O}y € O™ (375)
i=0 i

i=0
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Then, the semi-discretization is to find ¢, € H'(0,T; Xps), Uy € HY0,T; Xsn), pn €
L*(0,T; Qsn), and A = {;(1)}",, € L*(0,T)"*! such that

0
(2 map +an(@nn) + (@Bivn) = Uotnday + En.in), (3.76)
o
( “h TV h)as +Z/l (t)/ Vi s ds+ Cs(dp, Wn Vi) +as(in Vi) +bs(V i pn)
- = = O/V‘/_
. s . P 7P
+<7h ns, Vp- ng)+ '—trace(n)< uh Vh>
= (75,_\/);1)95 + (€, Vi T s) = (st PrV ), (3.77)

D uile) fs Vi s ds+ bs(@nqn) = ), iQis 1= {pi}y € LXO,1)™". (3.78)
i=0 i i=0

Furthermore, compared with the backward Euler scheme for the temporal discretiza-
tion in Section 3.2.2, we utilize three-step backward differentiation to improve the accuracy
from the first order to the third order. Then, the full discretization scheme of the Lagrange

multiplier method is defined as follows: at the n + 1" step, set

ZJZ] =385, = 3¢ "‘f fg;zr] = 3&g, — 3¢, "‘fSh , fg:fi =385, — 3557;1 +§ST}’1’

and then for Y ¢, € Xpp, Vi € Xsn.gn € Osp and V ,u;”l € R"™!, independently solve

1167 = 18 n+9¢n—1 _2¢n
( % P * 20 L Uy +ap(¢pun) + (g8 un)

(A
_ n+l1 n+l1 3.79
=D ¥n)ap + Epp s¥n)s (3.79)
117;‘“—18uh+9—u’2 Lo m
6Af ’Vh)QS+Z/l?+1/—V>h'—n>SdS

+Cs(_>n+l _mH V) + as(_>h Vi) +bs(Vi,pith + WZH s, Vi) (3.80)

QVV_ 1
m@ iy PV = (f"+1 Vias + EGL VR T s) — (€L PV ),
race

n n+l N n
Zu O[T dsbs@ = ) o (3.81)
i=0

i

, —n+
for /1:1+1 (l — m) ¢n+1, T plr11+1 and /Jn+1.



74

3.5. NUMERICAL EXAMPLES

In this section, we will present two examples to illustrate the features of the two
algorithms proposed in Section 3.2 and Section 3.4.

Example 1: Consider the NS-Darcy model in Section 1.1.1 on the domain Q =
[0,1] x [-0.25,0.75], where Qp = [0,1] x [0,0.75] and Qg = [0, 1] x [-0.25,0]. Choose
a=1,v=1,¢g=1,z=0,and K = kI where [ is the identity matrix and k = 1. The
boundary condition functions and the source terms are chosen such that the exact solutions

are

ép = [2—asin(zx)|[-y + cos(n(1 —y))]|cos(2nt), (3.82)
Us = [x3yr+e?, —%xy3 +2 — msin(zx)] cos(2nt), (3.83)
ps = —[2-nsin(nx)]cosRnry)cos(2nt), (3.84)

which satisfy the interface conditions (1.9)-(1.13), including the Beavers-Joseph interface
condition. The Taylor-Hood elements are used for the Navier-Stokes equations, and the
quadratic finite elements are used for the second order formulations of the Darcy equation.
Newton iteration is used to deal with the nonlinear advection. Next, we will provide the
numerical results at 7 = 1 for the algorithm in Section 3.2. Table 3.1 provides the numerical

solution errors with Az = 83, Using linear regression, these errors satisfy

5 =], ~ 1.984707%°, [i2), 72|, ~ 10.21919758

1 = pllo = 18.967H>12%, ligy = ¢llg ~ 18.835h>%7, |y — ¢|; ~ 11.213077.

Table 3.2 provides the numerical solution errors with A¢ = h. From this table, we can see
that the non-iterative domain decomposition algorithm is still stable, but the accuracy order
is about first order. These results numerically verify the expected optimal accuracy orders

arising from backward Euler scheme, Taylor-Hood elements and quadratic elements.
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Table 3.1. Errors of the first non-iterative DDM with backward Euler for Ar = 843.

h

lluen — ullo

lup — uly

lpr — pllo

lon — dllo

|dn — &l

1/4

3.0184 x 1072

6.2839 x 107!

2.6888 x 107!

2.6574 x 1071

6.2396 x 107!

1/8

3.7366 x 1073

1.6705 x 107!

2.8863 x 1072

3.7408 x 1072

1.0425 x 107!

1/16

4.6077 x 1074

4.2861 x 1072

3.2376 x 1073

4.7426 x 1073

1.9657 x 1072

1/32

5.6977 x 107>

1.0812 x 1072

3.7882 x 10~

5.9374 x 10~

4.4097 x 1073

Table 3.2. Errors of the first non-iterative DDM with backward Euler for At = h.

llun — ullo

|Mh—u|1

lpn —P||0

lon — dllo

|on — &l

1/8

2.8012 x 1072

4.0061 x 1071

5.0047 x 107!

2.5251 x 1072

1.4670 x 1071

1/16

1.0208 x 1072

1.2970 x 1071

1.5062 x 107!

1.5081 x 1072

7.5080 x 1072

1/32

4.1315%x 1073

4.6703 x 1072

5.6933 x 1072

8.4446 x 1073

3.9880 x 1072

1/64

1.8419 x 1073

1.9169 x 1072

2.5420 x 1072

4.4881 x 1073

2.0805 x 1072

In order to improve the accuracy order of the temporal discretization, we use the

three-step backward differentiation scheme to replace the backward Euler scheme in the

algorithm of Section 3.2. Then, we list the corresponding numerical solution errors for

At = h in Table 3.3. Using linear regression, the errors in Table 3.3 satisfy

5 =], ~ 118.0453 72, [, =77, ~ 1233.321>63!

pn = pllo = 158.9413 7014 |1y, — ¢llg = 1.7227h*7*4, |¢), — ¢, =~ 5.4419R% 0414,

These results are consistent with the expected optimal accuracy orders arising from the

three-step backward differentiation scheme, Taylor-Hood elements, and quadratic elements.

In particular, we see the optimal accuracy order of O(h* + At®) = O(h?) with respect to L?

— . . .
norms for # and ¢ since we use quadratic finite elements for them.
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Table 3.3. Errors of the non-iterative DDM with three-step BDF for Ar = A.

| w7, | [dn-7] s = pllo lln — ¢llo 60 — ¢l

1/8 | 4.8057 x 1072 | 7.4713 x 1071 | 8.0323 x 10~ | 6.2662 x 1073 | 7.9365 x 1072
1/16 [ 2.9286 x 1073 | 4.5974 x 1072 | 5.1411 x 1072 | 7.2423 x 10~* | 1.8559 x 1072
1/32]2.2501 x 107* | 3.5787 x 1073 | 3.6113 x 1073 | 1.3492 x 107% | 4.5594 x 1073
1/64 | 1.7783 x 107 | 3.9761 x 10™* | 3.7601 x 10™* | 1.9332x 107> | 1.1335x 107>

Example 2: Consider the time-dependent NS-Darcy model with defective bound-

ary conditions and BJ interface condition on the following domain. Let Q = [0,1] x [0, 1].

We choose Qg to be the polygon ABCDEFGHIJ where A = (0,1),B = (0,3/4),C

(1/2,1/4),D = (1/2,0),E = (3/4,0),F = (3/4,1/4,G = (1,1/4),H

(1,1/2),1

(3/4,1/2)and J = (1/4,1). Let Qp = Q/Qg, So = ABU JA, S| = DE, and S, = GH.

SetT =1,a=1,v=1,g =1, z =0, and K = KI where I denotes the identity
matrix and K = 1. The boundary condition data and source terms are chosen to be 0 except
Q;on S; (i =0,1,2). We subdivide Q into a rectangle of height and width 4 = 1/M,
where M denotes a positive integer, and then subdivide each rectangle into two triangles
by drawing a diagonal. For this numerical experiment, we choose M = 32 and At = h.
The Taylor-Hood elements are used for the Navier-Stokes equations and the quadratic finite
elements are used for the second order formulations of the Darcy equation. We will provide
the numerical results at 7 = 1 for the algorithm in Section 3.4. In the first test, we set
01 = 02 = —1 and Q¢ = 2 so that the total inflow rate is equal to the total outflow rate. In
the second test, we keep the same Q; and Q», but set Qp = 1 so that the total inflow rate
is larger than the total outflow rate. In the third test, we keep the same Q; and Q», but set
Qo = 3 so that the total inflow rate is smaller than the total outflow rate.

Figure 3.1-3.3 illustrate the numerical solutions at the end time of 7 = 1 for these
three tests. These physically valid velocity fields verify the effectiveness of the proposed

Lagrange multiplier method under the framework of the parallel non-iterative multi-physics



Figure 3.1. Velocity streamlines for Qg = 2, Q; = —1,and Q> = —1.
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Figure 3.2. Velocity streamlines for Qg = 1, Q1 = —1,and Q> = —1.

Figure 3.3. Velocity streamlines for Qg = 3, Q; = —1,and Q> = —1.
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domain decomposition. Specifically, when compared with Figure 3.1, we observe more
flow from the conduit to the porous media in Figure 3.2 and more flow from the porous
media to the conduit in Figure 3.3, especially in the area around the outflow boundary Sy.
These phenomena are expected due to the chosen unbalanced inflow and outflow rates for

the conduit.
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4. EFFICIENT ENSEMBLE ALGORITHMS FOR THE STOCHASTIC
STOKES-DARCY INTERFACE MODEL

In this section, we first propose and analyze an efficient ensemble algorithm for the
fast computation of multiple realizations of the stochastic Stokes-Darcy model with random
hydraulic conductivity (including the one in the interface conditions), source terms, and
initial conditions. This algorithm results in a common coefficient matrix for all realizations
at each time step, making solving the linear systems much less expensive while maintain-
ing comparable accuracy to traditional methods that compute each realization separately.
Moreover, it decouples the Stokes-Darcy system into two smaller sub-physics problems,
which reduces the size of the linear systems and allows parallel computation of the two
sub-physics problems. We prove the long time stability and error estimate for this ensemble
method under a time step condition and two parameter conditions. Numerical examples are
presented to support the theoretical results and illustrate the application of the algorithm.

Second, we utilize the idea of artificial compressibility and partitioned time stepping
methods to construct the decoupled ensemble algorithm for efficiently computing multiple
realizations of the stochastic Stokes-Darcy interface model with a random hydraulic con-
ductivity tensor, source terms, and initial conditions. The solutions are found by solving
three smaller decoupled subproblems with two common time-independent coefficient ma-
trices for all realizations, which significantly improves the efficiency for both assembling
and solving the matrix systems. The fully coupled Stokes-Darcy system can first be decou-
pled into two smaller sub-physics problems by the idea of partitioned time stepping, which
reduces the size of the linear systems and allows parallel computing for each sub-physics
problem. The artificial compressibility further decouples the velocity and pressure, which

further reduces storage requirements and improves computational efficiency. We prove the
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long time stability and the convergence for this new ensemble method. Three numerical
examples are presented to support the theoretical results and illustrate the features of the

algorithm, including the convergence, stability, efficiency, and applicability.

4.1. BACKGROUND FOR ENSEMBLE METHOD

In this section, we review the literature of Stokes-Darcy interface model and some
recent works of ensemble method. Based on the foundamental work in Jiang and Layton
(2014), we develop the efficient ensemble method for the numerical approximation of
Stokes-Darcy interface model.

4.1.1. Model Problem. We consider a linear Stokes-Darcy model for the coupling
of the surface and porous media flows, where the Stokes equations describe the incompress-
ible surface fluid flow and the Darcy model describes the groundwater flow in porous media.
For derivation and more detailed discussions of the Stokes-Darcy model, see Boubendir and
Tlupova (2013); Cao et al. (2011, 2014); Chidyagwai and Riviere (2009); Discacciati et al.
(2002a, 2007); Ervin et al. (2014); Galvis and Sarkis (2007); Gatica et al. (2011); Girault
and Riviere (2009); Girault et al. (2014); Kanschat and Riviére (2010); Layton et al. (2002);
Mu and Xu (2007); Tlupova and Cortez (2009); Wang and Xu (2014). By Figure 1.1, let
Qg denote the surface fluid flow region and Qp denote the porous media flow region, where
Qs,Qp C R4(d = 2,3) are both open, bounded domains. These two domains lie across an
interface, I', from each other, and Qs N Qp = 0,Qs N Qp =T.

In order to simplify the following formulation and analysis, we denote fluid velocity

U s(x,1), fluid pressure pg(x, ), and hydraulic head ¢p(x,7) by i, p and ¢ that satisfy

U, —vAUd +Vp = fr(x,1),V-d =0, in Qg,
Sot: =V - (K(x)Ve) = fp(x,1), in Qp, 4.1)
¢(x,0) = ¢o(x), in Qp and @ (x,0) = Wo(x), in Qs,

P(x,1) =0, in dQp\I' and % (x,7) = 0, in IQs\T.
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Let 77, denote the outward unit normal vector on I associated with Qg/p, where iy = —7,,.
The coupling conditions across I" are conservation of mass, balance of forces, and the BJSJ

condition on the tangential velocity:

W -np-KVp-n,=0andp—vny Vi -7y =gponT,

—~ -~ . ~
—vVu -np=—5_ -7 onT, for any tangential vector 7; on I".

T AT

see Beavers and Joseph (1967a), Saffman (1971b), Jager and Mikelic (2000). Here, g, K, v,
and Sy are the gravitational acceleration constant, hydraulic conductivity tensor, kinematic
viscosity, and specific mass storativity coefficient, respectively, which are all positive. K is
assumed to be symmetric positive definite (SPD).

In simulations of porous media flows, the major difficulty is the determination
of the hydraulic conductivity tensor ). In the simplest case of isotropic homogeneous
media, the hydraulic conductivity tensor is diagonal and constant. However, in most
geophysical and engineering applications, the media are usually randomly heterogeneous,
and each component k;;(x, w) of the hydraulic conductivity tensor is a random function that
depends on spatial coordinates. Then the problem becomes solving a stochastic PDE system
instead of a deterministic PDE system, and the goal of mathematical analysis and computer
simulations is the prediction of statistical moments of the solution, such as the mean and
variance. The most popular approach in solving a PDE system with random inputs is the
Monte Carlo method, which is easy to implement and allows the use of existing deterministic
codes. The main disadvantage of the Monte Carlo method is its very slow convergence rate
(1/VJ), which inevitably requires computation of a large number of realizations to obtain
useful statistical information from the solutions. Other ensemble-based methods have
been devised to produce faster convergence rates and reduce numerical efforts, including
the multilevel Monte Carlo method Barth and Lang (2012), quasi-Monte Carlo sequences

Kuo et al. (2012), Latin hypercube sampling Helton and Davis (2003), centroidal Voronoi
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tessellations Burkardt ez al. (2006), and more recently developed stochastic collocation
methods Babuska et al. (2007); Xiu and Hesthaven (2005) and non-intrusive polynomial
chaos methods Hosder er al. (2006); Reagan et al. (2003). All these methods are non-
intrusive in the sense that the stochastic and spatial degrees of freedom are decoupled and
deterministic codes can be used directly without any modification. However, repetitive runs
of an existing deterministic solver can be prohibitively costly when the governing equations
take complicated forms.

A recent ensemble algorithm aimed at significantly reducing the computational
cost of the ensemble simulations and consequently improving the performance of the
aforementioned ensemble-based stochastic approaches was proposed in Jiang and Layton
(2014). This ensemble algorithm solves all realizations simultaneously instead of solving
them individually. It utilizes the mean of the solutions at each time step to form a coefficient
matrix that is independent of the realization index j; that is, all realizations have the
same coeflicient matrix at each time step. Then the problem is reduced to solving one
linear system with multiple right-hand sides, for which the computational cost can be
significantly reduced. This ensemble algorithm has been extensively studied and tested for
ensemble simulations to account for uncertainties in initial conditions and forcing terms
Jiang (2015); Jiang et al. (2015); Jiang and Layton (2014, 2015); Jiang and Schneier (2018);
Mohebujjaman and Rebholz (2017); Neda et al. (2016). Some recent work include strategies
such as incorporating model reduction techniques to further reduce computational cost
Gunzburger et al. (2017a, 2018a) and devising ensemble algorithms to account for various
model parameters of Navier-Stokes equations Gunzburger ez al. (2017b, 2018b), Boussinesq
equations Fiordilino (2018), and a simple elliptic equation Luo and Wang (2018). In this
paper, we will further develop the ensemble algorithm for computing an ensemble of the
Stokes-Darcy systems to account for uncertainties in initial conditions, forcing terms, and

the hydraulic conductivity tensor. Herein we consider computing an ensemble of J Stokes-
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Darcy systems corresponding to J different parameter sets (_u> ?, qﬁ?, frispin Ky j = 1,...J,

Wje = Vi +Vp; = frj(x0), V-u; =0, in Qs,
Sodjs — V- (Kij(x)Ve;) = f,.(x,1), in Qp, 4.2)

¢;(x,1) =0, in IQp\T and % ;(x,7) = 0, in IQs\T.

Here we assume that there are uncertainties in initial conditions % (x), ¢°(x), forcing terms
fr(x,1), f,(x,1), and the hydraulic conductivity tensor K(x), and (u ?, qﬁ?, frjs Jpj»¥K;) is one
of the samples drawn from the respective probabilistic distributions. J is the number of
total samples.

4.1.2. Notation and Preliminaries. We denote the L>(T") norm by || - || and the
LZ(QS/D) norms by || - ||/,: the corresponding inner products are denoted by (-,-)f/,.
Furthermore, we denote the H*(Qyg /p) norm by || - | gx(p ) The following inequalities will

be used in the proofs Layton et al. (2013):

I8l < CDR)VIBlp IV, (4.3)

Wl < COpYIIANVE Iy, 4.4)

where C(Dy/,) = O[Ly/p), L)y = diameter(Qs)p).

The function spaces are defined in Section 2.3.1. To discretize the Stokes-Darcy
problem in space by the finite element method, we choose conforming velocity, pressure,
and hydraulic head finite element spaces based on an edge to edge triangulation (d = 2) or

tetrahedralization (d = 3) of the domain Q(S/D) with maximum element diameter /:

Xsn C X5, Qsn C Qs, Xpn C Xp.
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The continuity across the interface I' between the finite element meshes in the two sub-
domains is not assumed. The finite element spaces (Xsj;, Qsn) are assumed to satisfy the
usual discrete inf-sup /LBB" condition for stability of the discrete pressure; see Gunzburger
(1989b) for more on this condition. Taylor-Hood elements Gunzburger (1989b) are one
such choice used in the section of numerical tests. We will also consider the discretely

divergence-free space:

V= A{vn € X} (qn V- vi)s =0, Ygu € Q.

For functions v(x,7) defined on (0,T), we define the continuous norm

IVllnier = WVllmor.m% D, ) T € {f.P}-

Given a time step At, let t, = nAt,T = NAt, v" = v(x,t,) and define the discrete norms

IV llegs = max 1" lluo,) — and

1/m
”lVl”m,k,r . (Z ”vn”Hk(D) ) , '€ {fap}

4.2. ENSEMBLE ALGORITHM FOR THE STOCHASTIC STOKES-DARCY IN-
TERFACE MODEL

In this section, we propose and analyze an efficient ensemble algorithm for the fast
computation of multiple realizations of the stochastic Stokes-Darcy model with random
hydraulic conductivity (including the one in the interface conditions), source terms, and
initial conditions.

4.2.1. Formulation of Ensemble Method. In this section we study a partitioned,
ensemble time-stepping method to compute the Stokes-Darcy models with different param-

eter sets. The ensemble algorithm is
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Algorithm 1 Find (77“, p;.”l, ¢;l+1) € Xs X Qf X Xp satisfying ¥ (v,q,y) € Xs X QO X Xp,

u u

T,V) + V(W;Hl,vv)f + Z '/l_ﬁi(ﬂ);ﬁl “T)(v-T)ds
f 1

(—>n+l _—n

# ) [y =@y B @y ds= (7 ) v atd) = G

(¢ V- U1 =0, (4.5)
r_1+1_

¢50 (¢] — ’%”) + 8KV Vi), + (K ~ KV} Vu),
p

—er (@) = g(£5 ).

where

7 J
= 1 aBjs - _ 1
K= > Ki Mg = = and i = 7 ,~§=1 Mi.j>

T,"?(jTi

o

r(id, ) =g/¢_u’-ﬁf ds.
r

This algorithm decouples the original problem into two sub-physics problems, which
can be run in parallel. Moreover, at each time step, all realizations share the same coefficient
matrix, which allows the use of efficient block solvers, e.g, block CG Feng et al. (1995),
block GMRES Gallopulos and Simoncini (1996), or direct solvers such as LU factorization,

to reduce both storage and computation time. The fully discrete approximation is:

Algorithm 2 Find (u ;.‘;11, 7;11,%{711) € XsnXQsp*xXpp satisfying¥ (v, gn,¥n) € XsnXQspXXph,

Ujn — U

j,h _ ~ ~
Tj,vh) + (Va5 V) + Z /Ui(_u)ﬁ,l “Ti)(vp - T) ds
— Jr
f 1

(_>n+1 _7n

# 3% [ = T ds = (T )+ erCond] ) = (75 vl

(qh’v '77’711 )f =0, (46)
n+l _ gn
¢j,h j.h o o+l ¢ n
gS() A—t,l,//h + g((](V¢]’h s Vl/’h)p + g((?(/ - 7<‘)V¢j’h’vdlh)l’
p

- CF(_I’Z?JI?(//h) = g(f;;;l’lﬁh)p'



86

Moving all the known quantities to the right-hand side, the algorithm is as follows.

u . u

%,v) +v(V_>7}Lll,Vv)f+Z‘/n, "” 1) -T75) ds
f

(ﬁn+l _=7?n

(P?ZI,V : Vh) = (f )y - Z /F(Ui,j - (@], - TV - T) ds = cr(vi, ),
(qn V- @731 =0, 4.7)
¢n+1 L
250 (T”,wh) +g(KVg, V),

P

= g(fn+1 l//h)p - g((q(j - 7_()V¢;'l,h»v¢’)p + CF(”Zth)-

At each time step, we have the same, shared coefficient matrix for two sets of linear

systems (for (i j»pj) and ¢; respectively):

I I

A = [RHS: |- - /| RHS,], (4.8)
pr || ps

B[ ér |- ' y ] = |RHST |- - | RHS]] . (4.9)

This structure of the linear systems allows the use of efficient iterative solvers or
direct solvers such as LU factorization for fast calculation. The two sets of linear systems
(4.8) and (4.9) can also be run in parallel to reduce the computation time.

4.2.2. Long-time Stability and Error Analysis. Let Cp s and Cp, be the Poincaré
constants of the indicated domains and k,,;,(x) be the minimum eigenvalue of the mean
hydraulic conductivity tensor K(x). Define kpin = Minyeq, kmin(x) and two parameter-

dependent constants

G leC0)CE)l GeCD D,
- 4V2 s 2 = 4]}2 .

min

1
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For the coupling term c;(il, ), we have

Lemma 7 Forany (i, ¢) € Xs X Xp and any €, &, a1, 81 > 0,

1 €

e, 9)] < —lI9l; + 5 CrlIVOIl; + arv [ V7, (4.10)
€1 a;
1 € -

e, )] < = ITIF + S CllVHIF + Brghuinl V4. 4.11)
€& ,81

Proof 4 The proof is similar to that in Layton et al. (2013). Using inequalities (4.3) and

(4.4) as well as the inequality abc < %a“ + A—Itb4 + c?, we have

Cr(7,¢)=g/¢7-ﬁf ds < gC(D)C(Dp)\ Bl IVPllA T N IV el

12
< ( ——lgll;
1

2, € 2
< — + —C||V +av||Viu |7,
4Elll¢|lp 22 1IVell, + av||V IIf

/a1 cl2 12 (12
gC(DC(D,)e! RIENT: VoI () 219 )

and

cr(id,¢) = g/‘/’_’/i)'ﬁf ds < gC(Dp)CDR)IIBlp IVl T 1111V Nl

1/2
s( Iy
€

2

1
C(DC(D 61/4— 1/2 V—) 1/2
SO e BRIV

1/2
(81 (@hnin) 1V 91
€ -
< E”_M)”% + ﬁ—%C2||V_u)||]2c + B1gkminl V1
Let kjmin(x), kmin(x) be the minimum eigenvalue of the hydraulic conductivity

tensor K;(x), %K (x), respectively, and p;(x) be the spectral radius of the fluctuation of
hydraulic conductivity tensor K;(x) — K (x). Since both K i(x) and ¥ (x) are symmetric,
|7 (x) = K(x)]2 = p/y(x).
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We then define the following quantities that will be used in our proof:

max _ . = max _ max SN s =
n;; = max |77,,]()C) - 1i(x)|, n; =maxmn;: ", n; = mn 7i(x),
’j 7./
xel J xell
kj,min = min kj,min(x)» kmin = m_in kj,min’ kmin = min kmin(x),
x€D) Jj x€D)
’ _ ’ ’ _ ’
pj,max = max pj,max(x)’ Pmax = Max pj,max'
xeD,, j

We prove the long time stability of Algorithm 2 under a time-step condition and two

parameter conditions

21—y —ap)p? vk2, 201 =B —pr—2=)at op o

A< min . (412)
[CDACDICE, & [COICDIC, &

max o nin (4.13)

p:nax < lgmin- (4'14)

Remark 3 The two parameter conditions (4.13) and (4.14) relate to the probability distri-
bution of the random hydraulic conductivity tensor. They require that the magnitude of the
fluctuations be smaller than the magnitude of the mean. In many applications, this can be

easily achieved by dividing the ensemble of samples into smaller ensembles.

Based on the above preparation, we will show the theories of long-time stability
and error estimate for the proposed ensemble method. We will also propose an alternative

ensemble method which is much more easier and prove the long-time stability.
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Theorem 5 (Long time stability of Algorithm 2) If the two parameter conditions (4.13)

(4.14) hold, and there exist ay,as, B1, B2 in (0,1) such that the time-step condition (4.12)

also holds, then the Algorithm 2 is long time stable: for any N > 0,

1 8%

SITENIE + 5290115 + A ||w ||f+AtZ / @, 7 ds (4.15)
1 G gpmax

(At P + At )||V¢jh||2

< I, 13 + £21160,12 + At2 ||W°h||f+AtZ /(1,1 7 ds

1 C gpmax CPf n+1
(Ar Soa? TN )||V¢,,,|| +Arz4 Vel

n+1||
p.J

Proof 5 Setting v, = i’ "“ LUy = ¢" in Algorithm 2 and adding all three equations yields

1
—>n+1 n 2 —>n+1 —>n V—>n+1
— — [ — + 4.16
S = S T3+ 5 TR =+ VIV (4.16)
1 1 = 1
-2 /m @A ds+ SR - S22

850
2At||¢"+1 Jh||2+g(7(V¢j’};1, "+1)p+01(_>7};1 &0 — CI(_>Jh,¢"+1

= U Ty s e - 3 Jons =y, -7 ds

- 8((K; = KOV, . Vo)

Note that

1 1
(@ @ty — e, ¢

1 1 1 1 1 1
= |ea@it g = @it = @, ot - a6t
CI(—>;H};1 ¢n+l Jh)+c1(_) _ n+l

Jh’ Jh :

4.17)
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Applying estimates (4.10) and (4.11) with €, = 2?—;(), 6 = %, and if the time-step
condition (4.12) holds, we have
CI(_)n+l jh’ n+1 —c (—>n+1 n+1 _ ¢7,h) (418)
1 —>n+1 —>n At G n+l _ n+1y2
> g =Tl - 5 ) |VP I = Brgkninl V01512
S = #ally - ﬁ—nvw W= @I — vV

2At
g So

1 G
——||—u>;{;1 7% - A (IS + 1@, 012) = B1gomin 8512

At C1
il - ol - (

IV 12 + 1980, 12) = eI V752

Applying Cauchy-Schwarz and Young’s inequalities to the source terms, for any

az > 0,6, > 0 we have

(f;,+1 —)n+1)f+g( prf;—l’ n+1)p (419)
< W e + gl o g

< Ce sl AV Iy + gCrpll £ IV
2 2

CP,f n+1112 vl
< qa W7 + v VS

i + o 5 + o 19051

By Young’s inequalities, we have

- /r (mij =", - ) - T) ds (4.20)
< Z /l_|77i,j — |
<D [lat, mw) as

/max /max
<Z[ /(_)h T,)2d5+ /(_m+1 ﬁ)zds],

ds

@, - P 7)
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For the right-hand side of (4.16), the last term can be bounded as follows:

-8 ((7<j - 7_()V¢;l,h,v¢ﬂ])p < g/ IV 1K) — Kol V), |2 dx

Dy

< [ PO Ia ds

14

< 80 max / IV¢””|2|V¢}?,,1|2 dx

< gp] max||V¢Jh||p||V¢”+1”P

gpmax gpmax n
2|Vl + Vo35
Using the above estimates, equation (4.16) becomes
1
E”—»m”f ~ ol Enre ( - - - AI,B_ VIVt (4.21)

At%(||V*"+1||f—||V*"h||f) Z[" '”] /@nﬂ 2 s

1

[ e apas- [a, wp ds]

/max

’7 2 850 w12 _ 850 2
+ i) ds +
,- ]/ﬁ,h w2 ds + E0 1 - 001,12
L 26 ph
(1= B = By = M = gk [V

ngokmin a’ kmzn

1 Cl gp;nax
(At—— " —) (I 9212 = 1967,02)

85 a 2
2 2
n+1 n+112
< gy WG+ U
To obtain stability, we need
o) —min rmax

l—a; - az—Atﬁ—CZZO, '717_’7:2 >0, (4.22)

1V

1 2C 4

1= By =By = AN ZL_ Pmax 5 4.23)

gZSOkmin a’% kmin
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Recall that a1, an, B1, 52, At, nlfm“x,p;nax are all positive; we then have the following

constraints on these parameters.

O<ar <1, O<mam<l, 0<ﬁ1<1, 0<ﬁ2<1, (424)
p_max <1, nlmax < nmm’ (425)
kmin

(1-a; - a/z)ﬁfv 1=-p1-p- %’:‘n—‘i’:)a%g%ol;mm

At < min ,
2C2 2Cl

(4.26)

= Pmax\p2 -
2(1 —ar - QZ)ﬁ% Vkrznin 2(1 _ﬁl _ﬂz B m)al VzkminSO

[C(DHCDICE, 82~ [C(DHCDICE, &

(4.25) leads to the two parameter conditions (4.13) and (4.14), and (4.26) leads to
the time step condition (4.12) required for stability. Now if the time step condition (4.12)

and the two parameter conditions (4.13) and (4.14) all hold, (4.21) reduces to

1 1 n n
S = 5 ||f+Ar (||W SR =172 4.27)
+Z’75'm"/ ! n)zds—/ﬁn 7 ds| + SRR - £ 12
— 2 |Jr h QA"
1 Cl gpmax n+12
st (19625 12 = 1967,112)
2 2
rgy e S0 AT
_4(1’21/ f’] f 4ﬁ2k 1294 P
Sum (4.27) fromn = 0 to N — 1 and multiply through by At to get
1 So
SN IE+ S0, 12 + ||w ||f+AtZ /<—> T ds (4.28)

I G gpmax
AL? ——+A \Y
( 250 IVe; hllp

1,
_2

o)
At G A
850 o7

850 G
Lo,z + ||¢,h||2+Atzﬁ||w°h||f+AzZ /P,,,T,>2ds

) N-1 2 N-1 2

gpmax 2 Pf n+1 8 n+112
\Y + At + At
V69,112 § ol I G + § 35 kmmnfp] 2.
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The error analysis for Algorithm 2 can be done similarly with minor modification.
We assume the finite element spaces satisfy the approximation properties of piecewise

polynomials on quasiuniform meshes:

inf |[v—vally < CH* @ |lgan ) Vv e [H*"{(D )], (4.29)
vh€Xsh S
inf V(v —va)lly < CRY IV llgwei ) vv e [H*Y (D)), (4.30)
VhEXSh !
inf |lg = gully < C Mgl ¥q € H*'(Dy), (4.31)
qn€Qsh
inf |y —ynll, < CH" @ llgme () Yy € H™!(D)), (4.32)
Yn€Xpn p
inf |V = yn)ll, < CH"|[¢]lggme1p,) Vy € H"\(Dy), (4.33)
Un€Xpn

where the generic constant C > 0 is independent of the mesh size 4. An example for which
both the LBB" stability condition and the approximation properties are satisfied is the
finite elements (P;41—P;—P;4+1), [ > 1; see Girault and Raviart (1979); Gunzburger (1989b);
Layton (2008) for more details.

We also assume the following regularity on the true solution of the Stokes-Darcy

equations:

e L¥0,T; H(Dy),uj, € L*(0.T: H*'(Dy)),ujy € L*(0,T; L*(Dy)),
¢; € L*(0.T; H™'(Dp)). ¢, € L*(0.T: H"*(D,)). ¢;41 € L*(0,T; L(Dp)),

pj € L*(0,T; H**'(Dy)).

Let 77 = _u>j(x, t”),p;.’ = p;(x,ty), ¢’]? = ¢j(x,t,). Denote the errors by e;?_u, =

noo._ gn _ gn
i Cig =90~y
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We prove the convergence of Algorithm 2 under a time-step condition and two

parameter conditions:

(1 - a) - a2)Bkpin L —04=B1=f2- 1+ 0'3)%"%)(1/%01/

At < min , — (4.34)
2 2
CP,p CP,f
2Vl;min
g2 [C(Df)C(Dp)Y
nlmax < nmln (4.35)
o< o (436)

Note that the two parameter conditions are the same as those for stability. The time

step condition is slightly different with two extra constants, 03 > 0 and o4 € (0, 1).

Theorem 6 (Error Estimate) Forany j = 1,...,J, if the two parameter conditions (4.35)
and (4.36) hold, and there exist ay, a3, B1, 52,04 € (0,1) and o3 > 0 such that the time step
condition (4.34) also holds, then there is a positive constant C independent of the time step

At and mesh size h such that

AtCl
gSoa?

1 250 1,
Ellef—dllfmhmﬁllv IIf+ el ||2+At(2gpmax VeIl (4.37)

1

’ -~ gO
< 201+ A7 ||Ve4||f+m22m“X/F(egj-ri>2ds+ 162, 12

ArCy

Ve
850

€j ¢”2 + CAI2||ujaT||§,l,f + Ch2k|||—u)j"|§,k+l,f + CAIz””J’Jl”%,o,f

-,
+ At (Egpmax
@

2 2 2 2 2k+2 2k+2
+ CANIpjslly g, + CALENjllzg, + CHllujllogest,r + CH @l p

Nl O T 1 PRESTS C WPRION e Wy
+ Ch2k+2|||¢j |||oo,m+l,p + Atk |||¢J |||oo,m+1,p'
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In particular, if Taylor-Hood elements (k = 2, s = 1) are used for approximating
w0 j»Pj), i.e., the C? piecewise-quadratic velocity space Xg; and the C° piecewise-linear

pressure space Qg, and P, element (m = 2) is used for Xp,, we have the following estimate.

Corollary 1 Assume that ||e°_]), ||Ve'_ ||, ||e§.)¢|| and ||Ve§.)¢|| are all O(h?) accurate or
J.u J.u i s

better. Then, if (Xsp, Qg, Xpn) are chosen as the (P, Py, P») elements, we have

Vel 112 < c(h* + AP?).
> oSod? I ¢||p_( )

250 1, AtC1
—n Gl + o nv LI+ 2|wﬁﬂ$-kAr(—gpm¢x+
1

Proof 6 (of Theorem 6) For Vv, € Vh,\v’wh € XDh,V/lZ“ € Qgp, the true solution

(i . pj» ¢;) satisfies

u

S E— j,Vh) +v(V M;-“LI,VVh)f + Z /Ui,j(_”);'lﬂ - T)(vp, - Ti) ds
— Jr
f 1

- -
(un+1_ n

At

(P =V ) ennd) = (g + € )

" — ¢
250 (JTIJ"!"’) + g(7<jV¢;?+1,wh)p —er(d i) (4.38)
p

= (0 um)p + €15 (W),

The consistency errors ej’.l;l(vh), 6;7;1(1#;,) are defined by

— -
un+1 -

n+1 _ J _ o n+l _ n+1 n
7 )= (—At i ,Vh) cr(v, @77 — ¢,
f

n+l _ in

9 ¢
el (yn) = gSo (T] (/”;J;I,Wh) +er(uT =" ).
p
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Subtracting (4.6) from (4.38) gives, for Vv, € Vh,th € XDh,V/lZ“ € Oshn,

et — e
ST R CTED N R R ROR

f
"2 / (i =0 € - B ) ds = (P! = 2179 i)+ ervneefy)

:_Z/ 771] 771 ((_)’Hl —>n) (v - Tz)ds+€n+1(vh)

ez?+1 n B
gSo (WA—IW,W) + g(KVers! V), + (K — K)Vel 4, V), (4.39)
p

= er(€un) = —8((K; = KOV(S} = 87). Vun)p + €], ().
LetU J’.’”, (I);‘+1 be an interpolation of—bf;“rl and ¢;.’+1 in V}f’ and X, [? correspondingly. Denote

e —
eni)l — n+1 Un+1 Un+1 n-;—ll — 'uni} r.zi)l’
Ju ] J Jou

n+l _ n+l _ gn+l n+l _ n+l . n+l n+1
€g —(</>,~ P; )*(‘Dj ¢j,h) + &g

Then we can rewrite the (4.39) as two equations. The first one is

§n+1 _ é:n
””A—t”“,w +V(VE, Vvh>f+Z / (€ - T)vn - T) ds

n+1 n+1 n
+Z/ Nij — 771 (§—> 7)(vh - T0) dS—( -4,V Vh)f"'cl"(vh’fj’(b)

== 2 [ =) (@ =T R T s+ € )

n+l1 n
L

S T IR W AT R TR R
f

- Z ./r (1) = 77:) (Wi - TV T) ds = er(va 17 5)- (4.40)



And the second equation in the (4.39) can be rewritten as

§n+l é: _
o ( Ly ) + Q(RVEL, Vi) + (5 = RIVEL, Vi, - cr(El i)
P

_ Y7, n+l _ n n+1 ’un+1 /J;l,¢
= —g(5; = KOV} = 8.y + €l ) = 880 | A2,
p

= 8(KV 3! Vum)p = 8K = K)V 1] g Vibn)p + er (o hn)-

Letting vj, = &™) Wh = cf”” in (4.40) and adding the two equations yields

e - Sl I + ZAtnf"“ gl +VIvE;

+Z / e T ds + 520 ||§"”||2 g 2 + it - &7 12
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+g(7<V§"” v "“>p+c1(§"“ Ehy) — (€, ﬁ,f"“ (4.41)

:_Z/ Nij — N (§—> Tl)(fn+1 7;) ds

_Z /r (mij =) (G =) - ﬁ)(f;%l -7 ds
l n+l _ ,n

el - | R | v Ve,

_Z/ﬂz(ﬂe Tz)(cfnl1 Ti) dS—Z/ (mij — 1) (g - T,)(§_> 7)) ds

_Cr(§n+l #]¢) + ( n+l /lZ-H,V é_‘]n’-zl) _g((7< %)V(¢n+1 _ ¢ ) V§n+1)p
n+l _ ,n

H; ;i
Jo¢ J,¢,§}1,;1) —g(?(V,u;‘“ n+1)p
p

n+l n+1
b (&g )—850( A7

—g((5; — ROV, VELS ), + el £131) = (G = KIVEL, VETT,.
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Using the same techniques in the stability proof (see (4.17) and (4.18)), we have

(€% E1y) — 1€l €]y (4.42)
=c (é\;n+l é: _)’é_‘n+l —c (§n+l n+1 ]n¢)

ol e - Arﬁ—(||vfs"”||f+||vm|f) Brgkminl|VELS 12
1

AZ‘Cl(

YY;

gSo

gt - eyl - IVEL 2 + I I2) - vl Ve 2.

Next we bound the terms on the right-hand side of (4.41).

n+l

[Ty Vi llr-LH_/lr'L
Ju JoU en+l J-¢ 1.9 en+l
- T’fjj) - 8% (T,fj,(p (4.43)
f P
2 n+l _ n n+l
ey i 17 + Ve 7 + CP”gS°||“’¢ ’¢||2+@g/€mm||\7§"“||2
4ayv At Bokmin At
n+ 2 n+ 2
g i/ . dt +— V€217 + ot L / " dt
= Gayy (At J FiE F Y Bk A S FIO
f P
2 7 n
B Rl Ve 12
5C2 1 g+l 2 g52 1 g+l
P.s 2 @2 n+ly2 , P50 >
< o dt + —=v||V&T || + ———— ; dt
dayy A7 ||/’tj,u,t||f 3 V|| fj,u ”f Bokomin D ||#j,¢,z||p
B or
2 g oninl| V2.
1 1 % 1
(VL VE) - RV, Ve, (4.44)
,32 -
< C (VDI + 1943 1 ) + ZYIVEIE + ZehninlVELS 12
By trace theorem, we have the following estimates
—er(@ 1 ) + (i €75 (4.45)

B>

7 &kminllVE .

< C(Ivpy I3 + ||Vu_';,¢||5) SVIvEr |} +
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The pressure term can be bounded as follows:
n+l _ an+l n+l ntl _ gn+l2 , @2 n+1)2
( ALY g )f < Cllp}*! = 27 + 2 Iver I (4.46)

Next, we bound the consistency errors:

—>n+1 —n

gt < o| Lt |+ v - o + Sviverstiz (4.47)
tn+l - tn+| o
2 2 2 +112
< cm/ i oo |2 dt + CAt [ 196715 di + 2191117
n+l ¢n 5 ﬁz B
e < o 2 - vy =TI+ RV @48)
zn+1 tn+1

B2

< CAt/ ||¢J,tt”127 dt + CAt'/ ”VMJ t||f dt + —= 4 _mln”Vé‘:"H']”z
tn tn

The rest of the terms on the right-hand side of (4.41) can be bounded as follows:

_Z/ Nij — i (é: ki Tz)(f —> “T;) ds (4.49)

<ZWW/Mwa@7mw
<Z[Mmfgﬁnfm+wmwaaf4.

By (4.4) and Poincaré inequality, we have for any o > 0

_Z/ ni,j — 771 (—>n+1 —>n) z)(fni} Tl)ds (450)

<§hm”/wﬂ“‘ﬂ>»wﬂnnw
B ey

< n;{maxn—u)r_wl _—M>r_t”2 91 /max /(é;_-ni)l T)2 ds
T 20 jhe T '
[ CpC2(D
< P’fz ( f)nl{max”V(—u?;l+l __I'Z;l)”f + _lnl/max ‘/(égni} Tl)Z ds
T L 71
>C C2 D tn+l
< P.f ( f)n;maxAt/ ||VM] l”f dt+ /max ‘/(gn:l 71)2 ds| .
i 20-] tn
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Similarly, for any o > 0

- / (W FYE T ds (4.51)
i F
[ 1
< 70, m(/l”i} )% ds + o / m(f"il ) dS]
; (04}
» 1 —max n+1 n+1 2
< 4 —n; ||,Ll ||1"+0-2 ﬂz(f—> Tl) ds
C2(D )CP’ —max n n
< D |Fe v+ o [ as|.
; 40'2 J,u
—Z /r (i — 1) (i Tz)(f"ll 71) ds (4.52)
i

< i [l e -wias
< Zn/max [ /(# . Tl)Z ds + — /(§n+l 1)2:| ds
207
[ 1 / 1 /)
< Z gﬂimax”“?,—;“% S / @ -5y dS]

Cz(Df)CPf /max 1 /max n+l 2
e A /(f %)2 ds| .

The hydraulic conductivity tensor terms are estimated as follows:

—g((K; = KOVE], VD), (4.53)

< [ Ve ol - Rulvel; o dx
p

<5 [ I bIve;ds

P

< gp;',max A |V§7,¢|2|V§]n’;1 |2 dx
P

< gpmaxHVf ¢||p||V§n+1 ||p

8,0 gp;
maxllv‘f “2 max”Véngl”Z.
i¢llp
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For any o3 > 0, we have

—g((F; — ROV (@ - g1, Ve, < g / V(@ = $I; - KIVES ] dx

<¢ [ T - ive b ds

P

S ¥l [ 1967 DRIV o

< 8PV = SDILIVES I, (4.54)

gp g3 ’
< 0 g~ )12 + TtV I

tn+1

gp o3 ,
s [ Vs, dtl + Farhud Ve

IA

tn+1

gp;nax 2 n+12
8o / 963,15 di + T apl,IVEL I

IA

—g((K; = KOV} 4, VER), < 8 /D Vi 412 G = K2 VETS o dx (4.55)

p

< [ PO LITE o ds

P

< 8Fae [ 1V IVES o d
P

< gp;mllvﬂ;’-‘qﬁ||p||vg'?“||p

gP
SR VH ) + 5 80l VER I

Since K is SPD, for any o4 > 0

__é;(fﬁr‘7l17-kl ‘7 n%—l)p __ég(ﬁ;(2 ‘7[ln4-1 {%(2 ‘7 n4—1)p (41.5(5)
< gIIWZV#"”HpII?( veril,

1
< 4—g||7<2V,u}1+1 [ 04g||7(2V§”+1 I;

|
< Jor SR IVHG + gl KEVEL I,
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Combining all these estimates, we have the following inequality:

2C
E”f’m I7 - 2_At”§ —>||f (1 —ap-ay - Atﬁ_) ||V§n+1||f (4.57)
1

G n+1y2 n o2 min /max n+l  —=\2
+Ar[7(||Vf I3 - 1venI?) +Z((1 - = (o) [ @t wy ds

rmax n+l  =\2 _ no . =\2 gSO n+12 gSO 2
WL [ [iest -7 as /r@ﬁ 22 ds| + SNt - S,

2C,

2S0 mmal

+ ((1 — 04— 1 - B — At 5) -1+ as)p'"“") gknminl VESS 7

min

L, ArC,y +1 2
+ (Egpmax gSo ) (”Vé‘:n ” - ”ijn,(p”p)

CP fC ( f) tn+1
< > . max A ¢
- Z 4o T /,n

( f)CPf —max n+l
: ||w,t||fdr+2—1 IVt

el

ZJ1+1 ln+1

C*(Ds)Cpy |, ) )
+ Z 40_1 max”V n_)”f + CAt/ ||uj,l‘l‘||f dt + CAIL ||V¢]J||p d[

i

tn+l tn+l 2 tn+l

5C;
pf 1
+cm[1 ||¢,-,n||,§dt+cm/n IVuj |7 di + Gany M =, 117 dt
t t
CZ g521 g+l
P.g5"0 2 ( n+1 n+1 ) ( nop2 n 2)
+ —— dt+ C |||V + ||V + C|VU"S|5 + |V
i, el IV + 19 5 VK IG + 194117

l"+1

+C|| n+l /ln+1||2+gp;naxAl ||V¢ ||2dt+ 1 kmax”V n+ ”2 gpmaxllv n ||2
Pj kBT 40 It 4oy Hjg llp Jolp

tn

To make sure the third, fifth and ninth term on the left-hand side are non-negative,

we need 0 < ay,az,072,04,61,52 < 1, and

max

/
LA el A
gt L+ oy kpin 1+03

(4.58)

For VYo, € (0,1),Yo > 0,Yo3 > 0, we can derive that . 1+0' , 1+03 € (0,1). Now if

=min
m;

the two parameter conditions (4.13) and (4.14) are satisfied, we have LA ’"f” € (0,1).

/max 1 o
i = Tegp and o3 > 0 such that

l

Then we can easily find o € (0,1),01 > 0 such that *

pmax 1
e L .
kmin 1+0—3
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Then under two the parameter conditions (4.35) and (4.36), and the time step

condition (4.34), (4.57) reduces to

C S S
n+l 2 n+l 890 |\ on+1 890
— = o llEn P + A (1 ven —V_>)
2Atllf 27 2Atllfj LI 5 IVENF = IVELIF) + S 167 1 = S5 1676 1
) _ _ 1, AtCl
+Zznm‘”‘ ( / (& T)* ds - /F (€' T)? ds)+(5gpmax oS0 (Ive5 12 - 1ver . 12)
Z Cp fC (Df) /maxAt o ||Vu ” dr + Z (Df)CPf —max“V n+1|| (4 59)
- 4o " 7l B Hials '
C (D )CP , tn+l tn+]
+Z$ max |V n_)||f+CAt/ ||uj,,t||j%dt+cm/ IV;.c1I7 dt
i tn tn
tn+l 5 [n+l SCPf 1 tn+l s
+CAt/,n ||¢A,-,,,||pdt+CAt/tn IVuj o7 dt + — o & iy 17 dt
C%) ,gSS 1 g+l
o L Wl de C (19 1+ 19k )
gp, [n+l
+C(I|V#7’7II}+IIVu}ﬁ,,,II,Z;)+C||p"“—/lil’“llfc+ ety / Vel dr
1
+_gkmax”V n+1||2 gpmax “V n¢||2

4o

Summing up fromn = 0ton = N — 1 and multiplying through by At yields

SIEN I + A7 IIVrS AN +AzZ g [t as (4.60)

250 1, AtC,
1N I3 + At (zgpm e IveN, I

1 (053 / ~ AN
< 5||§ﬁ7||§+Ar2 Ve q||f+ArZ S /r (€)o7 ds+ 160,117
1 , AZCI CP fC (Df) , tn+1
+At (Egpm ||V§] ollp + At Z { Z Y / 1y o117 dr
t}‘l,

CX(Dy)C
+Z ( f) P.f —max”V n+ ”f+z ( f) P.f /max”VH —’”f

7 40'2
tn+1 tn+1 tn+1
+cm/ lotje 7 d:+cm/ NI dt+CAt/ l16).0c1I> dt
th th t
gntl 5C2 1 g+l CZ gSZ 1 g+l
P.f 2 P.g5"=0 2
+CAt Vui, | dr + — o NP dr+ — 2 — ; dt
o e 320 [ g e R [ gl

+C (IR + IV IR) + € (194 12 + 194 I2) + Cllp ™! = 232
tn+1

1
+gpmaxAt/ ”V¢I t||2 dt + — yym kmax”V’urHl”Z gpmax ”V n¢” }
t'

40’3
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Using interpolation inequalities, we obtain

1 G 1, ~
NI + A ZITEN I o Y S [ e 7 as @61)
1 i

250 1, e
+ 7”{'4]]\;)”5 + At (Egpmax + m ”ngNq)”g

Lo 2 28200 2 1 nax 0 =2 850 .0 2
<= =2 E e = 890 1 4
< gl 1y + Af ﬁfllvfﬁllerN ; 2" r(fﬁ 7 ds & 51l

1 AtCy
b 20

0 12 20, 112 2k |12 20, 112
3 gSOCl’l ||V§j,¢||p+CAt ||uj,l||2’]’f+Ch |"_U)J|||27k+17f+CAt ”u‘],ll‘”Q,O’f

2 2 2 2 2k+2 242
+ CA(|9jelly , + CAL N jallng, + Ch™ llujllojsr,r + CRT 1@l 1,

+ C 9l 01, + CH s

2 2
|||2,m+1,p |||2,s+1,f )

Using the triangle inequality on the error equations yields (4.37) and completes the proof.

4.2.3. Stochastic Stokes-Darcy Equations. In this section, we consider using the
presented ensemble algorithm for solving stochastic Stokes-Darcy equations with a random
hydraulic conductivity tensor K'(x,w). Note that the ensemble algorithm can also deal
with uncertainties in initial conditions and the forcing terms. Here, for simplicity of
presentation, we only consider the example that has a random hydraulic conductivity tensor.
Let (®,F,P) be a complete probability space. Here, © is the set of outcomes, ¥ € 2©
is the o-—algebra of events, and # : ¥ — [0, 1] is a probability measure. The stochastic
Stokes-Darcy system considered reads: Find the functions @ : Qg x [0,T] x ® — R4
(d=23),p:Qsx[0,T]|x0O — R,and ¢ : Qp X [0,T]xO — R, such that it holds P —a.e.
in Q.
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So we have the stochastic Stokes-Darcy system as follows:

u(x,t,w) — VA_M)()C, tw)+ Vp(x,t,w) = fr(x,1), V ~_u>(x, t,w) =0, in Qg X O,
S0¢l(x9 f, (l)) -V (7(()(, (L))V(b(x, f, (L))) = ﬁ(x’ t)’ in QD X ®7 (462)
¢(x,0) = ¢o(x), in Qp, and U (x,0) = up(x), in Qs,

¢(x,t,w) = 0, in Qp\I" and U (x,1,w) = 0, in IQ\T,

where fr(x,t) € L*(Qg), fr(x,t) € L*(Qp). The hydraulic conductivity K(x,w) is a
stochastic function, which is assumed to have a continuous and bounded correlation function.

The Monte Carlo method is one of the most classical approaches for solving stochas-
tic PDEs. It consists of repeated sampling of the input parameter and solving the corre-
sponding deterministic PDEs using standard numerical methods, which generates identically
distributed approximations of the solution. Then, the approximate solutions are further an-
alyzed to yield statistical moments or distributions. The Monte Carlo method is known to
be computationally expensive, as it usually requires a large number of sample points at a
high resolution level. Herein we investigate incorporating the proposed ensemble algorithm
with the Monte Carlo method to solve the stochastic Stokes-Darcy equations at reduced
computational cost. The computation procedure is as follows:

(1) Generate a number of independently, identically distributed (i.i.d.) samples for
the random hydraulic conductivity K(x,w;), j = 1,---,J;

(2) Apply either Algorithm 2 or Algorithm 3 to solve for approximate solutions

—n+l

Mj,h ('x),p;l}—ll(x)’ ¢7};1(X),‘] =1,---,J;
(3) Output required statistical information such as the expectation of u (x, f,, w):

E@ (vt 0)] = § 2,70, (0)



106

Remark 4 Similar procedures can also be carried out for other ensemble-based UQ meth-
ods, such as sparse grid collocation methods and non-intrusive polynomial chaos methods.
The Monte Carlo method is chosen here for a simple demonstration of the effectiveness and

efficiency of our ensemble algorithm.

Let 0" (x,w) = U (x,1,,w). The error for approximating E [ (x, f,,w)] is then

J J J J
1 1 1 1
E[@") =5 ) @, = E[@" =5 ) @) |+ | 5 205 =5 25 (463)

I J=1 J Jj=1 I J=1 I J=1
— n n
- SMC,TZ + SEN_”

where SLC_, represents the numerical error from using the Monte Carlo method while
LU

81’; N is the error due to using the ensemble algorithm for the numerical solution.

Theorem 7 [f the time step condition (4.92) holds and the two parameter conditions (4.35),

(4.36) all hold, then for any N > 0, there holds

J
LS =0 2 L mon 2 4 2
E[||E[—u’"] -5 ; i ] < SE[[@"I) + Ch* + Ar). (4.64)
Proof 7
1 < 1<
E(8),I%1 = E || E[@") = 5 3 @5 E[@"] = 5 3 4 (4.65)
i j=1 j=1 7
(1< 1 <
= E|| 5 D E@" =), p (E[@"] =)
[\ =1 =1 ;
1 J J
=52 D E [(Em] ~ ' E[0") uf)f]
i=1 j=1
Since u'{(x),u5(x),- -+ ,u'}(x) are i.i.d., we have

E [(Em’n] —ul E[u"] —_u’;!)f] =0, ifi #]. (4.66)
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Therefore,
1 J
[}, I = 7 Z;E [(EF’ W) E[d"] —_u’;?)f] (4.67)
£
1 J
=ﬁZ (EC@" I = 222, B[y + 111 |
J:
1 < /
J—Z;uzr’ 1117 - JZZIIEF’ JII7 + Z}E[n—u);?n}]
= Jj=
|
= SE[|[ ||f]——||EP 1117
| I
< SELM" 7).

2

4.68
f (:68)

J J
—n  —n n
‘ HJ (”J’ ”fh)H HJ €ia
J=1 J=1 J=1

J
1€, I = HJZ NS
=
j=1

1
S?Z

J

2
Lsa#+m%

er.l—>
J.u

Then we have the following estimate on the expectation of the L norm of the error

for approximating E[ U (x, tp, w)]:

~

n 1 n n n
E|IEG@" = 5 D @00 | = 160, + 2 1P (4.69)
=1

IA

n 2 n 2
E[18 1P| + E |18, 1]
12 4 2
< 7 E[|[u ||f] + C(h™ + Ar?).

4.2.4. An Alternative Approach. Let k; ., (x) be the maximum eigenvalue of the

hydraulic conductivity tensor K;(x), and we define

max ma max
ni; = TSIZ‘ ni,j(x)a n, = max U k] max = m%x k] max(X)s Kmax = rnax k] max -
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Then the following algorithm can be used, which removes one of the parameter
conditions for stability.
Algorithm 3 Find (—u’;?;l, p;.l;l,qs;%;l) € Xsp, X Qsn X Xpy, satisfying N (v, qn,bn) € Xsp X
Osh X Xph,

“in —H

ih — ~
—J’,vh) + V(WHI,VV)]@ + Z /rn{'l“x(?;.”zl TV -7 ds
f i

(—)n+1 _—n

At

+ Z /F(Ui,j — ), - T - T) ds — (P;’}ZI,V : Vh)f +er(v @) = (F17 v s,
i

(g, V-1 =0, (4.70)
n+l _ 1n
5o 22 i kmaxg(Vg't ¥ K; — kmax D)V, V
890 At |+ kmaxg( ¢j,h ’ lr//)p+g(( Jj maxZ ) ¢j,h’ l//)p
p

- CF(_M);‘Z’],[’ wh) = g( IZ}'H»Wh)p-

For this approach, since K;(x) and k2 are both symmetric, we have |K;(x) -
kmaxZ |2 < kmax — kmin. Next, we will prove the long time stability of Algorithm 3 under a

similar time-step condition, without any parameter conditions.

< min ] 20 m @ a0y vig,, 21 -Bi—Fr- P VS0 @4.71)

< min , . (4
[C(DpCDICE, & [C(Dy)C(D)I*CE g

Next, we will prove the theorem of long-time stability for the proposed alternative

ensemble method. Since the error estimate is very similar to the prood of Theorem 6, we

will not show this work again.



109

Theorem 8 (Long time stability of Algorithm 3) If there exist ay, az, 81,52 in (0,1) such

that the time-step condition (4.71) holds, then the Algorithm 3 is long time stable: for any
N >0,

1 P
SN + S 202,12 + S IV, ||f+ArZ / @y, Tids  (472)
At N-1
+ 3 8kmaxl| VO, [I5 + At Z VA
n=!
1, gSo Aty ne —~
< S0 417+ 252105, 15 + ||W0h||;+ArZ / (@}, -7 ds

2 2

At ' Cp
+ =8 maxnwjhnpwz ||J3?;1||f+AtZ

P L2

Proof 8 Setting v;, = ' ”“ Y = ¢”+1 in Algorithm 3 and adding all three equations yields

1
SR = ST+ S I =0, 5+ VIV (4.73)

+ Z/ max n+l Tl)(—>n :[\'l) ds + 2—At”¢n+1“p - _”¢] h”p

850
2At”¢n+l J, h”z +gkmax(v¢7-;ll’ n+])p + CI<_)7hl ¢J h) CI(_)I h’ n+1
= Uy 80 - 3 [ =nrencity, -y ds

- g((% maxZ)V¢] he V¢n+1)p

Comparing with the proof of Theorem (5), we just have two main difference at the

estimates as follows. The first one is

-2 S =nrencity, -y Fyds < 3 [ g - @, 2R ds
1 i
< Y [,
max
[ /(_)"h )% ds +

/(_’" ‘Fi)zds},
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The second term can be bounded as follows:

-8 (5 = knar DV, V00 ) <6 [ IVOIIBIRG ~ Kan TRITS, o d

P
< g(kmax ~ kmin) / V423151V, b dx
< g(max — kmin) IVO, I, 1962311,

k — k -
< g( max2 mzn)||V¢J h||2 g( max2 mm)||v¢n+1“2‘

Then we have the following inequality

2At 2At 1
nmax
+At—(||V—)”+1||f—||V—u>;‘,h||]%)+Z = [/F nel 2 ds - /(—’"h Tl)zds]

i

850 850 1 G | glkmax = kmin)
+ S92 - S0, + (Angw_; o Eomar 2ol | (11w gt 12 - 1997,12)

1
Lo L 7,h||,%+(1—a1 az—Afﬁ—) V@2 (4.74)

1 2C k — ki
+HA=pr=fr= b B L i
max 1

2 gc2
LIE IR + e A IR

kmax

4a/v

Since we assume K is SPD, and any two ensemble members have different hydraulic

conductivity tensor K, we have kyqy > kpin > 0 and thus 0 < ’"“kx—k"“" < 1. So we do
not need any constraints on these parameters. Now if the time step condition (4.71) holds,

(4.74) reduces to
1 1
27517 = 55 I h||f+Ar (||W"+‘||f ||V*"h||f) 4.75)

[/ "“ T ds — /(_)] h -T2 ds

241
n+12 2
+ ||¢ llp = 2Atllcﬁ,hll
1 Ci | gkmax = kmi
+ (A,__l + M) (||v¢n+1||2 = Ive] Il )

n+l

12
||fnJr [

P
i
850 a? 2

T



111

Sum (4.75) fromn = 0 to N — 1 and multiply through by At to get

1 So
SN 3 + £ 12 + ﬁ||v—> ||f+ArZ /ﬁ P ds

1 C g(kmax_kmin)) N 12
+AR— =L 4 Ao Tmax — Tmin ) g N |
2 llp

( 850 a; 2 J

1 850 G _
< Ell_bt)?,h”% ||¢,h||2 Alz ”V—)Oth + AIZ /(_) e 7)* ds
2

I G 8(kmax = kmin) 2 CPf n+1
(At gswz”f V69,117 +Azz4 w i

+A? w2,
Z 4ﬁ2kmax||fp] ”

4.2.5. Numerical Illustrations. We will use numerical examples to test the theo-
retical results, including (1) convergence of the ensemble algorithm; (2) combination with
the Monte Carlo method to efficiently simulate the Stokes-Darcy system with a random
hydraulic conductivity tensor.

4.2.5.1. Convergence test. In this section, we will check the error estimate for the
ensemble method by using a known exact solution. Specifically, we consider the model
problem on Q = [0, 7] X [-1,1], where Qp = [0,7] X [-1,0], and Qg = [0, 7] X [0,1]. We

take apyjs =1,v=1,g=1,5 =1, and

K,0

K=K = |, =10,
J
0 K

where K is the random hydraulic conductivity tensor and K is one of the samples of
K. Here we only consider kjj, k>, are random variables that are independent of spatial

coordinates.
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We use the boundary condition functions and the source terms as follows such that

fort =T =1,
¢p = (e’ —eV)sin(x)e,
j W
Ug = [Lsin(27ry)cos(x),(—2ké2+%sinz(ﬂy))sin(x)]Tet,
n T
ps = 0.

We consider a group of simulations with J/ = 3 members. The three members are
corresponding to different hydraulic conductivity tensors, i.e. kll1 = k212 = 2.21,kf1 =
k§2 =4.11, kfl = kgz = 6.21. As K is diagonal, we use Algorithm 3 for computation, and
thus there are no parameter conditions for both stability and convergence. In order to check
the convergence order in time, we uniformly refine the mesh size /4 and time step size At
from the initial mesh size 1/4 and time step size At = h’. The approximation errors of the
ensemble method are listed in Table 4.1, Table 4.2, and Table 4.3, for the velocity o, the
hydraulic head ¢, and the pressure p, respectively. From these tables, we can find that the
rate of convergence is O(h> + ar) = O(h?) = O(Ar) with respect to L? norms for % and ¢,
which confirms that our ensemble algorithm is first order in time convergent in both fluid
velocity and hydraulic head. In this test, the time step seems to be small enough, as we
did not observe any instabilies. The convergence rate for the pressure p is somehow better
than expected, which may be because the exact solution for the pressure vanishes Cao et al.
(2014).

4.2.5.2. Random hydraulic conductivity tensor. Next, we consider approximat-
ing the stochastic Stokes-Darcy equations with a random hydraulic conductivity tensor
K(X,w) that depends on spatial coordinates, using the Monte Carlo method for sampling

and our ensemble algorithm for numerical simulations, as described in Section 4.2.3.
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Table 4.1. Errors and convergence rates of the ensemble algorithm (J = 3) for At = 3.

h ||7h—_u)||0E’1 rate ||_u)h—_u)||0E’2 rate ||7h—7||§’3 rate
1/4 16.0818x 1072 | — [1.1996x 107" | — [1.7971x107" | -
1/8 |7.5907 x 1073 | 3.00 | 1.4960 x 10~2 | 3.00 | 2.2409 x 1072 | 3.00
1/16 [ 9.3433 x 107* [ 3.02 | 1.8431 x 107> | 3.02 | 2.7611 x 1073 | 3.02
1/32 | 1.1534 x 107* | 3.01 | 2.3009 x 10~* | 3.00 | 3.4513 x 10~* | 3.00
h I—M)h ——u)ﬁ’1 rate |Tfh ——u)|f’2 rate Wh —-u>|f’3 rate
1/4 | 1.2578 x10° | — | 2.5143x10° | — | 3.7713x10° | -
1/8 [3.3416 x 1071 | 1.91 [ 6.6823 x 1071 | 1.91 | 1.0023 x 10° | 1.91
1/16 | 8.5725x 1072 | 1.96 | 1.7144 x 1071 | 1.96 | 2.5717 x 1071 | 1.96
1/32 [ 2.1431 x 1072 [ 2.00 | 4.2861 x 1072 | 2.00 | 6.4292 x 1072 | 2.00

We first consider the case that the hydraulic conductivity tensor is diagonal and
Algorithm 3 will be used for computation. We construct the random hydraulic conductivity
tensor that varies in the vertical direction as follows:

ki1(X,w) 0
KX, w) = ! , and

0 ko (X, w)

ny
ki1(¥,w) = k(¥ w) = ap + o AYo(w) + Z oV AYi(w)cos(iny) + Yopri(w)sin(iny)],
i=1

N S _(inLe)? .
where ¥ = (x,y)!, 29 = HZLC, Ai = \nLee~ 3 fori =1,...,ny and Yo, ..., Yo, are

uncorrelated random variables with zero mean and unit variance. In the following numerical
test, we take the desired physical correlation length L. = 0.25 for the random field and
ap = 1,0 = 0.15, ny = 3. We assume the random variables ¥y, . . .» Yo, are independent
and uniformly distributed in the interval [-V3,V3]. Note that in this setting, the random
functions k11(X, w), koa(X, w) are guaranteed to be positive, and the corresponding K(X, w)

is SPD.
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Table 4.2. Errors and convergence rates of the ensemble algorithm (J = 3) for At = 3.

h | lgn—olig’ | rate | lign—gllg” | rate | lign—ollg” | rate
1/4 | 1.1563 x 107" | — [4.5348x 1072 | — [22165x107%| -
1/8 | 1.4786 x 1072 [ 2.97 | 5.6293 x 1073 | 3.01 | 2.6717 x 103 | 3.05
1/16 | 1.8504 x 1073 [ 2.99 | 6.9932 x 10~* | 3.00 | 3.3003 x 10~ | 3.01
1/32 [ 2.3132x 107* | 3.00 | 8.7305 x 107> | 3.00 | 3.7074 x 10 | 3.1

| o dgn—olf | rate | lgn-olP” | rate | |gn-oli” | rate
1/4 [35679x107" | — [27501x 107" | — [26241x10°!' | —
1/8 | 7.3695x 1072 | 2.08 | 6.7565 x 1072 | 2.03 | 6.6760 x 1072 | 1.99
1/16 | 1.7274x 1072 [ 2.09 | 1.6874 x 1072 | 2.00 | 1.6824 x 1072 | 2.00
1/32 [ 4.1129x 1073 [ 2.07 | 4.1156 x 107> | 2.03 | 4.1061 x 107> | 2.03

Table 4.3. Errors and convergence rates of the ensemble algorithm (J = 3) for ar = h.

h | lpn=plg" | rate | llpn—plig® | rate | llp—pllg” | rate
1/4 | 44572 x 1077 | — [7.2784x107"1 | — | 1.0725x10° | —
1/8 |5.5340 x 1072 | 3.00 | 9.0644 x 1072 | 3.00 | 1.3392 x 10~" | 3.00
1/16 | 6.2909 x 1073 | 3.03 | 9.7592x 107> | 3.12 | 1.4333 x 1072 | 3.13
1/32 [ 7.7665 x 107* [ 3.01 | 1.2048 x 1073 | 3.02 | 1.7479 x 10~> | 3.03

The domain and parameters are the same as those in the first test. But in this test,

the problem is associated with the forcing terms as follows:

fr = (&8 —e)sin(x)e,
2 k()_(f),(,()) . t
A = [A+v+dvr )T]szn(27ry)c0s(x)e ,
- . t - k()?,w) .2 . t
fr = =2vk(X,w)cos2my)sin(x)e’ + (1 + v)[-2k(X,w) + S—sin (my)]sin(x)e’.
n
The Dirichlet boundary condition:
¢ = (&’ —eV)sin(x)e,
k(X, - k(¥ ,w) . .
o= (% w) sin(2ry)cos(x), (—2k(X,w) + (* w)smz(ﬂy))sm(x)]Tet,

2
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will be used on the boundary of the domain, and the initial conditions are chosen by

¢ = (¥ —eY)sin(x),
[k()_c’, w) k(X,w)

T2

sin2ry)cos(x), (=2k(X,w) + sin(ry))sin(x)]".

=|
!

We simulate the system over the time interval [0,0.5], and the uniform triangulation
with mesh size # = 1/32 and the uniform time partition with time step size At = h> are
used.

We generate a set of J random samples of K by the Monte Carlo sampling and
run our code for simulating the ensemble of the system associated with the J realizations.
We use Algorithm 3 for ensemble computation, since K is diagonal, and multifrontal LU
factorization as the linear solver. We first check the rate of convergence with respect to
the number of samples, J. As the exact solution to the stochastic Stokes-Darcy system is
unknown, we take the ensemble mean of numerical solutions of Jy = 1000 realizations as
our exact solution (expectation) and then evaluate the approximation errors based on this.
The numerical results with J = 10, 20,40, 80, 160 realizations are listed in Table 4.4. Using

linear regression, the errors in Table 4.4 satisty

@5 - 2|, ~ 0.0201770%% [, =], ~ 0.2534) 7047,

Ipn = pllo = 0.0267J7017,|Ig), = ¢llg ~ 0.05407 704

The values of ||-||; and |-|; together with their linear regression models are plotted in Figure
4.1. It is seen that the rate of convergence with respect to J is close to —0.5, which coincides
with our theoretical results.

We next test the efficiency of our ensemble algorithm. By setting J = 1000
and & = 1/64, we run the simulations again with the same parameter samples using the

traditional approach, i.e., solving each realization individually. A comparison of the elapsed
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Table 4.4. Errors of ensemble simulations.

J 10 20 40 80 100
25 =) | 9.0319x 1073 | 6.2865 x 1073 | 45452 x 1073 | 32131 x 1073 | 2.1762 x 1073

[0 -] | 8.2725% 102 | 57495 x 1072 | 4.3362 x 102 | 3.0247 x 102 | 2.1095 x 102
ln—¢llg | 8.0585x 1073 | 5.5982 x 1073 | 3.9585 x 1073 | 2.8010 x 10~° | 1.8792 x 1073
lon — o[F | 17074 x 1072 | 1.2073 x 1072 | 8.5392 x 1073 | 6.1365 x 1073 | 4.2391 x 1073

10 T T T T 10t
=l
=}
=
a]
=]
0% ] 107 5
T -9 a
13 RN o
o =
o 2
04
103 F k! 103 F
— <& —LZerror — & —L2error
— & —nlaror — & —nleror
104 . . . . 10% . .
10 20 40 80 160 10 20 40 80 160

Figure 4.1. The rate of Ensemble simulations errors is O(1/ VI ) for (left) and ¢ (right).

costs is presented in Table 4.5, from which one can clearly see that our ensemble algorithm
is much faster than the traditional approach. The ensemble algorithm saves about 88% of
the computation time.

Table 4.5. Solver comparison of ensemble with traditional method.

matrix size | Assembly | solving
individual | 54148 x 54148 1000 1000
37407 x 37407 1 1000
ensemble | 16641 x 16641 1 1000
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Figure 4.2. Streamlines of the ensemble mean obtained from individual runs (left) and
ensemble algorithm (right) with / =80 at 7 = 0.5.

We also plot numerical results of our ensemble algorithm and those of individual
runs for comparison. The speed contours and velocity streamlines of the ensemble mean
computed from both approaches at 7 = 0.5 with J = 80 realizations are presented in Figure
4.2. Itis observed that both approaches capture the same general behavior of the flow, while
our ensemble algorithm saves 89% of the computation time.

Next we consider the more realistic case where the hydraulic conductivity tensor is

non-diagonal, for which we need to use Algorithm 2 for ensemble computation. Let

kii(X,w) kp(Xo
K ) = 1nxw) k(X w) ’
ky1(X,w) k(X w)

where k11(X,w) = k2 (X, w) # 0 and ky1 (X, w) = k12(X,w) # 0; i.e. K(X,w) is not diagonal

but symmetric and

nf
ki (%,0) = k(% 0) = a1 + o\ AoXo(@) + D o AK()cos(iny) + Yoy vi(w)sin(iry)],
i=1

ny
ka1(F,0) = kia(F0) = ay + oV AYo() + ) VA Yiw)cos(iny) + Yo si(w)sin(iny)).
i=1
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Figure 4.3. Streamlines of the ensemble mean obtained from individual runs (left) and
computation using our ensemble algorithm (right) with J = 100 at 7 = 0.5.

The corresponding forcing term for the Darcy equationis f, = (1+k11(X,w)—kn(X,w))(e” -
e Y)sin(x)e’ — (ki2(X,w) + ka1 (X,w))(e” — e™¥)cos(x)e'; for the Stokes equations, f; and
f, are the same as those in Section 4.3.3.2. The boundary conditions and initial conditions
are also the same as those in Section 4.3.3.2.

We take a; = 10and a; = 1 so that the random hydraulic conductivity tensor K(X, w)
is SPD. We consider a group of simulations with J = 100, using the Monte Carlo method
for sampling. We plot the numerical results of our ensemble algorithm (Algorithm 2) and
those of individual runs for comparison. The speed contours and velocity streamlines of
the ensemble mean, computed from both approaches at 7 = 0.5 with J = 100 realizations,
are presented in Figure 4.3. It can be seen that both approaches capture the same general

behavior of the flow while our ensemble algorithm is much faster.

4.3. ARTIFICIAL COMPRESSIBILITY ENSEMBLE ALGORITHM

The artificial compressibility (AC) methods were first studied in the 1960s to de-
couple the velocity and pressure by a regularization of the divergence-free constraint for

incompressible fluid flow equations. The idea is to add a small perturbation, e.g., ep or
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€p:, to the mass conservation equation and then eliminate the pressure from the momentum
equation, so that one avoids 1) solving a saddle point problem at each time step, and 2)
spurious boundary layers for the pressure caused by imposing artificial boundary condi-
tions. Some of the first AC methods in the literature were proposed by Chorin Chorin
(1967), Temam Temam (1968, 1969a,b), Vladimirova, Kuznetsov, and Yanenko Kuznetsov
et al. (1966). The AC methods can have severe time step restrictions if not discretized
carefully Chorin (1967). In a recent work, Guermond and Minev introduced a bootstrap-
ping technique to design unconditionally stable, higher order AC methods in Guermond
and Minev (2015). The proposed methods, unlike the popular projection methods, which
cannot exceed second-order accuracy in time without out losing unconditional stability, can
reach any order in time while being unconditionally stable (for the unsteady Stokes equa-
tions). DeCaria, Layton, and McLaughlin DeCaria ef al. (2017) studied an unconditionally
stable AC method based on a Crank-Nicolson Leapfrog time discretization for the Navier-
Stokes equations. The AC methods have also been recently applied to MHD flows for
efficiency, Rong et al. (2018). In Philippe and Pierre (2012), the artificial compressibility
splitting method, which is extended from the penalty-projection method for the unsteady
Navier-Stokes equations, was viewed as a hybrid two-step prediction-correction method
by combining the artificial compressibility method and an augmented Lagrangian method
without inner iteration. Error analysis of some variants of the AC method for computing
the solutions of the Navier-Stokes problems can be found in Shen (1995, 1996). Compared
with the extensively studied Stokes/Navier-Stokes equations, the coupled time-dependent
Stokes-Darcy equation is still in need of continued efforts to develop efficient methods in
this area.

Based on the key ideas of Jiang and Layton (2014); Jiang and Qiu (2019), which
was a fundamental development of the efficient ensemble algorithm for flow equations, in
this article we utilize the idea of artificial compressibility and partitioned time stepping

methods to construct the decoupled ensemble algorithm for efficiently computing multi-
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ple realizations of the stochastic Stokes-Darcy interface model with a random hydraulic
conductivity tensor, source terms, and initial conditions. In this algorithm, the originally
coupled multi-physics model is decoupled by a two-level technique. The first level is to
decouple the Stokes flow from the Darcy flow by the physical interface conditions and the
partitioned time stepping method. The second level is to decouple the velocity and pressure
by the artificial compressibility method in the Stokes equation. Hence, the Stokes-Darcy
model is decoupled into three subproblems. One of the three subproblems is a straightfor-
ward update for the pressure. For each of the other two subproblems, all the realizations
share the same coefficient matrix, which is independent of time. The common coefficient
matrix feature eliminates many redundant matrix operations, such as matrix assembly and
matrix preprocess, before solving the system. Hence, the efficiency can be increased by a
significant amount, which will be further explained in more details in the second numeri-
cal experiment. These features of the proposed algorithm significantly reduce the storage
requirements and computational costs. Furthermore, compared with the previous works
on non-interface problems in this area, extra efforts are required in order to deal with the
randomness in the interface conditions of the Stokes-Darcy system.

4.3.1. Formulation of Artificial Compressibility Ensemble Algorithm. For the
artificial compressibility ensemble algorithm, the originally coupled Stokes-Darcy interface
model is decoupled into three subproblems by a two-level technique. We can use the first
level to decouple the Stokes flow from the Darcy flow by the physical interface conditions
and the partitioned time stepping method to get subproblem 1. In order to get the subproblem
3, the second level is to decouple the velocity and pressure by the artificial compressibility

method in the Stokes equation. Subproblem 2 is a straightforward update for the pressure.
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We can propose the artificial compressibility ensemble algorithm as follows:
Algorithm 4 Find (—u’y“, p;f“, ¢';+1) € Xs X Qf X Xp satisfying ¥ (v,) € Xs x Xp,

u

W -
(#,V)f + V(Vﬂ);ﬁ_l’ VV)f + Z ‘/Fﬁi(?;”l : :Fz)(v : :['\l) ds

1+ [ =i BBy ds + 9 (V7L v = (9 )
i

Fer ) = (F1 )y,
(subproblem 1)

p;.’” = p;? —yV -_u)?”, (subproblem 2)

¢~ ¢l _ _
250 (JA—;J"”) + g(KVYIH, V), + g(K; = KV}, Vi),
p

(subproblem 3)
- CF(_I/Z;L, l/’) = g( p’f}'l’w)p’
where K = %Zle K, mij = \/(IL% and 7 = %Zj!zl Mij-
: 7K
! pi"l+1_pl:L N
Subproblem 2 can be rewritten as %’A—t’ +V.-u ’;” = 0. Thus v should chosen

to be O(1) or larger for the method to be first order convergent. Moving all the known

quantities to the right hand side, the algorithm is as follows:

Wl
At

4) ATEUR TR / T - T) ds
—~ JT
f 1

@ BTy = (591, gt

-3 [ =R B ) s = e,
i
p;l+1 _ p}; —yV -—M)?H, (subproblem 2)

¢ — ¢
850 (#J/’h) + g(KV¢t,vy),
p

(subproblem 3)
= (f7 ) — g((K; — KOV, V), + cr (@™ ).
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Remark 5 From the above algorithm, it is easy to see that the original coupled system is
decoupled into three subproblems, i.e., the (subproblem 1), (subproblem 2), and (subprob-
lem 3) by the two-level technique. For all time steps and realizations, (subproblem 1) can
be solved by the linear systems with one common coefficient matrix, since the coefficients
of the unknowns are independent of both time and the ensemble index. The coefficients of
the unknown interface term are always consistent at every time step because of the com-
monly used mean 1;. Similarly, all realizations in (subproblem 3) also share the common
coefficient matrix for solving the linear systems. The second equation (subproblems 2) is a

straightforward update that does not require solving any linear systems.

4.3.2. Long-time Stability and Error Analysis. We prove the long time stability

of Algorithm 4 under a time step condition and two parameter conditions:

_ Pmax \ 2 .
N @) hin (1= B1 = B2 = 225 )aiSov 2 Kiin (4.76)
< min ) o
e Ccz, g2 [C(Dy)C(Dy))*
nlmax < nmm and O < IEmin- 4.77)

Theorem 9 (Long time stability of Algorithm 4) Ifthe two parameter conditions in (4.77)
both hold, and there exist a1, ay, B1, 82 in (0, 1) such that the time-step condition (4.76) also

holds, then Algorithm 4 is long time stable: for any N > 0,

1 250 At ﬁmin —~
SN+ E2 12 + A2 ||WN||f RN IR /r @Y -2 ds
i

1 C gpmax 2 +1 2
AP — = 4 Ap2Emax |y ! ! 4.78
( S IVY|I2 + § P p2 (4.78)

1 250 G
< S I0IF + =57 ||¢?||§+Ar27||wo||f > ||p,||f+ArZ / (%7 ds
2
1 C gpmax 2 CPf +1 +l 2
AP — = + At \% + At " + At " )
( Soa? )n &I, 24 I I Z%kmnnf [k
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Proof 9 Setting v = _u)’7+1, U= ¢’?+1 in Algorithm 4, replacing yV ~_u)’?+1 in the momentum

equation by p"*t' — p", taking inner product of the mass conservation equation b ntl
q Y P; D 8 )4 q vy p

using a*> — ab = 1/2[a* — b* + (a — b)?*] and adding all three equations yields

1 1
2Atllﬁyﬂllf 2Atll_)”llf 2At||_u)"+1 _>"||f + VIIV_)"HIIf
+Z/Th ("t Tz)(_m+1 Tz)dS+ (Ilpjﬂllf ||1T?J||f+llpn+1 —P;‘II]%) 4.79)
gSo gSo 8So -
||</5"+1||2 ||¢ ||2 AL ||</5§~l+1 - ¢;~l||,§ + g(’KV¢§-'+1,V¢?+1)p

+ cl(ﬂ’;?“,as;l) - cz(ﬂ’;ﬁ ¢
= (T 4 g (et = Y /r (i — )" - T - T) ds
i

- (K = KOV, VT,

Applying estimates (4.10) and (4.11) with €| = 2?—;(), e = 2, we have the same result as

(3.7) in Jiang and Qiu (2019), as follows:
CI(—>n+l ¢ ) CI(—>J,¢n+1) =c (—>n+l —>n ?+l) CI(—>n+1 n+1 ¢ )
n n C2 n n 7, n
||* . *J-n}—Ar—z(||v—u’j“||§+||v7,-||}) ~ Bighninl VO (2 (4.80)
_gSO o1 2___ Vo2 + IV v |2
il - ol 1965115 + 1947117 ) = arvll Vet ).

By using the Cauchy-Schwarz inequalities and Young’s inequalities, for any ay > 0,5, > 0

we have

Uy Dy + 80y (4.81)

C2f 2
P,
< Gy I 7+ axv IV +

n+1 2 7 n+12
+ kimin||V@': .
4,82kmm”f || B2g minl| ¢] ”p
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By recalling (3.9) in Jiang and Qiu (2019), the other two terms on the right hand side of
(4.79) can be bounded as follows:

- /F (mij =)’ - - 7) ds (4.82)
< Z [ /(_> T ds + /(_m” 7)? ds]
g ((7(; - KV}, chs;?”) <g / IV K — Kol Vi |2 dx (4.83)

gpmaxl gpmax|

IVl + Vg

Using the above estimates, equation (4.79) becomes

1 —n+l —>n 2 2C 1
— @™ = — @+ |1 - e M\
oviEN e Es H @~ = dt vl 12

+Ar—(||v—’"“||f IV + Z[”— ] / @ Erds (484

mm [/(—>n+1 Tz)2 ds—/(_) Tl)Z ds]

+Z

] /ﬁ Eds + 5 (||p"+‘||f 1513 + P = p112)

gSo arln2 850 ’ 1 2C1 Pax, = n+l 2
+(1— A _ Pmaxy o V!
2At”¢ I, - 2At”¢ I, +(1=p1— B Sk a/2 i )8 kminl VT,
2
1 Ci  8Pmax ( 12 2 CPf 1 12
ANt—— A\ —||Ve™ ) n+ n+
( gSoa = VeI, — IV, ||ff, ”f 15, kmzn”f [
The stability holds if
2C —min rmax
1—a - az—At—j_O, "’T—"’Z >0, (4.85)
1
1 2C !
1= Bi— o~ At L a5 (4.86)



125

Recall that if a1, an, B1, B2, At, nlf’"“x, Pmax are all positive, we then have the following

constraints on these parameters:

O<ar <1, O<m<l, O<ﬁ1<1, 0<ﬂ2<1, (487)
fimax <1, nlmax < nmm’ (488)
kmin

Pmax o252 Q. T
1-a - a’g)ﬁ%l/ (1 —-Br1—p2- T )a'lg Sokimin
Ar < mi i . 4.89
< min G , 2C ( )

(4.88) leads to the two parameter conditions listed in (4.77), and (4.89) leads to the
time step condition (4.76) required for stability. Now if the time step condition (4.76) and
the two parameter conditions in (4.77) all hold, (4.84) reduces to

1
SR~ S+ Az > (V25715 - IV 215 (4.90)

l

850 ez 850, n 2 L Ci gpmax ( n+1y2 n 2)
2 || " —2—|¢" At—— Vo' —||Vo"
+ Sac105 15 = SR + |Arg <+ S (19051 - 19051

|:/(—>n+] Tl)Z dS—‘/‘(_”l Tl)Z ds

* o (||p]+‘ 12 = U2 + 12! = P

2 2
Ly etz +

1
< 3t .

4ﬁ km”’l

Sum (4.90) fromn = 0 to N — 1 and multiply it by At to get

1 250
SN+ SN2 + A2 2 ||v7§-v||} ||p] ||f+ArZ

/(—)N 7)Y ds  (4.91)

+

1 G 8P,

2 max N2 n+l nj2

At _gso_a]z+A )I|V¢ [ +— Eollp - pjlly
n

1 —0(12 gSO 0112 2C2 0n2 t 0n2 ﬁl
< TSI + =18l + Ar E||V_u>j||f+g||pj||f+AtZ

min
— [ as

N-1 2 N-1 2
1 Cl gpmax) CPf gC

AP —— = + At \Y + At 12 4 Ar il 2,
oy Vo212 Z4 w Ll Z%kmmnf I2

which completes the proof.
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Now we start to give a detailed error analysis for Algorithm 4. Let e;’,_u, = i(tn) =

_u);?, e;?’p = pj(ty) — p’]?, e;?’ s =@ i(tn) — ¢;."h denote the errors at 7, between the true solution

(w0 i(ta),pj(tn), #(t,)) of (4.2) and the approximation w0 ;?, p;.’, qﬁ?) obtained using the AC

ensemble Algorithm 4. We prove the convergence of Algorithm 4 under a time step

condition and two parameter conditions.

s < min | 701 ~ @B Knin (1=B1 =2 = (1+ B3)22%)ai Sy i
s ; ’ 7 2[C(D)C(D)*
CP’p CP,f 8°[C(Dy)C(Dp)]
(4.92)
i <At and Pl < koin- (4.93)

Theorem 10 (Error Estimate) For any j = 1,...,J, if the two parameter conditions in
(4.93) hold, and there exist ay,as, B1, 82 € (0,1) and B3 > 0 such that the time step condition
(4.92) also holds, then there is a positive constant C independent of the time step At such

that

1 s G 1 , -
5||e]’_f7||]% + (?vAt + Aﬁ/?)nve%n]% + Z(O’z + 5)Amimx fr(ejf7 -T)* ds
1 i

8% . N2, (B2 ;7 1, ArCy N2, |l N |2
+—|e; + | =gkmin + = + ——= | At||Ve: + —Atlle;’ ||z

) ||€J’¢||p (28 min zgpmax gSOQ% I e]#f’”l’ 2y ”eJ,P”f

N-T
+ Z Zmne;{;l - el lI7 < CAP. (4.94)
n=0

Proof 10 For Vv € Xg,Vi € Xp,Vq € Qs, the true solution (7j,pj,¢j) satisfies

(7j(fn+1) — 7 j(tn)

,V) + (VU (1), VV) 5 + Z‘/rni,j(_“)j(tnﬂ) -T)(v - 77) ds
f i

At
= (Pj(tas) V- v) , + er(v, () = (f75 1 v)r + €1 (v), (4.95)
(Pj(tns1) = pj(ta).q)  + ¥(V - j(t0s1). Q5 = (Pj(tns1) = pj(En)s ) 4 (4.96)
$j(tns1) — (1)
gSO At W)+ g(q(jvqjj(tnﬂ), V‘ﬁh)p - Cl"(_’jj(tn)’ lﬁ)
P

= g5 ) + € ). (4.97)
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The consistency errors ej’.’;l(v), e]’.’;l(t//) are defined by

n+1 . j(tn+1) j(tn)
() := ( At

¢j(tn+l) - ¢j(tn)
At

- uj,t(tn+l)av) —cr(v, @(tns1) — @j(tn))s
f

el (y) = ¢S ( - ¢j,z(tn+1),#//) + cr( j(tne1) =1 j (1) 1),

p

Subtracting Algorithm 4 from (4.95)-(4.97), then for Vv € Xs, V¢ € Xp, andVq € Qs,

eni)l - en_)
AL L A7 LAY +v(Ve”+1 Vv)r +Z:/7],(e”+1 -T)(v-T7;) ds

+ Z/ Mij — i) (e - 1)V - T) ds — ( 7;1,V v)f + Cr(V,e;l,q;)

== Z/ 771] 771 ((_)’Hl —>n) (v 7)) ds + €n+1(V) (4.98)
1 n+1 n n+1 1
y (ej,p - ej,p’q) e =g (Pj(tns1) = Pj(ta):q) 4 (4.99)
el — o _ B
g5 (W,tﬁ) + g(?(Ve;-l;}l, V), + g((K; - 7()Ve;-l’¢, V), - CF(e;lj»l/’)
p
= —g((K; = KOV = @), V), + €51 (). (4.100)

Setting v = e;’i},q = e7;1 W= e”” in (4.98)-(4.100) and adding the three equations

vields

1 1 1
Sl - Sl |3 + o le "“—eeuf+v||Ve"“||f+Z/m(e":l 7Y ds

850 850 850 -

S8t I} = S2le 17 + et — el + RVl Versh), + el )
1 1

et + 5 (183117 = e, ) + 5l = e, (4.101)

n n n 1 .
:_2/ s =) @y TN T ds + )+ (pytinen) = i)

—Z / mij =) (@] =00 - T - T) ds = g(K; = KOV@] = ¢, Ve,

_g(((]( W)Vé V€n+1)p + En+l(en+1

J$’
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Using the same technique in the stability proof (see (4.80)), we have for any a1, > 0

c1(e”+1 €)= c1(e e th]) =c (e’”l1 —e H,eﬁ;l —-c (e”i}, 7;1 — ey (4.102)
1 n+l n+1 n n+12
>~ et = eIl - Arﬁ—f (1913 + 19e™ 1) = Brghninl V€512

At C1

ng” n+1 1 ”2
2At € 280 a

(||v nE + 19, 2) - el Ve |2,
Next, we bound the terms on the right-hand side of (4.101) one by one. First,

-2 [ = ey o s < Y [ aert - aras

< Z [ /(e T ds+ /(e”” .T)? ds] . (4.103)

By Poincaré inequality and (4.4), for any o1 > 0, we can get
- / (i = 70) (G =) - Ty - ) ds (4.104)
7 /T o

C max tn+l max n
SZ[E% At/ ||Vujt||f dt + o, /(e Hom)? ds].
1

n

Next, we bound the consistency errors:

n+1(en+1

U (tnr1) =4 (1)

+1) n

< | )|+ OV 0000) = 950 + v T
thtl Tn+l

scm/ ||uj,t,(t)||}dz+cm/ ||V¢j,(t)||2dt+—v||Ve"+l||f
In In

n+1( n+1

1) — @ity 2
< CH‘/’J( - ¢(tn) 81:(tusn)| + CUVG6ret) =7 )} + Bosgnll VeI

B>

thtl T+l
< cm/ [EXG] [k dr+cm/ IVuj ()17 dr + 5 22 Kol V512,
tn In
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The hydraulic conductivity tensor terms are estimated as follows: for any 3 > 0,

gpmax

— g((K; — K)Ve!, Verh, < Eomaxgen 12 gp’”“uv 2. (4.105)

I’
1/ n n gpmax thrl n
- 8((K; = KOV (¢! — ¢, Ve +1>,,_ g / IVG,ill; dt + B3gOrmar VTS 15
In

(4.106)

Lastly, we bound the pressure term. Consider the decomposition Hé (Q) =Y &Y, where
L = {(-A)"'Vq : q € L¥(Q)}; see Girault and Raviart (1986a); Shen (1995). For
Pji(t),pju(t) € L%(Q)/R, there exists a unique wj(t) suchthat V- uj(t) = pj (), V- (t) =

Pju(t), and we have

IVl < Clipja Il IVl < Cllpjall, V2 €[0,T1].

The pressure term can be rewritten using (4.98) as

1 1 In+1
(P/(tn+1) p(tn), e"+1) == ( / pi(t)dt, e"“) (4.107)
y f 7 In f
1 th+1 1 In+1
= — (/ V(1) dt,e””) = —— (/ ,uj(t)dt,Ve;l;l)
Y In f Y In ’ f
1 e;’iu,l — 677 th+l { In+1
=—|—— wi(t)yde| + (Ve’” / Vui(t)dr)

f

Y Z/Uz(e"ll Tl)(‘/t‘tn+l () dt - T) ds
"y Z /r (g =) (€57 a)(/tt’1+l () dt - ) ds
+l Z / (i = 17) (W j(tas1) = U j(22)) - :[-;)(/tn+l i) ds

th+l Tn+l
e[ wwadner) - et [ wwan.
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We need to bound each term on the right hand side of (4.107):

In+1
- —e]”;l( / u(t) dr) (4.108)
j(ln+1) - j(tn) ‘2 C , C ‘/I"Jrl 2
= —ujs(ty + —|IV(¢;(tns1) — @), + — Vu;(r)dt
= Al [+ SR = 9+ S [ Tusoarl
C s C ias C h+1
<Sa [0 lwaars Sa [T s Svae [T 10 13ar
y 1 y " y n
tn+l tn+1

< CAr /
tn

K(Ve'?
Y Js

In+l
+1 n+1
23 / V() diy < Zvm|VeR +

C In+1
O dr-+-Cae [ 18,0 dr+ Svae [ ol
n t

CvAt

Intl
/ Ipj(Dll7de.  (4.109)
In

—-e€ —u> In+1
LR / wi(t) dt (4.110)
In

In+1 n
— (eyiu}/ ﬂj(l)df) - (677,/ uj(l)df)
’ In f ’ Tn-1 f

1 /ln+l /ttl )
- — ", (1) dt - [(t) dt
yAL ( i ), ,Uj( ) - :uj( ) ;

Intl In ] 2At
e;‘iu},/ pi(t)de| — e;‘_u>,/ uit)yde| |+ —
n f T 7

(¢ inten) f‘

] u

(oot [ vt — (e [ wodr) |+ 220 e
¢ KN In IJJ e],—u), In-1 IJJ )’ eJ’—u> f ll/’t é‘n f

J»

[ In+l In
a2
et [ wwar) - e [Tuoar) |+ 2ove
In ’ In-1 ’

f

CAt2

”pjl‘t(é:n)”f’ & € (th-15tns1).



We also need to bound the following terms.

) Z / (i =) (€ ?")(/tln+1 pj(t)dt - 7) ds
sz Zn/max‘/Ke - ‘1',)(/;%+1 () dt - )| ds

Cr/max tnsl

max n 2 N =~\2

< oon; ("o - 1) ds + ( uj(t)de - 7;)" ds
- ' r U ooy? Jr tn

i L

3 n/max In+l
’ =)\2 J 2
< > o™ /r(e?,ﬂ’ ) ds + ﬁyzAt/, IOl dt]

_ ) Cn{max el )
rmax n.T n i A ' _
| [ s s e [ ol

. Z / (i = ) (( j(tns1) =0 j(8)) - ?i)(/t " ui(t)dt - 7) ds
< —Zn”"“ / (T j(tnsr) = T (1)) - TN / " dt 7)) ds

thtl C tntl
< Z [ maxAt/ IVuj||7 di + ;nl{maxAt/ . ()II7 dt] :
In th

Tnsl
- Z/nt(e”i} T,)(/ ﬂj(l)dt -T;) ds
In
C]h Tn+l
< Z [0'3 /Uz(e”i} Tz)zds + - At/ ||pj,t(t)||J2€ dz] )

In

CAt

Tntl ) ﬂZ
7 / ”p]'J(t)”f gkmmllve,¢”
min J1y 2

1 In+l
—Cr(/ wi(t)dte’ ) <
v P Bry?gkmi
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4.111)

4.112)

(4.113)

(4.114)
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Combining all these estimates, we have the following inequality
LTS 1 20C, 1
- —|le", l-—a;—a, - At——|v||Ve "1 4.115
Sl = eI + ( o - ﬁ%V) Vet 2 @.115)

250 12 85 o |2
+— +At (V"” - V”_, )+ et
( 1% 5 ) Il ”f Ve’ II7 2At| I, - 2At” ollp

+ 2 (0-om ~w o) [ as

+ 2(0'2 + )n'm‘” (/(e"i,1 T)? ds — '/F(e;’_d T)? ds)

2C Pmax n+1 2 1 n+1 n
+((1—ﬁ1—ﬁz—At S 5)—(1+p3) kmm)gkmlnIIVe I, + 2ylle,~,, i
:82 T 1 AtC n+1)12 1 n+1 n
(2 Shnin + 38 + oo (Ve 12 = 19elg12) + 5 (||e 12 - llet, 1)

tn+1 tn+1

IV lI7 di + CAt/
['l

l"+1

gl e+ ot [ 190312 dr
l»n.

< Z lmaxAt/

tn+1
+CAt /
l'l
+CA1/
l”

CyAr [ 5 1
+ LD 5dt + —
| iars

n

CAZZ /max C T+l
ol + Z( i )Ar [ wiatol
In

0'27 037

In+l C In+l
+Z[ LN / 1V1jallp di -+~ At / IpjOll7 df]
n tn

CAt /’"“ 5
t—— POl
ﬁZ')’zgkmm tn ’ f

tn+1 tn+1

Cgp,
IVl i + =S [ 9otz ar
l'l

16l e + o [
t"

ln+1 tn+l

C In+1
O dr+- e [ 10l e+ Svar [ ol
m 1,

n

In+1 In
(e [ wat) (e [ )
¢ f T e f

n

To make sure the third, sixth and eighth term on the left-hand side are non-negative,

we need 0 < ay,a,03,61,62 < 1, and

rmax

n; < I - 03 p;nax < 1

— < , = . (4.116)
ﬁl’,m" l+o1+0m Kmin 1+ﬁ3
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For Yos3 € (0,1),Yo; > 0,You > 0,YB3 > 0, we can derive that 1+1C:10+302, 1+1ﬂ3 €

(0,1). Now ifthe two parameter conditions in (4.77) are satisfied, we have " — U/ e’"f”‘ € (0,1).

~min
7;

rmax

2% ond By > 0

Then we can easily find o3 € (0,1),01 > 0,0 > 0 such that T = Troton

pmax 1
such that T < I35 vy

Then under the two parameter conditions in (4.93) and the time-step condition

(4.92), (4.115) reduces to

1
Sl = Sl I+ (2 +Ar—) (Iverdi2 — ver_12) @.117)

/ "= n 850
Y e ( [ e as- /r (e P s+ SR - 00,

B - 1 AtCy 12 1 1 2
+—k-+—’+—(V"+ -V )—(”* — )
(2g min + 5.8 Pmas oS0 [ I, = 11Ve 41l > leH 7 = llef 117
1 n+1 n
+ Z”ej,p _ej,p”f
tn+l ) tn+l ) tn+l )
< Z maw/ Va7 dt+CAt/ln ||u.,-,,t||fdt+CAt‘L IV6;lI2 dt
tn+l tn+1 C , tn+l
+cm/ ||¢j,t,||,%d;+cm/ Va7 e + gp'”“m/ 1Ve;,12 dt
m m ﬁ3 m
tn+1 l”+l t
C n+1
wca [ Tl dev car [ a0 e+ Svar [T
m m In

CVAt /lnﬂ ) 1 | h+1 th
¥ Ip(IPdr + —— | [, / i) - (e, / ) di
axy? Ji, Y A PR !

C /max Ci thtl
||p,n<fn)||f+2( L )At / Ipj )1t

0'3)’ tn

I+l C In+1
+Z[ maxAt'/ 1Vuj |17 dt + ynlm“xAt[ ||Pj,t(f)||J2cdt]

CAt /tn+1 5
+——— P (D]l5.
,BZVngmin In ! /
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0

Since ej7 =0, e?p =0, and e;.)qj = 0, summing up (4.117) fromn = 0ton = N — 1 and

multiplying through by At yields

1 ) rmax =
§||ej_\”_u>||‘)2p+(?vAt+At )||V ||f+Z(0'2+ ~)At] /(ejf_u,-r,-)zds

B - 1, AIC

85 1
+7||€§,]¢||,% + ( > —8kmin + 58P max * At||Ve J¢|| *3 Al||6'N ”f

0 1

1
+ Z —At||e"+1 el 2 (4.118)

— C

< At — M AL

S % S

n=0 i
ZJl+l

+cm/ IVl dt+CAt/
tn tn

e+l

C 4
+- gg:axm/ IVl dt+CAt/ ||uj,t,(t)||}dt+CAt/ IV (I dt
m m

ln+l tn+l

IVuglf dr+ Car [ gl ar

tn

l"+l tn+l

6l +Car [ 191 ar
tn

tn+1 tn+1

CyAt

C In+1
+;vm/ IpaOlljdt + =
In

Z(C”'max € )A / 1pa(0)1 d
+ 1 pid(0]% dr
oy: o) S, Y

n

Tn+l C Tn+l
+Z[ 7" AL / 1Vually di + ™" Ad / llpj,r<f>llidf]
In I

CAt /’"“ ) 1 N
P S e 0 [ e P / L di)
B2y gkmin Ji, PRy i ) ;

In+l
| Wi ||p,t,<§n>||f
In

The last term in (4.118) can be bounded as

(N [™ At ([ Af? 5
et | moar) = (e mien) < e + —lki@wl  @119)
y J> IN-1 f 7 J>

1
< ZIe I + CAP DO < 7€ 1B + CA N3 I

where Oy € (tN—latN)'
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Moreover, for functions v(x,t) defined on Dy x (=T,T), we define the norm

Vlleo0,r := ||V||L°°(—T,T;L2(Df))'

Then the second term at the sixth line of (4.118) can be bounded as follows:

! CAP?
At Z zlpis @7 < CAPIpsalro (4.120)

Then (4.118) reduces to

1 @2 rmax gO
Sl + (5 v+ AP N 1+ T+ e [ 57 ds + 200l

B ; L, ArC, 2 N n+l 2
0 R e wed EUACA « 50l ||f+Z—Ar||e el

2 2 2 2 2 2 2 2 2 2
< CAr ””j,t”z,l,f + CAt ””j,zz”z,o,f + CAt ||¢j,t||2,1,p + CAt ||¢j,tt||2,o,p + CAt ||Pj,t(t)”2,(),f

4.3.3. Numerical Illustrations. In this section, the features of the proposed AC
ensemble scheme for the Stokes-Darcy system are shown by three examples of numerical
experiments.

4.3.3.1. Stability and convergence test. First, we set the model problem on Q =
[0,7] x [-1,1], where Qp = [0,7] X [-1,0] and Qg = [0,7] x [0,1]. We take agys = 1,
v=1,¢=1,and Sy = 1. The boundary condition functions and the source terms are

chosen such that the following functions are the exact solutions:

¢ = (e’ —e?)sin(x)e,
k! ok

U = [isin(Zny)cos(x),(—2k£2+%sinz(ﬂy))sin(x)]Tet
Vg Vg

p = sin(nxy)e'.
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For the hydraulic conductivity tensor, we set

K=%K; = ki O_ . =1,
0 kéz
where K is one of the samples of K. In this simple test, we only consider the case that
k11, kyy are random variables that are independent of spatial coordinates. All the numerical
results below are forr =7 = 1.

We consider a group of simulations with J = 3 members. The three members are
corresponding to different hydraulic conductivity tensors, i.e. kll1 = k;z = 1e‘3,k%1 =
k3, =0.9¢7, k3, = k3, = 1.1e7>. As K is diagonal, we use Algorithm 5 for computation,
and thus there are no parameter conditions for both stability and convergence. In order to
check the convergence order in time, we uniformly refine the mesh size & and time step
size At from the initial mesh size 1/4 and time step size At = 0.1h. The approximation
errors of the AC ensemble method are listed in Table 4.6, Table 4.7, and Table 4.8, for the
velocity 7, the hydraulic head ¢, and the pressure p, respectively. From these tables, we
can find that our ensemble algorithm is first order convergence in time. Moreover, from
Table 4.9, we find the results are not convergent to the exact solution when Az = 3h, which
is consistent with our theoretical result that a time step condition must be satisfied to ensure
stability and convergence.

4.3.3.2. Convergence and efficiency test for / random samples. We next consider
using the presented ensemble algorithm for approximating stochastic Stokes-Darcy equa-
tions with a random hydraulic conductivity tensor K(x,w) that depends on spatial coordi-
nates. Let (®, 7, %) be a complete probability space. Here © is the set of outcomes, ¥ € 2°
is the o—algebra of events, and P : ¥ — [0,1] is a probability measure. The stochastic
Stokes-Darcy system considered reads: Find the functions @ : Qg x [0,T] x ® — R4

(d=2,3),p:Qsx[0,T]x0O — R,and ¢ : Qp X [0,T] X O — R, such that it holds P —a.e.
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Table 4.6. Errors and convergence rates of the AC ensemble algorithm (J = 3) for At = 0.1h.

h

—E1
llun — il

rate

—E2
(e — ully

rate

— 1 E3
llun —ully

rate

1/4

6.199 x 1072

6.189 x 1072

6.200 x 1072

1/8

2.944 x 1072

1.07

2.906 x 1072

1.09

2.924 x 1072

1.08

1/16

1.408 x 1072

1.06

1.377 x 1072

1.07

1.469 x 1072

0.99

1/32

6.935 x 1073

1.02

6.784 x 1073

1.02

7.348 x 1073

1.00

h

—E1
llun = ully

rate

—E2
llun — ully

rate

— 1 E3
llun — ull}

rate

1/4

1.259 x 107!

1.248 x 107!

1.260 x 107!

1/8

5.246 x 1072

1.26

5.403 x 1072

1.20

5.612x 1072

1.21

1/16

2.385x 1072

1.13

2.573 x 1072

1.07

2.647 x 1072

0.96

1/32

1.135x 1072

1.07

1.169 x 1072

1.13

1.260 x 1072

1.07

Table4.7. Errors and convergence rates of the AC ensemble algorithm (J = 3) for At = 0.1A.

h | lign—glly” | rate | lign—¢lly” | rate | lign = ¢lly” | rate
1/4 [ 1.799x 1077 | - [1.780x10°'| — | 1.800x 107" | -
1/8 | 8.177x 1072 | 1.13 [ 8.091 x 1072 | 1.13 | 8.372x 1072 | 1.10
1/16 [ 3.894x 1072 [ 1.07 [ 3.799 x 1072 | 1.09 | 3.987 x 1072 | 1.07
1/32 1 1.928x 1072 | 1.01 | 1.809 x 1072 | 1.07 | 1.954x 1072 | 1.03
h | lgn—olll" | rate | llgn—oll;” | rate | ligp—gll;” | rate
1/4 [4.620x 1077 | — [459x10° 7| — [ 4625x1071 | —
1/8 [2.090x 107" [ 1.14 [ 2.169x 107" | 1.08 | 2.171 x 107" | 1.09
1/16 | 9.955x 1072 | 1.07 | 1.033 x 1071 | 1.07 | 4.3370 x 1072 | 1.07
1/32 149531072 | 1.11 [ 5.139x 1072 | 1.00 | 1.0858 x 10> | 1.09

in O, or in other words, almost surely

U(x,t,w) = VAR (x,1,w) + Vp(x,t,w) = fr(x,1),

\Y -_u>(x,t,a)) =0, inQg¢x0O

Sodi(x,t,w) =V - (K(x,w)Vo(x,t,w)) = f,(x,1), in Qp X O,

#(x,0) = do(x), in Qp, and 7 (x,0) = uo(x), in Qg,

P(x,t,w) =0, in Qp\I" and % (x,1,w) = 0, in IQ\T.

(4.121)
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Table 4.8. Errors and convergence rates of the AC ensemble algorithm (J = 3) for A = 0.1h.

Ilpn = pll5” | rate
5577x 1071 | —

2403 x 107! | 1.21
1.145x 1071 | 1.06
5451 x 1072 | 1.07

lpn = pll5~ | rate
5578 x 10T | —
2.425x 1071 [ 1.20
1.097 x 1071 | 1.14
4989 x 1072 [ 1.13

h | llpw=plly" | rate
1/4 [5.558x 1071 -
1/8 [2.316x 1071 | 1.25
1/16 | 1.007 x 10~ | 1.20
1/32 | 4536 x 1072 | 1.15

Table 4.9. Errors of the AC ensemble algorithm for A7 = 34.

—_—
[lun =14 ]lo

”uh _—I/ZHI

[6n — ¢llo

llgn — ¢l

lpr = pllo

1/4

8.850 x 10°

1.158 x 10!

8.619 x 107!

2.906 x 109

3.334 x 10°

1/8

8.852 x 10°

1.102 x 10!

8.692 x 1071

2.439 x 10°

3.453 x 10°

1/16

2.417 x 10°

3.023 x 10°

2.345 x 107!

7.896 x 107!

2.160 x 10°

2.423 x 10°

3.009 x 10°

2.377 x 107!

6.713 x 107!

2.115 x 10°

1/32

where fr(x,t) € L*(Qg), fHr(x,1) € L*(Qp). The hydraulic conductivity K(x,w) is a
stochastic function, which is assumed to have continuous and bounded correlation function.

We construct the random hydraulic conductivity tensor that varies in the vertical
direction as follows

ki1(X,w 0
K(E.w) = 11X, w) ,

0 ko (X, w)

and

ny
k(%) = ag + o AoXo(w) + )| o VAl(@)eos(iny) + Yoy si(w)sin(iny)],
i=1

(inL

- AY; C)2 .
where X = (x,y)], 2y = "ZLC, A = \nLee~— 3 fori = 1,...,ns and Yo, ..., Yo, are

uncorrelated random variables with zero mean and unit variance. In the following numerical
test, we take the desired physical correlation length L. = 0.25 for the random field and

ap = 1,0 = 0.15, ny = 3. We assume the random variables ¥y, . . .» Yo, are independent
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and uniformly distributed in the interval [-V3,V3]. Note that in this setting, the random
functions k11(X, w), koa(X, w) are guaranteed to be positive, and the corresponding K(X, w)
is SPD.

The domain and parameters are the same as those in the first test. But in this test,

the problem is associated with the forcing terms as follows:

fr = (&' —e)sin(x)e,
k(X,
fn = [A+v+ 4vn2)M]sin(2ﬂy)cos(x)et + mycos(nxy)e’,
T
> . t - k(¥,w) . 2 . t
fr = =2vk(xX,w)cos2my)sin(x)e’ + (1 + v)[-2k(X,w) + = sin“(ry)]sin(x)e
+ mxcos(nxy)e'.
The Dirichlet boundary condition:
¢ = (e’ —e?)sin(x)e,
k(x k(x
U o= %) sin(2ry)cos(x), (—2k(X, w) + (x,za)) sin®(ry))sin(x)|" e’
n n

will be used on the boundary of the domain, and the initial conditions are chosen by

¢ = (&’ —e?)sin(x),
_ [k()?, w) sin(2ry)cos(x), (=2k(¥, w) + @sinZ(ﬂy))Sin(x)]T,

=|

p = sin(mxy).

We simulate the system over the time interval [0,0.5] and the uniform triangulation
with mesh size & = 1/32 and the uniform time partition with time step size At = 8/ are
used. We generate a set of J random samples of K by the Monte Carlo sampling and run
our code for simulating the ensemble of the system associated with the J realizations. First,

we need to check the rate of convergence with respect to the number of samples, J. Since
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Figure 4.4. The ensemble simulations errors are O(1/VJ) for 0 (left) and ¢ (right).

K is diagonal, Algorithm 5 is used for ensemble computation. As the exact solution to

the stochastic Stokes-Darcy system is unknown, we take the ensemble mean of numerical

solutions of Jy = 1000 realizations as our exact solution (expectation), which is denoted

by uy,. We also define uj, as the ensemble mean of J realizations. The numerical results

with J = 10,20, 40, 80, 160 realizations are listed in Table 4.10. Using linear regression, the

errors in Table 4.10 satisfy

llun = gy llox 0.0248J70495 luy, — uy |l ~ 0.2183J 704864,

1ph = payllox 0.0214570%05, Iy, = g flo~ 0.06507 042,

The values of ||-||op and ||-||; together with their linear regression models are plotted in Figure

4.4. It is seen that the rate of convergence with respect to J is close to —0.5.

Table 4.10. Errors of ensemble simulations.

J 10 20 40 80 160

et — ugJI5 | 8.0121x 107 [ 57229 x 107 | 4.1470 x 10~ | 2.9411 x 10~ | 2.0559 x 10
oy = ugllF | 7.1225x 107 | 5.0867 x 107 | 3.6343 x 107% | 2.5775x 107 | 1.8543 x 10~*
l¢n — g ll | 7.0235% 1077 | 5.0528 x 10~ | 3.6091 x 10~ [ 2.5964 x 10~ | 1.8414 x 10~
lgn — dpllE | 2.1714 %1072 | 1.5291 x 1072 | 1.1001 x 107* | 7.8578 x 10~ | 5.6127 x 10~
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Next, we briefly discuss the efficiency of our AC ensemble algorithm compared with
the traditional method that runs the simulations individually, based on a test with J = 1000
ensemble members and the mesh size 4 = 1/64. A comparison between the matrix systems
of these two methods is presented in Table 4.11. First, because all the realizations in our
ensemble method share the two common matrices, which are assembled only once, the
cost for the matrix assembly is significantly reduced. This can be easily observed in the
third column of Table 4.11. Secondly, the common matrix can provide opportunities to
preprocess the matrix systems for all the realizations in a unified way, depending on the
chosen matrix solver, such as the LU decomposition discussed above. This may lead to
a significant reduction of the computational cost for solving the matrix systems. Thirdly,
even though each realization in our method has two matrix systems to solve, each of these
two matrices, which arise from the two-level decoupling technique in the proposed method,
is much smaller than the only one matrix in the traditional coupled method. Therefore, our

method saves a lot of computational cost for solving the linear matrix systems.

Table 4.11. Solver comparison of ensemble simulations with a traditional method.

matrix size | number of matrix assembly | number of matrix solving
individual | 54148 X 54148 1000 1000
33282 x 33282 1 1000
ensembleyc | 16641 x 16641 1 1000

4.3.4. An Alternative Approach. If Kj;(x) is diagonal, an alternative artificial
compressiblity ensemble algorithm can be devised to remove the parameter conditions for

stability.
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Algorithm 5 Find (TZ;H, p;.’“, ¢;’+1) € Xs X Qf X Xp satisfying ¥ (v,) € Xs x Xp,

— -
Lt’.1+1 —un

—— j,v) +v(v—u’7+1,vV)f-+Z/rn;'laX(—u";?+l -T)(v-T;) ds
f i

£ /r (g =)@ )T ds + YV TFLT )y = (Vv (subproblem 1)

+ CF(V ¢ ) = (f}l;l’v)f7

n+l

prt=pt -9V .—u’;}ﬂ, (subproblem 2)

¢?+1 - ¢;L n+l n
850 A Yn| + kmaxg(v¢j ’Vlr//)p + g(((Ki — kmax )V 5, Vi)p
p

(subproblem 3)
—cr(@l,ym) = g(f) 4 0)p,

4.3.4.1. Analysis of long-time stability. We can prove long time stability of Algo-

rithm 5 under a similar time step condition, without any parameter conditions.

. (4.122)

kmax_kmin
At < min {(1 —w- QZ)ﬂ%kmax (1-p1-p2- T)Q%SOV} 2vkmax

Cr.p ’ Ch s 2IC(DACD,)I
Theorem 11 (Long time stability of Algorithm 5) Ifthere exist ay,ay, B1, 52 in (0,1) such

that the time step condition (4.122) holds, then the Algorithm 5 is long time stable: for any

N >0,

e B s Ay Mg e a3 T [ 5
Syl + =19, gV Pl T e

1 kmax_ min n n
(At 85 a2 %) Vg3l + = Z ™! p,-llfc (4.123)

L5002 . 850, 002 2 G2 0 0 2
< I + 5 + A S IV + ) ||p,||f+ArZ G257y ds

N-1 2
1 C 8(kmax — ) .
+(Atzg70;+m% V012 +AZZ ™ fllf}’jlllf
1

+Ar Z py /N2
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Proof: Setting v, = 7;‘“, U= ¢7+1 in Algorithm 5, replacing yV ~_u);?+1 in the momentum

-1 _n+l

ptl p’/?, taking inner product of the mass conservation equation by y P}

equation by P}

and adding all three equations yields

1 1 1
@2 D+ S =+ IV

max n+l1 n+l1 n+1 n+1 ny2
+Z/r @) Tz)dS+—(||p, 12 = 1P + P = 1)
l

gSo gSo gSo

||<z>”‘“||2 VL4 I+ ||<z>"+1 $ilp + Shmax (VO V), (4.124)

+ czm’;?“, ¢ - q(‘u’;a @)
= G s = Y g = R ds
i

- g((q(] - kmax-z-)v¢;l, V¢;'l+1)p-

Since K(x) and k4, are both symmetric, we have |K;(x) = kjaxZ |2 < kpax — kmin. The

main difference from the proof of Theorem 9 is on the estimates of the following two terms:

-2 o=y aw’;?“ %) ds
<Z[ i /(_) T,)z dS+ /(—>n+l Tl)Z ds]

and

=6 (76 = knax VO VO] )

Kmax — ki Kmax — ki
< g( max2 mm>||V¢};||[2, n g( max2 mm)“V(p;Hl”;
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The estimates of other terms are similar to those in the proof of Theorem 9. Com-

bining all estimates, we then have the following inequality:

1 =nen2 i 2G 1

—|[W" H I - —ay = M=—= | v||Vi)? 4.125

s 731 S35 + 1 = = = v 22wt @.125)
C

- OCARRCTIEDY | [ as- [ aral

n2 850 nriy2 _ 850 2
p,.nf) e - S

n+1

(||p,+‘||f P12 + 11!

1 2Cl kmax_kmin n
+(1 = B1 = B = At— i )8kmax IV
gO max a’l max
2
1 Cy  glkmax — kimin) 12 2 P.f 12
+At——+—(V’-’+ —V’?)S o
( <o a? 5 Ve I, — IV, 1 Tl
gCPl’ ||fn+1||2
4ﬁ2kmax

Since we assume K is SPD, and any two ensemble members have different hydraulic

conductivity tensor K, we have k. > ki > 0 and thus 0 < Kmax=kmin 1 Thus, no

kmax

constraints on the parameters are required. Now if the time step condition (4.122) holds,

(4.125) reduces to

a5y = 5

X
[/(77+1~a>2ds—/(77-a>2ds
r r

g 0 ent+12 2 1 G g(kmax_kmin) ( n+lp2 n 2)
—_— Vo' — |V
S0 g2 - S22 + ( A 196112 - 190312

1 ||—>n+1 2

L+ Ar— (||W"+1||f Iva?) (4.126)

n+1

-3

(||p"“|| 2 1P + 112

2At

2 2
n+1

12
IIf”+ -

T+ T

Summing up (4.126) from n = 0 to N — 1 and multiplying through by At yields (4.123).
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4.3.4.2. Applicational simulation. Next, we apply our AC ensemble algorithm to
a simplified simulation of the subsurface flow in a karst aquifer. The computational domain

is a unit square divided into the porous media domain p and the free flow domain Qg.

Let Qg be the polygon ABCDEFGHI1J where A = (0,1),B =(0,3/4),C = (1/2,1/4),D
(1/2,0),E = (3/4,0),F = (3/4,1/4),G = (1,1/4),H = (1,1/2),I' = (3/4,1/2) and J

(1/4,1). Let Qp = Q/Qg, So = ABU JA, S| = DE, and S, = GH.
SetT =1,a=1,v=1,g =1, z =0. The boundary condition data and source

terms are chosen to be 0 and let

(Uo,0) on So

=]
I

(0, U1)T0n S

(Us, O)Ton S,

where U; are constants. We subdivide Q into a rectangle of height and width 4 = 1/M,
where M denotes a positive integer, and then subdivide each rectangle into two triangles by
drawing a diagonal. For this numerical experiment, we choose M = 32 and At = h. In the
following, we will provide the numerical results at 7 = 1 for the algorithm. We construct

the random hydraulic conductivity tensor as follows:

k(X,w)

=ag + exp {[Yl(a))cos(ﬂy) + Y3(w)sin(rry)] e84 [Y2(w)cos(nx) + Yy(w)sin(mx)] e'é} .

where X = (x, y)T, ap = 1/100, and Yj,...,Y; are independent and identically distributed
with zero mean and unit variance.

Figure 4.5 shows some realizations of the logarithm of the hydraulic conductivity
coefficient. The three graphs in Figure 4.6 illustrate the numerical solutions at the end time
T = 1 for these three tests. These phenomena are expected due to the chosen unbalanced

inflow and outflow rates for the conduit. In the first test, we set U; = U, = —1 and Uy = 2
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Figure 4.5. Some realizations of log(k).

so that the total inflow rate is equal to the total outflow rate. In the second test, we keep the
same U; and U, but set Uy = 1 so that the total inflow rate is larger than the total outflow
rate. This causes more water to be pushed out of the conduits into the porous media, which
happens during a rainy season. In the third test, we keep the same U; and U; but set Up = 3
so that the total inflow rate is smaller than the total outflow rate. More outflow causes more
water to flow into the conduits from the porous media, which is what happens during a dry
season. Compared to the solutions of the traditional method (Figure 4.7), we can find they
have the same general behavior of the flow while our AC ensemble algorithm is much more
efficient.

At last, we consider the more realistic case where the hydraulic conductivity tensor

is non-diagonal, for which we need to use Algorithm 4 for ensemble computation. Let

ki(x,w) kia(X,w)
K(E.w) = 1 12 ’
ka1 (X,w) k(X w)
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Figure 4.6. Plots of the ensemble mean for the ensemble AC method for Uy = -1, U, = —1,
and different Uy: Uy = 2 in the left graph, Uy = 1 in the middle graph, and Uy = 3 in the
right graph.

Figure 4.7. Plots of the ensemble mean for the traditional method for Uy = -1, U, = —1,
and different Uy: Uy = 2 in the left graph, Uy = 1 in the middle graph, and Uy = 3 in the
right graph.



148

Figure 4.8. Speed contours and velocity streamlines for Uy = 1, U; = —1, U, = —1, based
on the ensemble mean obtained from our ensemble algorithm (left) and the traditional
method (right) and with J = 100 at 7 = 0.5.

where k11(X,w) = kx (X, w) # 0 and k1 (X, w) = k12(X,w) # 0, i.e. K(X,w) is not diagonal

but symmetric.

ns
kn(%,0) = ka(E,0) = a1 + o\ AoXo(@) + )| o AK()cos(iny) + Yoy vi(w)sin(iny)],

i=1

nf
ka1 (F,0) = kia(F,0) = ay + oV A¥o() + D oA Yiw)cos(iny) + Yo si(w)sininy)].
i=1

We take a; = 10 and a; = 1 such that the random hydraulic conductivity tensor
K(X,w) is SPD. The corresponding forcing term for the Darcy equation is f, = (1 +
k11(X,w) — koo (X, w)) (e’ — e™V)sin(x)e’ — (k12(X,w) + k1 (X, w))(e” — e Y)cos(x)e’; for the
Stokes equations, f and f are the same as those in Section 4.3.3.2. The boundary
conditions and initial conditions are also the same as those in Section 4.3.3.2.

We consider a group of simulations with J = 100, using the Monte Carlo method for
sampling. Figure 4.8 shows the numerical results of our ensemble algorithm (Algorithm 4)

and those of individual runs for comparison. The speed contours and velocity streamlines of
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the ensemble mean are computed for both approaches at 7 = 0.5 with J = 100 realizations,
and then presented in Figure 4.8. It can be seen that both approaches capture the same

general behavior of the flow while our AC ensemble algorithm is much more efficient.
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5. CONCLUSIONS

In this dissertation, a semi-implicit non-iterative domain decomposition method,
which uses k-step backward differentiation formulae (1 < k£ < 5) for the temporal dis-
cretization and finite elements for the spatial discretization, is proposed to solve a coupled
unsteady NS-Darcy system with BJSJ interface conditions. Due to the explicit treatment
of the interface terms, this domain decomposition does not need an iteration to identify the
interface information. The nonlinear convection is handled by a multi-step semi-implicit
scheme. For the first time in the literature, we derive the error estimate in L2 norm for the
joint Stokes-Darcy Ritz-projection without using H? regularity assumption of the elliptic
problem corresponding to this joint Ritz-projection. Then the finite element solution of the
k-step backward differentiation formulae (1 < k < 5) of the proposed method is analyzed
for its convergence. Next, we first develop and analyze a parallel non-iterative multi-physics
DDM for the NS-Darcy system with BJ interface conditions which is much more com-
plicated than BJSJ. Furthermore, in order to handle the defective boundary conditions in
NS-Darcy interface system, a Lagrange multiplier method is proposed under the framework
of the proposed domain decomposition method. The numerical examples are consistent
with the theoretical conclusions, and they validate the proposed method.

For the stochastic model, ensemble calculation is essential in uncertainty quan-
tification, numerical weather prediction, sensitivity analysis, and so on. We proposed an
efficient, decoupled ensemble algorithm for fast computation of the stochastic Stokes-Darcy
systems. In this algorithm, the linear systems with two shared common coeflicient matrices
for all realizations at each time step can be solved by efficient iterative or direct methods at a
greatly reduced computational cost. Moreover, the fully coupled Stokes-Darcy system can
be decoupled into two smaller sub-physics problems, which reduces the size of the linear

systems to be solved and allows parallel computation of the two sub-physics problems.
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Furthermore, in order to further reduce the storage requirements, an efficient, artificial
compressibility ensemble algorithm is proposed, which decouples the velocity and pressure
to result in a simple updating step for the pressure. The long time stability and first order
accuracy in time under a time step condition and two parameter conditions are proved for
both algorithms.

In my future work, I plan to continue my efforts to contribute to several research top-
ics related to the NS-Darcy model, including the long time stability of non-iterative domain
decomposition methods with special attention to the difficulty arising from the nonlinear
term, and the analysis of the Lagrange multiplier method for the defective boundary condi-
tions. For the efficient ensemble algorithms in the application of uncertainty quantification
(UQ) for surface-groundwater flows, higher order ensemble methods and their applications

in UQ are our natural next step.
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