413 research outputs found

    Upper and Lower Bounds to the Information Rate Transferred Through First-Order Markov Channels With Free-Running Continuous State

    Get PDF
    partially_open4noStarting from the definition of mutual information, one promptly realizes that the probabilities inferred by Bayesian tracking can be used to compute the Shannon information between the state and the measurement of a dynamic system. In the Gaussian and linear case, the information rate can be evaluated from the probabilities computed by the Kalman filter. When the probability distributions inferred by Bayesian tracking are nontractable, one is forced to resort to approximated inference, which gives only an approximation to the wanted probabilities. We propose upper and lower bounds to the information rate between the hidden state and the measurement based on approximated inference. Application of these bounds to multiplicative communication channels is discussed, and experimental results for the discrete-time phase noise channel and for the Gauss-Markov fading channel are presented.openBarletta, L.; Magarini, M.; Pecorino, S.; Spalvieri, A.Barletta, Luca; Magarini, Maurizio; Pecorino, Simone; Spalvieri, Arnald

    Efficient blind symbol rate estimation and data symbol detection algorithms for linearly modulated signals

    Get PDF
    Blind estimation of unknown channel parameters and data symbol detection represent major open problems in non-cooperative communication systems such as automatic modulation classification (AMC). This thesis focuses on estimating the symbol rate and detecting the data symbols. A blind oversampling-based signal detector under the circumstance of unknown symbol period is proposed. The thesis consists of two parts: a symbol rate estimator and a symbol detector. First, the symbol rate is estimated using the EM algorithm. In the EM algorithm, it is difficult to obtain the closed form of the log-likelihood function and the density function. Therefore, both functions are approximated by using the Particle Filter (PF) technique. In addition, the symbol rate estimator based on cyclic correlation is proposed as an initialization estimator since the EM algorithm requires initial estimates. To take advantage of the cyclostationary property of the received signal, there is a requirement that the sampling period should be at least four times less than the symbol period on the receiver side. Second, the blind data symbol detector based on the PF algorithm is designed. Since the signal is oversampled at the receiver side, a delayed multi-sampling PF detector is proposed to manage inter-symbol interference, which is caused by over- sampling, and to improve the demodulation performance of the data symbols. In the PF algorithm, the hybrid importance function is used to generate both data samples and channel model coe±cients, and the Mixture Kalman Filter (MKF) algorithm is used to marginalize out the fading channel coe±cients. At the end, two resampling schemes are adopted

    Particle smoothing techniques with turbo principle for MIMO systems

    Get PDF

    Efficient blind symbol rate estimation and data symbol detection algorithms for linearly modulated signals

    Get PDF
    Blind estimation of unknown channel parameters and data symbol detection represent major open problems in non-cooperative communication systems such as automatic modulation classification (AMC). This thesis focuses on estimating the symbol rate and detecting the data symbols. A blind oversampling-based signal detector under the circumstance of unknown symbol period is proposed. The thesis consists of two parts: a symbol rate estimator and a symbol detector. First, the symbol rate is estimated using the EM algorithm. In the EM algorithm, it is difficult to obtain the closed form of the log-likelihood function and the density function. Therefore, both functions are approximated by using the Particle Filter (PF) technique. In addition, the symbol rate estimator based on cyclic correlation is proposed as an initialization estimator since the EM algorithm requires initial estimates. To take advantage of the cyclostationary property of the received signal, there is a requirement that the sampling period should be at least four times less than the symbol period on the receiver side. Second, the blind data symbol detector based on the PF algorithm is designed. Since the signal is oversampled at the receiver side, a delayed multi-sampling PF detector is proposed to manage inter-symbol interference, which is caused by over- sampling, and to improve the demodulation performance of the data symbols. In the PF algorithm, the hybrid importance function is used to generate both data samples and channel model coe±cients, and the Mixture Kalman Filter (MKF) algorithm is used to marginalize out the fading channel coe±cients. At the end, two resampling schemes are adopted

    Digital transmission systems operating over high frequency radio channels

    Get PDF
    Imperial Users onl

    Joint Blind Symbol Rate Estimation and Data Symbol Detection for Linearly Modulated Signals

    Get PDF
    This paper focuses on non-data aided estimation of the symbol rate and detecting the data symbols in linearlymodulated signals. A blind oversampling-based signal detector under the circumstance of unknown symbol period is proposed. First, the symbol rate is estimated using the Expectation Maximization (EM) algorithm. However, within the framework of EM algorithm, it is difficult to obtain a closed form for the loglikelihood function and the density function. Therefore, these two functions are approximated in this paper by using the Particle Filter (PF) technique. In addition, a symbol rate estimator that exploits the cyclic correlation information is proposed as an initialization estimator for the EM algorithm. Second, the blind data symbol detector based on the PF algorithm is designed.Since the signal is oversampled at the receiver side, a delayed multi-sampling PF detector is proposed to manage the intersymbol interference caused by oversampling, and to improve the demodulation performance of the data symbols. In the PF algorithm, the hybrid importance function is used to generate both data samples and channel model coefficients, and the Mixture Kalman Filter (MKF) algorithm is used to marginalize out the fading channel coefficients

    Multilevel Mixture Kalman Filter

    Get PDF
    corecore