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ABSTRACT 

We address the problem of space-time communications in the con- 
text where the turbo principle is used in order to improve the ro- 
bustness of the transmission, Recovering the sequence of emitted 
symbols in the wide-band context is known to lead to a compu- 
tationally very challenging problem. We propose here an adaptive 
numerical approximation of the BCJR algorithm, based on particle 
filteringlsmoothing techniques. When combined with classical es- 
timation techniques for the channel and variance of the observation 
noise, this algorithm is very efficient, and scales very favourably 
with the dimension of the problem. This is demonstrated through 
numerical simulations. 

1 Introduction 

In this paper we present an algorithm for the recovery of symbols 
in the context of MIMO transmission where a codingldecoding 
scheme that relies on the turbo principle is used. In this context 
good performance is expected, but the turbo principle requires the 
evaluation of the so-called marginal posterior distributions, i.e. the 
marginal posterior distributions of the symbols given the observa- 
tions. Direct evaluation of these quantities is not possible even in 
very simple cases. Indeed, even the use of the efficient and exact 
BCJR algorithm 121 as its complexity scales exponentially with 
the number of transmit antenna and the length of the transmission 
channel. The algorithm that we present here can be understood 
as being an adaptive numerical approximation of the BCJR algo- 
rithm, which relies on particle filtering techniques L31. We use a 
modification of the algorithm presented in L4], which takes advan- 
tage of the finite and discrete nature of the transmitted signal and 
introduces the use of tempered weights. This allows for a better in- 
teraction between the turbo-decoder and the exploration algorithm, 
while significantly reducing the complexity of the algorithm. The 
procedure we propose some similarities with popular complexity 
reduction algorithms (e.& 161, 17]), which are however designed 
to find maximum joint a posterior distributions of the sequence 
of symbols, whereas we are here interested in the marginal pos- 
terior distribution. The paper is organised as follows. In Section 
2 we introduce the notation, describe the telecommunication sys- 
tem and state the statistical inference aims in Section 3. In Section 
4 we present our algorithm and in Section 5 we demonstrate its 
efficiency on an example. 

2 Model description and aims 

2.1 The channel encoder 

We consider the multiple source digital signalling problem over 
time dispersive channels. The binary stream of data (b t ,  t > 1) 
is first transformed by a channel encoder to obtain an encoded 
(redundant) sequence (&, t 2 1). A coding scheme that facili- 
tates so-called SISO (soft-input-soft-output) decoding is used the 
channel encoder. Typically convolutional or LDPC (Low Density 
Patily Check) coding schemes aTe used for that purpose. In case 
of LDPC the interleaveing is actually not essential since LDPC 
encoding implicitly involves permutation.The encoded sequence 
then undergozs a permutation n, leading to (d.(,)!t > 1) which 
is then mapped to a sequence ( s t , t  > 1) of distal modulation 
symbols. These symbols are assumed to take their values in an 
alphabet A = { a ~ ,  . . . ,a,,} C @"' that contains n, symbols. 
This is summarized in Fig. 1. In order to improve the spectral effi- 
ciency the modulated sequence is divided into rn parallel streams 
that are transmitted simultaneously from m transmit antennas. 

Figure 1: Schematic of the transmitter. 

2.2 The equivalent channel 

The signal is transmitted through a medium which introduces both 
delay and attenuation, and an additive noise. More precisely we 
model the combined effect of the pulse shaping, the transmission 
channel, the receive filter between t h e m  transmitted antennas and 
n receive antennas with a multidimensional FIR filter. The ob- 
servations are not perfect, but corrupted with an additive, tempo- 
rally and spatially white Gaussian noise sequence (.$, t > 1,j = 
1 , .  . . , n). More precisely, let us introduce 
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and 

Then the signal observed at antenna j 0' = 1,. . . , m) at time t is 

1 2  xt = (x t r  x t , .  . . ,XI")'. 

Y: = ch: , jx :  +a = hTxt + c j  = 4 +&. (1) 

where L is the length of the filters from transmit to receive anten- 
nas, assumed to be independent of a ,  j. The series (e,  t 2 1, j = 
1,. . . , n) is assumed circular zero mean i.i.d. and normally dis- 
tributed, i.e. 

We choose to reformulate this problem in state-space form. First 
it is clear that 

1-1 

ni, (0,"2/2) . (2) 

P(Xt+lIXt) =P(st+llst) n[r , l l :~- , ( [" t+ '12:L) ,  

where the indicator is 0 when xt+l and xt do not have compatible 
"histories" and 1 otherwise. In most cases this probability distr- 
bution will simplify to 

P(Xt+Il.t) = Pist+l)n[i,]l:~_l([xt+112:L), (3) 
that is st+, does not depend on the past values of the symbols al- 
ready transmitted. The priorp(st) may be some prior information 
provided by the output of a turbo-decoder for example. In any case 
it should be clear that (xt, t 2 1) is a Markov chain. Now at time 
t + 1. 

~(yt+i lXt+i)  =Nc ( ~ t + i ; ~ t + i , u ~ / 2 1 ~ ) ,  

t t + l  = (Zt+lrZt+l,...rZ;+l)T. 

where for any integer a,  I, is the a x a identity matrix and 
1 2  

3 Estimation objectives and  computational issues 

Here, for the sake of simplicity, we will assume that the noise level 
and the transfen function are known. The conditioning of all dis- 
tribution on these values is implicit everywhere. The estimation 
of the parameters is routine and briefly discussed at the end of the 
next section. 

3.1 Estimation purposes 

The turbo decoder requires the evaluation of the family of T poste- 
rior marginal distributions of the symbols given the observations, 
in other words p(stIy l :~)  f o r t  = 1,. . . , T.  Whereas it is rela- 
tively easy to evaluation the joint posterior distribution of the chan- 
nels , the variance of the observation noise and the symbols, as it 
is a simple by-product of the application of Bayes' rule, it is much 
more difficult in practice to estimate the marginal posterior distri- 
butions of the symbols. Indeed, for any t = 1, . . . , T, the marginal 
posterior distribution is equal to 

P (sl i) I  Y1:T) = p (si:T~)lYl:T) 
{s:;u#t & "#i) 

To give an idea about the complexity involved with the evaluation 
of this quantity we consider a simple scenario. Let the modulation 
be a BPSK, T = 100, m = n = 2 @e.  two sources and two 
antennas). In this simple case the number of discrete terms in the 
sum is 22x99, ;.e. a number of term of order lo3'! Therefore sys- 
tematic evaluation of the discrete sum is impossible. The forward 
backward algorithm is a way of reducing this complexity. How- 
ever, as we shall see, when the quantity nfm is too large it is still 
necessary to resort to numerical approximations. 

3.2 The BCJR algorithm 

The BCJR algorithm 121, or forward-backward algorithm, is an ef- 
ficient way of calculating the marginal distributions ( ~ ( x ~ l y ~ : ~ ) ,  1 5 
t 5 T), using a so-called sum-product algorithm. We recall here 
the derivation of the algorithm, and point out the combinatorial dif- 
ficulties inherent to this algorithm. Recall that (note that we here 
use the notation s but that most of the sums are in fact discreet). 
First we notice that 

P(xtlY1:T) = P(xt,xt+llYl:r) 

' 1 + 1  

= P(~tl~t+l,Yl:T)p(xt+llYl:T) 

= P(xtIxt+l,Yl:t)P(xt+llY1:T) 

"*+I  

E l + *  

where the sum is over all possible values of xt+l. The expres- 
sion suggests therefore the following filtering-forwardhackward- 
smoothing algorithm (which aims at recursively computingp(xt lyl:=)) 

Forward filtering 

1.  Initialization: Compute p (xo) the distribution of the initial 

For t  = 0, .  . . ,T - 1 

1 .  Prediction: evaluate for all possible values of x t + l  thepre- 
dicrive disrriburiori 

state for all possible values of 50. 

P(xt+llYl:t) = ~P(xt+l lx t )P(x t lYl : t )  (4) 
nf 

2. Filtering: take into account the observation yt for all possi- 
ble values ofxt+l and compute thejltering distribution 

Backward h e d  interval smoothing 

F o r t  = T - 1 , .  . . , I  

w 
Although simple algebraically, these recursions are computation- 
ally very intensive in practice. 

There are nTL possible values for xt+1. Therefore the 
evaluation of ~ q .  ( 5 )  requires the computation of nFL Val- 
ues of the probability. For each of the values of at+, there 
are n, terms in the sum (indeed the case considered is a 
special case as xt+l and xt share L - 1 components). 
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The filtering step in Eq. (5 )  requires the evaluation of nFL 
products, and the common normalizing constant requires 
the evaluation of a sum of nyL terms. 
In the backward recursion (Eq. (6)) there are n rL terms 
to be considered (xt can take nTL different values). The 
normalizing constant also contains nrL that need to be 
summed. 

As a conclusion for this section, we realize that the a direct im- 
plementation of the forward-backward algorithm leads to very dif- 
ficult combinatorial problem as soon as  n rL is large. We there- 
fore propose here a numerical approximation of all these quantities 
based on panicle filter techniques. 

4 Particle filtering approximation 

Panicle filtering methods rely on the principle of Monte Carlo 
methods, which we briefly recall here. Monte Carlo methods are 
very efficient at estimating integrals or  sums that contain many 
terms. 

4.1 The Monte Carlo method 

Monte Carlo methods have proved to be very efficient at tack- 
ling such complex problems. They have been successfully ap- 
plied in physics for 50 years, image processing for nearly 20 years 
and statistics for over a decade where they have revolutionized 
Bayesian statistics. The basic principle of Monte Carlo methods 
consists of replacing the algebraic representation of a distribution 
T, defined on some space X, by a population based representation. 
More precisely assume that we know how to produce N samples, 
the population, distributed according to ?r, then the probability of 
any region A of X, i.e. SA T (x) dx, can be approximated by the 
number of samples that belong to A. Now if we wish to approxi- 
mate an integral of the form 

(where here s either means discrete or continuous sum), then a 
Monte Carlo estimator of I (f) is given by 

Intuitively this estimator ought to be efficient, as the samples (xi) 
tend to concentrate on regions of high probability (;.e. where infor- 
mation is) and avoid regions of low probability, therefore making 
the most of the available computational power. This statement can 
be made mathematically rigorous, and it can be proved that under 
fairly general conditions, the rate of convergence of this estimator 
to the true value of the integral is of the order 0 (&), that is the 
rate of convergence is independent of the dimension of X. 

4.2 Description of the algorithm 

In the light of the previous introductory subsection, it seems le- 
gitimate to approximate at each time instant t all the sums re- 
quired in the forward-backward algorithm by a sum over a subset 
of N << nrL adequately chosen symbol sequences. The p a i c l e  
filter algorithm can be thought of as being as a way of building a 
subset of the set of all possible symbol sequences that naturally fo- 
cuses on the area of interest (i.e. according to their probabilities). 
Then computation are performed on this reduced grid, therefore 

saving considerable amounts of resources. N is therefore a pa- 
rameter that needs to be chosen by the user, which will be a com- 
promise between computational power available and the precision 
required to recover the symbol sequence accurately. 

Here we present an algorithm that takes advantage of the fact 
that the number of possible states is finite. As discussed later in 
this section, it is possible to further reduce the complexity of our 
algorithm by introducing another degree of numerical approxima- 
tion. We introduce here the notation zp' for the a t h  particle (or 
sample) of the system at timet. 26") consists of a string of symbols 
(SF), . . , , $~,+,). Again the proposed algorithm is a numerical 
approximation of the forward-backward algorithm presented in the 
previous section. We start here with the predictiodfiltering steps 
described in Eq. (4)-(5). 

Modified Forward filtering via particle filter 

Initialization: Fori  = 1 , .  . . , N sample zp' - p(xo) 

At timet + 1 we observe y t + ~  
For i = 1 , .  . . , N 

(a) Considerthen: possibleextensions (4y2,l 5 j 5 

(b) Compute their weights i.e. f o r j  = 1,. . . , nr 
ny) ofzj"). 

where $22 = (CU, [ x ~ ~ ) ] z : L )  and ,$ : e + R+. 
These weights are normalized, so that 

Select N particles among the N x nrL present particles, 
according to their weights, using residual sampling for ex- 
ample. 
Set 

(i) p(Yt+llx~:,)P(xj:,lzt) 
W t + l N  

rn 
In ourimplementationwehavechosen,$(u,v) = u"(v+p)" 

with o( E (0 ,1]  and p > 0, therefore defining 

This modification of the algorithm proves to be beneficial in prac- 
tice. Indeed the factor u allows for the preservation of diversity by 
tempering the selectivity of the selection step. This is of interest in 
particular when L is large and introduces memory in the system. 
The factor p proves to be of practical interest as, due to the nu- 
merical approximation introduced, the decoder tends to produce 
marginal posterior priors for the symbols that can be equal to 0, 
which is not desirable when using an exploration strategy as we 
do. As we shall see, the introduced discrepancy can be corrected 
in the backward step of the algorithm. 
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This forward recursion produces, for each time t = 1 , .  . . , T ,  a 
set of couples (symbo1,weights) ((sr), tu?)), i = 1,. . . ,Ar) from 
which one can represent the filtering distributions (p(stlyl:t), 1 5 
t 5 T ) .  The state space is now paved with a marked grid of 
symbols which can represent (p(stlyl,t),l 5 t 5 T )  and we 
now work on this T x N grid : the exponential complexity has 
disappeared, and the cost of the algorithm is now controlled by the 

. \  
\ ~ ‘, ..... ... ..... . . . . .:. ...... .. . \ ~ . .  ... .......... 
\ .  

p m i e t e r  N .  
Note that it might be that n? is still too laree for our Dar- 

I I 

ticular application. If needed it is possible to develope a “local” 
MCMC algorithms that preselects a predefined number Ne << 
n r  (whose value depends on our computational budget) of possi- 
ble extensions for z;’). This is part of the possible extensions of 
the algorithm, which we do not consider here. 

We complete the algorithm by describing the backward re- 
cursion corresponding to Eq. (6). It consists of drawing, say 
M ,  possible strings of symbols (sf$!(k), 1 5 k 5 M )  , that 
are distributed according to the joint distribution p ( s ~ ~ ~ 1 y ) .  Then 
Monte Carlo estimators for the marginal posterior distributions 
( ~ ( s t l y ) ,  1 5 t 2 T) are given by the following sums 

where I, (s) = 1 if s = a and 0 otherwise. The algorithm pro- 
ceeds as follows, 

The complete algorithm (see Fig. 2) now consists of altemat- 
ing the estimation of the parameters 8 = (h,  6’) and the sequence 
of symbols followed by an iteration of the decoder, resulting in an 
EM-like algorithm. This is classic and not detailed here. Another 
possibility, not explored here, consists of embed the estimation of 
h and r2 in the particle filterlsmoother algorithm above, possibly 
using a state space representation (h,  a*) which allows one to take 
non-stationarity into account. 

5 Numerical simulation 

We consider here a numerical simulation where A = { + l ,  -1) 
with m = n = 2, L = 10 and T = 128 with 4 pilot symbols 
in order to help the estimation of h and a’. Results are presented 
in Fig. 3 for four iterations of the decoder. Further results and 
comparison with other suboptimal methods are presented in I l l  
and demonstrate the efficiency of the procedure in terms of perfor- 
mancdcomplexity. 

Figure 2: Schematic of the receiver. 

Figure 3: BER as a function of the SNR. 
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