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Abstract—Starting from the definition of mutual information,
one promptly realizes that the probabilities inferred by Bayesian
tracking can be used to compute the Shannon information be-
tween the state and the measurement of a dynamic system. In the
Gaussian and linear case, the information rate can be evaluated
from the probabilities computed by the Kalman filter. When
the probability distributions inferred by Bayesian tracking are
non tractable, one is forced to resort to approximated inference,
which gives only an approximation to the wanted probabilities.
We propose upper and lower bounds to the information rate
between the hidden state and the measurement based on approx-
imated inference. Application of these bounds to multiplicative
communication channels is discussed, and experimental results
for the discrete-time phase noise channel and for the Gauss-
Markov fading channel are presented.

Index Terms—Mutual information. Bayesian tracking. Kalman
filtering. Particle filtering. Multiplicative channels. Coherent com-
munication. Phase noise. Gauss-Markov fading channel. Channel
capacity.

I. INTRODUCTION

T
RACKING the state of a dynamic system from noisy

measurements is a classical problem in several fields of

science. In the Bayesian approach, probabilities are used to

model the state evolution and the measurement given the state,

and, from the model and the measurements, inference is made

on the hidden evolving state. By making inference one builds

the probability of the state given all the available measure-

ments, thus embodying all the available statistical information

in the inferred distribution. Therefore it can be said that, in

some sense, Bayesian tracking extracts the information about

the state that is brought by the measurements.

The most popular tool for Bayesian tracking of a system

with continuous state is the Kalman filter (see, e.g., [1] for a

comprehensive book on the Kalman filter). The Kalman filter

performs optimal tracking, thus leading to exact inference,

when the equations that describe the state evolution and the

measurement are linear and the noise processes that affect
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the state evolution and the measurement are additive and

independent Gaussian processes. When the state transition

and/or the measurement equations are non-linear and/or the

noise processes are non-Gaussian, the Kalman filter is no

more optimal. Among the inferential techniques proposed to

face these difficult cases, particle filters have received in the

past two decades widespread interest. The basic feature of the

particle filter is to provide a non-parametric approximation

to the exact distribution, thus making possible to accurately

infer multi-modal distributions. Particle filtering techniques

have found application in several research areas, including,

to cite just a few, communication systems, data fusion, non-

linear control, analysis of financial time series. Being a com-

prehensive survey of the bibliography out of the scope of the

present paper, the interested reader is referred to the tutorial

papers [2]–[6] to take a look at the world of particle filters

and their applications.

In the following, we will focus on discrete-time systems

with continuous state. The state process is assumed to be a first

order Markov process, the measurement process is assumed

to be memoryless given the state, and the distributions of

the Markov state process and of the measurement noise are

assumed to be known. Specifically, among the broad class

of discrete-time systems with continuous Markov state, com-

munication channels with free-running hidden state will be

considered in the following.

Two prominent examples of communication channels with

free-running continuous hidden state are the multiplicative

phase noise channel and the multiplicative fading channel.

The presence of multiplicative phase noise in radio channels,

introduced by the local oscillators used in up conversion and

down conversion, is well known and studied from a long time.

Also, multiplicative phase noise is a hot topic in the context of

coherent optical transmission. Recent studies about the phase

noise that arises in optical channels and about its effects in

coherent optics can be found in [7]–[9]. It is intuitive that a

time-varying channel, as the multiplicative phase noise channel

is, can impair the information rate between the source and

channel’s output, this concept having been investigated several

times in the past. Results on the capacity of the additive white

Gaussian noise (AWGN) channel affected by memoryless

multiplicative phase noise can be found in [10], [11]. The

information rate transferred through the channel with memo-

ryless phase noise is studied in [12], while considerations on

the model for continuous-time memoryless phase noise are
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proposed in [13]. The case of Wiener phase noise, where

the phase noise process has memory and should therefore

be tracked, is considered in [14]–[21]. To fit the phase noise

affecting local oscillator from the real world, the richer ARMA

(AutoRegressive Moving Average) model is often considered.

The ARMA model better fits many cases of practical interest,

because it allows for shaping the power spectral density of

phase noise by acting on the order and on the parameters

of the model, see e.g. [22] for a second-order ARMA model

of phase noise. Working out the information rate transferred

through a channel affected by a general multiplicative ARMA

phase noise process is a challenging problem, because

• the state space is not finite and it is multidimensional,

therefore it cannot be approached by trellis-based tech-

niques based on quantization of the state space as those

used with Wiener phase noise [15], [17], because the

number of states of the trellis would be enormous, and

• the observation is a nonlinear function of the state,

therefore the linearized Kalman filter can be far from

being optimal.

The only papers studying the information rate transferred

through a channel affected by ARMA phase noise we are

aware of are [14], [23], where the method of particle filtering

is adopted. Recent investigations on the capacity of the fading

channel with hidden Markov state can be found in [24]–[27],

the most popular model for the fading spectrum being the

first-order ARMA model of [24].

In this paper, upper and lower bounds to the information rate

between the measurement and the hidden state are presented.

The upper bound, which is based on approximate Bayesian

tracking, is quite straightforward and can be found in many

already published papers, while the lower bound, which is

new, is obtained by Bayesian smoothing. From these bounds

we derive upper and lower bounds to the information rate

transferred between the input and the output of communication

channels with free-running ARMA continuous hidden state.

Specifically, the upper bound is already published in [17], [23],

while the lower bound is new. Evaluation of these bounds,

which is presented here for the fading channel and for the

phase noise channel, is based on the Kalman filter and on the

particle filter. The novelty compared to [14], where particle

filtering techniques are used to compute the information rate,

is that we present here upper and lower bounds, while by [14]

one can compute only an approximation. Compared to [23],

here the evaluation method of the upper bound is new, because

one of the terms appearing in the bound is based on a

distribution that is allowed here to be multi-modal, while

in [23] that distribution is approximated to a Gaussian one.

Also, the evaluation method of the upper bound is different

from [17], where trellis-based techniques are adopted. Both

the upper bound and the lower bound are substantially tighter

than those of [23] especially when, as it happens with the

phase noise spectrum used for deriving the numerical results,

inference becomes challenging due to strong phase noise and

to the high-dimensional state space.

The outline of the paper is as follows. Sections II, III, and

IV, focus on the evaluation of the information rate between the

measurement and the hidden state. Specifically, Section II is an

introductory Section which shows that the actual information

rate between the measurement and the hidden state can be

evaluated from the probabilities inferred by exact Bayesian

tracking. Evaluation of the information rate by the Kalman

filter, that will find application in Section VII, is presented as

an example. In Section III the case where exact inference is not

feasible is considered. To deal with this case, upper and lower

bounds to the information rate are proposed. Section IV shows

how the bounds of Section III can be computed by particle

methods. Communication channels with free-running hidden

Markov state are considered in Section V. In that Section upper

and lower bounds to the information rate between the source

and the output of the communication channel are derived as a

by-product of the upper and lower bounds to the information

rate inferred about the hidden state of the channel. These

bounds are based on data-aided inference for some terms,

and on data-aided inference for some others. In Section VI

the multiplicative ARMA phase noise channel is analyzed

in depth, deriving for it numerical results showing that the

upper and lower bounds to the information rate proposed

here outperform those available in the literature. To give a

more complete view of applicability of the proposed method

to multiplicative channels, in Section VII the multiplicative

fading channel is considered. Also for this channel numerical

results are presented, taking for fading spectrum the first-order

ARMA model of [24]. While with the phase noise channel all

the terms appearing in the bounds are computed by the particle

filter, here, thanks to linearity of the data-aided measurement,

the terms based on data-aided inference are computed by

the conventional Kalman filter. Finally, in Section VIII the

conclusion is drawn.

II. EVALUATION OF THE INFORMATION RATE BY EXACT

BAYESIAN TRACKING

Let the lowercase character u denote a column vector and

let the uppercase calligraphic character U denote the space

spanned by u. Let the uppercase character U indicate a

possibly non-stationary process, U = U0, U1, · · · , where the

uppercase indexed letter Uk denotes a random vector whose

generic realization uk takes its values in U . Also, let uk
i denote

a windowed sequence of vectors between the discrete time

instant i and the discrete time instant k, that is

uk
i = (ui, ui+1, · · · , uk), 0 ≤ i ≤ k,

uk
i = empty, elsewhere.

For continuous random variables, p(uk
i ) is a shorthand used to

indicate the multivariate probability density function p(Uk
i =

uk
i ), while, when using discrete random variables, the short-

hand p(uk
i ) indicates the multivariate mass probability of Uk

i

evaluated in uk
i . The notation |U| denotes the number of

elements in the discrete set U .

Consider a dynamical system based on the state transition

equation

Sk = fk−1(Sk−1, Vk−1), (1)
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and on the measurement equation

Yk = hk(Sk, Nk), (2)

where, here and in what follows, we let k = 1, 2, · · · . In

the above equations, V is a process of independent vectors

called process noise, N is a process independent of V made

of independent vectors and called measurement noise, S is the

state process, Y is the measurement process, and {fk−1(·)}
and {hk(·)} are sequences of known functions.

The dynamical system can be mapped onto the framework

of first-order Markov processes. The Markovian state process

S is characterized by the joint probability

p(sn0 ) = p(s0)

n
∏

k=1

p(sk|sk−1). (3)

A measurement that is memoryless given the state is charac-

terized by the conditional distribution

p(yn1 |sn1 ) =
n
∏

k=1

p(yk|sk). (4)

From the above two equations, after straightforward passages

one gets

p(sk|sk−1
0 , yk−1

1 ) = p(sk|sk−1). (5)

The Shannon mutual information rate between the state and

the measurement, expressed in bits per measurement, is

I(S;Y ) = lim
n→∞

1

n
E

{

log2

(

p(Y n
1 |Sn

1 )

p(Y n
1 )

)}

= lim
n→∞

1

n
E

{

log2

(

∏n

k=1 p(Yk|Sk)
∏n

k=1 p(Yk|Y k−1
1 )

)}

(6)

= lim
n→∞

1

n

n
∑

k=1

E

{

log2

(

p(Yk|Sk)

p(Yk|Y k−1
1 )

)}

(7)

= lim
n→∞

1

n

n
∑

k=1

I(Sk;Yk|Y k−1
1 ), (8)

where I(X ;Y |Z) is the conditional mutual information rate

between X and Y given Z , the numerator inside the logarithm

in (6) is obtained by (4), and the denominator inside the

logarithm in (6) is obtained by chain rule.

By the Shannon-McMillan-Breiman theorem, one can gen-

erate a joint sequence (sn0 , y
n
1 ) according to the actual joint

state transition probability and measurement probability

p(sn0 , y
n
1 ) = p(s0)

n
∏

k=1

p(sk|sk−1)p(yk|sk) (9)

and then evaluate the information rate as a sample estimate of

(7):

I(S;Y ) = lim
n→∞

1

n

n
∑

k=1

log2

(

p(yk|sk)
p(yk|yk−1

1 )

)

. (10)

When the state transition probability and the measurement

probability are known and treatable, the conditional probability

p(yk|yk−1
1 ) can be worked out by Bayesian tracking. Let the

Markovian state be continuous. One can track the hidden state

by a two-step recursion that, for k = 1, 2, · · · , reads

p(sk|yk−1
1 ) =

∫

S

p(sk|sk−1)p(sk−1|yk−1
1 ) dsk−1, (11)

p(sk|yk1 ) =
p(sk|yk−1

1 )p(yk|sk)
p(yk|yk−1

1 )
, (12)

where p(sk|yk−1
1 ) is the predictive distribution, p(sk|yk1 ) is

the posterior distribution, and the denominator of (12), that is

the probability that we want to use in (10), is a normalization

factor such that the left-hand side is a probability, therefore it

can be computed by the Chapman-Kolmogorov equation

p(yk|yk−1
1 ) =

∫

S

p(sk|yk−1
1 )p(yk|sk) dsk. (13)

The state transition probability p(sk|sk−1) appears in (11)

in place of p(sk|sk−1, y
k−1
1 ) thanks to (5). Thanks to (4),

p(yk|sk) can be used in place of p(yk|sk, yk−1
1 ) in (12).

Note that the distribution p(s0) of the initial state that, for

k = 1, is the second factor inside the integral in the right

side of (11), after a transient whose duration depends on the

coherence time of the state process is forgotten. Therefore,

since we let n → ∞ in (10), we can choose p(s0) as we

want because this choice does not impact the infinite sum. We

have experimentally observed that the distribution p(s0) can

influence the speed of convergence of the sum to the limit it

achieves as n → ∞. In the end, the best initial distribution

p(s0) that we have found is the Dirac delta function, hence,

in the simulation results to be hereafter presented, the first

prediction of Bayesian tracking, that is (11) with k = 1, is

p(s1) = p(s1|s0),

meaning that the tracking algorithm starts from the actual

initial state s0.

When the measurement and the state evolution are expressed

by a linear and additive noise model with Gaussian mea-

surement noise and process noise, evaluation of the actual

information rate is feasible by the Kalman filter. Specifically,

the model is

Sk = F k−1Sk−1 + Vk−1, (14)

Yk = HkSk +Nk, (15)

where the uppercase boldface character denotes matrices, and

Vk and Nk are jointly independent and white Gaussian random

vectors with zero mean and covariance matrices Qk and Rk,

respectively. The innovation process U of process Y is a white

multivariate Gaussian process whose k-th element is

Uk = Yk −Hkµk = Hk(Sk − µk) +Nk, (16)

where

µk = E
{

Sk | Y k−1
1

}

is the prediction of state Sk computed by the Kalman filter.

Since

h(Uk) = h(Yk|Y k−1
1 ), h(Nk) = h(Yk|Sk, Y

k−1
1 ), (17)
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where h(Xk) denotes the differential entropy of Xk, an

unbiased random estimate Î(Sk;Yk|Y k−1
1 ) of the k-th term

of the sum (10) is

Î(Sk;Yk|Y k−1
1 ) = ĥ(Uk)− ĥ(Nk)

=
1

2
log2

det(HkΣkH
T
k +Rk)

det(Rk)

=
1

2
log2 det

(

I +R−1
k HkΣkH

T
k

)

, (18)

where I is the identity matrix,

Σk = E
{

(Sk − µk)
T (Sk − µk)

∣

∣ Y k−1
1

}

is the covariance matrix of the error between the state and its

prediction computed by the Kalman filter at time k, and

h(Xk) =
1

2
log2 ((2πe)

m det(Ψk))

is the differential entropy of the m-variate Gaussian random

vector Xk with covariance matrix Ψk.

III. UPPER AND LOWER BOUNDS TO THE INFORMATION

RATE BY APPROXIMATED BAYESIAN INFERENCE

In many cases of practical interest, although the state tran-

sition probability and the measurement probability are known

and treatable, it happens that the posterior and predictive

probabilities are not treatable due to lack of linearity and/or

Gaussianity. In these cases, one can generate a long sequence

(sn0 , y
n
1 ) according to the treatable joint probability (9) and

work out an approximation to the non-treatable probabilities

by approximated Bayesian tracking. To assess the quality of

the approximation, we propose to evaluate an upper bound

on the information rate based on the distributions inferred by

Bayesian filtering, and a lower bound below the information

rate based on the distributions inferred by Bayesian smoothing.

When the upper bound is close to the lower bound, one can

claim of having virtually computed the actual information rate

and that the inferred distributions closely fit the actual ones.

A. An Upper Bound based on Bayesian Filtering

The upper bound is

I(S;Y ) = h(Y )− h(Y |S) ≥ I(S;Y ), (19)

h(Y ) == lim
n→∞

1

n

n
∑

k=1

log2
1

q(yk|yk−1
1 )

≥ h(Y ), (20)

where the probability q(yk|yk−1
1 ) is the approximation to

p(yk|yk−1
1 ) worked out as the normalization factor of the

update step of the approximate Bayesian tracking, and yn1 is a

realization of the actual joint state transition and measurement

probability. The inequality in (20) follows by Gibbs’ inequal-

ity, and it holds for any probability q(yk|yk−1
1 ).

B. A Lower Bound based on Bayesian Smoothing

The lower bound is

I(S;Y ) = h(S)− h(S|Y ) ≤ I(S;Y ). (21)

Invoking the Shannon-McMillan-Breiman theorem (22), the

chain rule (23), the known initial state discussed before the

end of Section II (24), the Markov property (25), and Gibbs’

inequality (26), we have

h(S|Y ) = lim
n→∞

1

n
log2

1

p(sn1 |yn1 )
(22)

= lim
n→∞

1

n
log2

1

p(s1|yn1 )
∏n

k=2 p(sk|yn1 , sk−1
1 )

(23)

= lim
n→∞

1

n

n
∑

k=1

log2
1

p(sk|yn1 , sk−1
0 )

(24)

= lim
n→∞

1

n

n
∑

k=1

log2
1

p(sk|ynk , sk−1)
(25)

≤ lim
n→∞

1

n

n
∑

k=1

log2
1

q(sk|yk+l
k , sk−1)

(26)

= h(S|Y ), (27)

where the probability q(sk|yk+l
k , sk−1) is the approximation

to p(sk|ynk , sk−1) worked out by a lag-l Bayesian smoother

initialized from the state sk−1 visited by the realization at

time k − 1, the time lag l being up to the user. If the state

sequence is a reversible function of the process noise V given

the initial state s0, then

I(S;Y ) = I(V ;Y ) ≥ h(V )− h(V |Y ), (28)

where the upper bound on the conditional differential entropy

rate can be evaluated as

h(V |Y ) = lim
n→∞

1

n

n
∑

k=1

log2
1

q(vk−1|yk+l
k , vk−2

0 , s0)
(29)

= lim
n→∞

1

n

n
∑

k=1

log2
1

q(vk−1|yk+l
k , sk−1)

. (30)

IV. COMPUTING THE BOUNDS BY PARTICLE METHODS

As the measurement equation is nonlinear in the state

variable, we need to provide non-parametric approximations

to the true distributions, that in general can be multimodal.

Particle methods are practical tools for estimating distributions

in a non-parametric way, and in this section we use these

techniques for computing the upper bounds h(Y ) and h(S|Y )
introduced in the previous section.

Let P be the number of particles, s
(i)
k the state visited by

the i-th particle at time k, w
(i)
k the weight of the i-th particle at

time k, and π(sk|sk−1, yk) the importance density at time k,

which is up to the user. Starting from uniform initial weights

{w(i)
0 = P−1, i = 1, 2, · · · , P} and from an initial set of

particles {s(i)0 = s0, i = 1, 2, · · · , P}, the predict step of

particle tracking is

s
(i)
k ∼ π(sk|s(i)k−1, yk), i = 1, 2, · · · , P, (31)
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where ∼ means drawn with probability. The update step of

particle tracking is

w
(i)
k = w

(i)
k−1

p(yk|s(i)k )p(s
(i)
k |s

(i)
k−1)

αkπ(s
(i)
k |s

(i)
k−1, yk)

, i = 1, 2, · · · , P, (32)

where αk is a normalization factor such that
∑P

i=1 w
(i)
k = 1.

Given the set of weights and particles one has the approxima-

tion

p(sk0 |yk1 ) ≈
P
∑

i=1

w
(i)
k δ(sk0 − s

k,(i)
0 ), (33)

where δ(·) is the Dirac delta function. From (33) one has

p(sk|yk1 ) =
∫

S
k−1

0

p(sk0 |yk1 ) dsk−1
0

≈
∫

S
k−1

0

P
∑

i=1

w
(i)
k δ(sk0 − s

k,(i)
0 ) dsk−1

0

=
P
∑

i=1

w
(i)
k δ(sk − s

(i)
k ). (34)

After updating the particles with (32), a resampling proce-

dure may be necessary to prevent particles from collapsing

onto one particle of weight 1. Commonly used resampling

procedures are described in [1].

In the experimental results presented in the following we

adopt π(sk|sk−1, yk) = p(sk|sk−1). With this choice of the

importance function, the normalization factor of (32) is

αk =

P
∑

i=1

w
(i)
k−1p(yk|s

(i)
k ), (35)

and the predict step is

s
(i)
k = fk−1(s

(i)
k−1, v

(i)
k−1), i = 1, 2, · · · , P, (36)

where {v(i)k−1, i = 1, 2, · · · , P} is a set of independent samples

of process noise.

A. Evaluation of h(Y )

As in [14], the probability q(yk|yk−1
1 ) used in the upper

bound is obtained as the factor that normalizes the weights of

the particles in the update step:

q(yk|yk−1
1 ) =

P
∑

i=1

w
(i)
k−1p(yk|s

(i)
k ). (37)

The entire procedure for Monte-Carlo evaluation of h(Y ) is

reported in Algorithm 1. The initial state is selected as s0 =
0m, where 0m is a vector of m zeros.

B. Evaluation of h(S|Y )

At time instant k and lag ℓ = 0 the particles for i = 1, . . . , P
are initialized as

s
(i)
k,0 = fk−1(sk−1, v

(i)
k−1,0)

with weight

w
(i)
k,0 =

p(yk|s(i)k,0)
∑P

j=1 p(yk|s
(j)
k,0)

,

Algorithm 1 Calculate h(Y )

Generate samples:

(sn0 , y
n
1 ) ∼ p(sn0 , y

n
1 ) = δ(s0)

∏n
k=1 p(sk|sk−1)p(yk|sk)

s
(i)
0 ← 0m for i = 1, . . . , P

w
(i)
0 ← P−1 for i = 1, . . . , P

for k = 1, . . . , n do

Generate v
(i)
k−1 ∼ p(vk−1) for i = 1, . . . , P

s
(i)
k ← fk−1(s

(i)
k−1, v

(i)
k−1) for i = 1, . . . , P

w
(i)
k ← w

(i)
k−1p(yk|s

(i)
k ) for i = 1, . . . , P

αk ←
∑P

i=1 w
(i)
k

w
(i)
k ← w

(i)
k /αk for i = 1, . . . , P

if
∑P

i=1(w
(i)
k )2 > (0.3P )−1 then

(

{s(i)k }, {w
(i)
k }
)

← resample
(

{s(i)k }, {w
(i)
k }
)

end if

end for

h(Y )← −n−1
∑n

k=1 log2 αk

where the set {v(i)k−1,0, i = 1, 2, · · · , P} is a set of independent

samples of process noise, and sk−1 is the state visited at time

k−1 by the realization (sn0 , y
n
1 ). For each time lag ℓ = 1, . . . , l

the particles and their weights are updated as

s
(i)
k,ℓ = fk−1+ℓ(s

(i)
k,ℓ−1, v

(i)
k−1,ℓ)

w
(i)
k,ℓ =

w
(i)
k,ℓ−1p(yk+ℓ|s(i)k,ℓ)

∑P

j=1 w
(j)
k,ℓ−1p(yk+ℓ|s(j)k,ℓ)

,

where {v(i)k−1,ℓ, i = 1, 2, · · · , P} for ℓ = 1, . . . , l are sets of

independent samples of the process noise. After l steps, using

(33) one gets

p(sk|yk+l
k , sk−1) =

∫

S
k+l

k+1

p(sk+l
k |yk+l

k , sk−1) ds
k+l
k+1

≈
∫

S
k+l

k+1

P
∑

i=1

w
(i)
k,lδ(s

k+l
k − s

(i)
k,0:l) ds

k+l
k+1

=

P
∑

i=1

w
(i)
k,lδ(sk − s

(i)
k,0), (38)

where s
(i)
k,0:l =

(

s
(i)
k,0, s

(i)
k,1, . . . , s

(i)
k,l

)

. Since the evaluation of

(38) in the point sk visited by the realization requires that the

inferred distribution is actually a probability density function,

a smooth kernel should be used in place of the Dirac delta,

leading to

q(sk|yk+l
k , sk−1) =

P
∑

i=1

w
(i)
k,lκ(s

(i)
k,0; sk), (39)

where the kernel κ(µ;x) is a probability density function over

the space spanned by x with mean vector µ. In the numerical

examples to be presented in the following, the state sequence

is a reversible transformation of the process noise given the

initial state, therefore the wanted bound can be evaluated by
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(30) with

q(vk−1|yk+l
k , sk−1) =

P
∑

i=1

w
(i)
k,lκ(v

(ρ(i))
k−1,0; vk−1), (40)

where ρ(·) is a function used in the resampling procedure and

discussed later. The kernel that we adopt is

κ(µ;x) = (1− α)g(µ, σ2I;x) + αu(µ,∆;x), (41)

where g(µ, σ2I;x) is a multivariate Gaussian probability

density function with mean vector µ and covariance matrix

σ2I over the space spanned by x, u(µ,∆;x) is a uniform

distribution over a hypercube of center µ and side ∆ over the

space spanned by x, and 0 < α < 1. We take α small and ∆
large enough to prevent problems of numerical stability that

occur with the pure Gaussian kernel when q(vk−1|yk+l
k , sk−1)

is evaluated in a point vk−1 that falls far from all the samples

of the set {v(i)k−1,0, i = 1, 2, · · · , P}. To optimize the bound,

(30) is computed for several values of σ2 and then the

minimum is taken.

It is worth mentioning that, when using the particle re-

sampling procedure, it is important to consider the right

particles, and in the right order, of the set {v(i)k−1,0, i =
1, 2, · · · , P} in such a way that, after l steps, the i-th par-

ticle s
(i)
k,l was generated by v

(ρ(i))
k−1,0. For example, if P =

4 and the particles {s(1)k,l , s
(2)
k,l , s

(3)
k,l , s

(4)
k,l} are generated by

{v(2)k−1,0, v
(2)
k−1,0, v

(1)
k−1,0, v

(4)
k−1,0}, respectively, then ρ(1) =

ρ(2) = 2, ρ(3) = 1, and ρ(4) = 4 in (40).

The entire procedure for Monte-Carlo evaluation of h(S|Y )
is reported in Algorithm 2, again for s0 = 0m.

Algorithm 2 Calculate h(S|Y )

Generate samples:

(sn+l
0 , yn+l

1 ) ∼ δ(s0)
∏n+l

k=1 p(sk|sk−1)p(yk|sk)
Compute vn+l−1

0 from sn+l
0

for k = 1, . . . , n do

Generate v
(i)
k−1,0 ∼ p(vk−1) for i = 1, . . . , P

ρ(i) = i for i = 1, . . . , P

s
(i)
k,0 ← fk−1(sk−1, v

(i)
k−1,0) for i = 1, . . . , P

w
(i)
k,0 ← p(yk|s(i)k,0)/

∑P
j=1 p(yk|s

(j)
k,0) for i = 1, . . . , P

for ℓ = 1, . . . , l do

if
∑P

i=1(w
(i)
k,ℓ−1)

2 > (0.3P )−1 then
(

{s(i)k,ℓ−1}, {w
(i)
k,ℓ−1}, {ρ(i)}

)

←
resample

(

{s(i)k,ℓ−1}, {w
(i)
k,ℓ−1}, {ρ(i)}

)

end if

Generate v
(i)
k−1,ℓ ∼ p(vk−1+ℓ) for i = 1, . . . , P

s
(i)
k,ℓ ← fk−1+ℓ(s

(i)
k,ℓ−1, v

(i)
k−1,ℓ) for i = 1, . . . , P

w
(i)
k,ℓ ← w

(i)
k,ℓ−1p(yk+ℓ|s(i)k,ℓ)/

∑P

j=1 w
(j)
k,ℓ−1p(yk+ℓ|s(j)k,ℓ)

for i = 1, . . . , P
end for

q(vk−1|yk+l
k , sk−1)←

∑P

i=1 w
(i)
k,lκ(v

(ρ(i))
k−1,0; vk−1)

end for

h(S|Y )← −n−1
∑n

k=1 log2 q(vk−1|yk+l
k , sk−1)

V. INFORMATION RATE TRANSFERRED THROUGH

CHANNELS WITH FREE-RUNNING STATE

In this section we show how to use the bounds proposed

in Section III in order to derive bounds on the information

rate transferred through channels with free-running state and

without channel state information at the transmitter. In order

to relate the notation used in Section III to the one used in

this section, we introduce the concepts of data-aided and blind

inference.

Consider a communication channel described by the state

transition probability (3) and by the channel probability

p(rn1 |xn
1 , s

n
1 ) =

n
∏

k=1

p(rk|xk, sk), (42)

where R is the channel output process and X is the source

process made of discrete random variables. Equation (42) says

that the channel output process is memoryless given the source

and the state. Also, consider the case of free-running state,

where the source is memoryless and independent of the state,

that is

p(xn
1 |sn1 ) =

n
∏

k=1

p(xk). (43)

Examples of channels with free-running state are multiplica-

tive channels as the phase noise channel and the fading

channel.

A. Data-Aided Inference

Putting together (42) and (43) one finds that the joint source

and channel model is memoryless given the state:

p(rn1 , x
n
1 |sn1 ) =

n
∏

k=1

p(rk, xk|sk), (44)

hence putting the pair (R,X) in place of Y in Sections III

and IV we have I(R,X ;S) from exact Bayesian inference,

while we have the upper and lower bounds to I(R,X ;S) from

approximated Bayesian inference. By independence between

X and S we have

I(R,X ;S) = I(R;S|X). (45)

The above equation, which read as “given X ,” shows that

inference can be based on the knowledge of X , as if X were

part of the observation. Therefore, drawing from the parlance

of channel estimation, we hereafter call data-aided inference

the one that is performed when the measurement Y is the pair

(R,X), and call data-aided channel probability the probability

p(rk|xk, sk).

B. Blind Inference

Using (44) one finds that channel’s output is memoryless

given the state:

p(rn1 |sn1 ) =
∑

xn

1
∈Xn

1

p(rn1 , x
n
1 |sn1 ) =

∑

xn

1
∈Xn

1

n
∏

k=1

p(rk, xk|sk)

=

n
∏

k=1

∑

xk∈Xk

p(rk, xk|sk) =
n
∏

k=1

p(rk|sk). (46)
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Since Bayesian inference, that is performed using R as a

measurement process, is not aware of channel’s input, drawing

again from the parlance of channel estimation, we call it blind

inference. We call the channel transition probability p(rk|sk)
blind channel probability. The blind information rate is not

greater than the data-aided information rate:

I(R;S) ≤ I(R;S) + I(X ;S|R) = I(R,X ;S) = I(R;S|X)
(47)

where (47) follows by nonnegativity of mutual information,

chain rule, and independence between X and S.

C. Information Rate

Since

I(X ;R) = I(X ;R|S) + I(S;R)− I(S;R|X) (48)

one can sandwich the information rate transferred through the

channel as

I(X ;R) = I(X ;R|S) + I(S;R)− I(S;R|X) (49)

≥ I(X ;R)

≥ I(X ;R|S) + I(S;R)− I(S;R|X) = I(R;X),
(50)

where, using differential entropy rates, one has

I(X ;R) = h(R) + h(S|X,R)− h(S|X)− h(R|X,S) (51)

≥ I(X ;R)

≥ h(S) + h(R|S)− h(S|R)− h(R|X) = I(R;X).
(52)

The expression of the upper bound is the same as [17], [23],

while the lower bound is new. To compute the differential

entropy rates appearing in (51) and (52), we need to work

out h(R) and h(R|X) by Bayesian filtering, and h(S|R)
and h(S|R,X) by Bayesian smoothing. Recall that h(S) =
h(S|X) is known and that h(R|S) and h(R,X |S), which

are those of the memoryless channel, are also assumed to

be known. The gap between the upper bound (49) and the

lower bound (50) is equal to the gap between upper and

lower bounds of blind inference (I(S;R)− I(S;R)) plus the

gap between upper and lower bounds of data-aided inference

(I(S;R|X)− I(S;R|X)). Also, it holds that

I(X ;R) ≥ h(R)− h(R|X) ≥ I(X ;R), (53)

where the sandwiched term is the approximation to the infor-

mation rate proposed in [14]. We also mention the demodula-

tion lower bound of [23], that we will use as a competitor of

(52) in the sections devoted to experimental results. It reads

as

I(X ;R) = H(X)−H(X |R) ≤ I(X ;R), (54)

where H(X) is the entropy rate of process X and

H(X |R) =lim
n→∞

1

n

n
∑

k=1

log2
1

q(xk|rk1 , xk−1
1 )

(55)

≥ lim
n→∞

1

n

n
∑

k=1

log2
1

p(xk|rk1 , xk−1
1 )

≥ lim
n→∞

1

n

n
∑

k=1

log2
1

p(xk|rn1 , xk−1
1 )

(56)

= lim
n→∞

1

n
log2

1

p(xn
1 |rn1 )

= H(X |R),

where q(xk|rk1 , xk−1
1 ) is the approximation to p(xk|rk1 , xk−1

1 )
obtained by a demodulator aware of past data.

VI. DISCRETE-TIME ARMA PHASE NOISE CHANNEL

The concepts developed so far are applied in this section

to the ARMA multiplicative phase noise channel. The k-th

output of the channel is

Rk = Xke
jΦk +Nk, (57)

where j is the imaginary unit, R is the complex channel

output process, X is the channel complex input modulation

process made by i.i.d. random variables with zero mean and

unit variance, N is the complex AWGN process with zero

mean and variance SNR−1, and Φ is the phase noise process

which is assumed to be independent of X and N .

The measurement probability in data-aided inference is

p(rk, xk|sk) = p(rk, xk|φk) = p(xk|φk)p(rk|xk, φk)

= p(xk)p(rk|xk, φk) = p(xk)gc(xke
jφk , SNR−1; rk), (58)

where gc(µ, σ
2;x) indicates a circular symmetric Gaussian

probability density function over the complex plane spanned

by x with mean µ and two-dimensional variance σ2. The

measurement probability in blind inference is

p(rk|φk) =
∑

xk∈X

p(xk)gc(xke
jφk , SNR−1; rk). (59)

Process Φ is hereafter modelled as accumulation of fre-

quency noise, that is

Φ(z) =
z−1

1− z−1
Λ(z), (60)

where the frequency noise process Λ is the sequence of

coefficients of the polynomial of complex variable z

Λ(z) = c(z)V (z) (61)

where V is white Gaussian noise with zero mean and variance

γ2, and

c(z) =

∏m

k=1(1 − βkz
−1)

∏m

k=1(1− αkz−1)
=

1 +
∑m

k=1 bkz
−k

1−∑m

k=1 akz
−k

, (62)

where |αk| < 1, |βk| ≤ 1, therefore the transfer function

c(z) is causal, monic, and minimum phase. Since the phase

is observed through the complex exponential, to prevent the
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overflow in the accumulation one can periodically reduce it

modulo 2π.

The ARMA phase noise can be cast in the framework of

dynamical systems [1, Sec. 7.2] by defining the state at time

k as the (m+ 1) column vector

Sk = (Φk,Ω
k−1
k−m)T , (63)

where, modelling the filter with transfer function (62) as a shift

register with feedback taps am1 and forward taps bm1 , Ωk−1
k−m is

the content of the shift register at the k-th channel use, that is

Ω(z) =
V (z)

1− a(z)
.

Figure 1 shows the block diagram of the channel model given

by equations (57) to (63) with m = 1.

Fig. 1. Block diagram of the system given in equations (57)-(63) with m = 1.

The state transition equation is

Sk = FSk−1 + (Vk−1, Vk−1, 0
T
m−1)

T ,

where the state transition matrix is

F =









1 (am1 + bm1 )T

0 (am1 )T

0m−1 Im−1 0m−1









,

with Im denoting the identity matrix of size m ×m. Given

Sk−1, Sk is determined if also Vk−1 is known, hence the

covariance matrix of the state transition probability has unit

rank. Specifically,

p(sk|sk−1) = g(F sk−1,Σv; sk), (64)

where

Σv =









γ2 γ2 0Tm−1

γ2 γ2 0Tm−1

0m−1 0m−1 0(m−1)×(m−1)









, (65)

where 0m×m is an all-zero m×m matrix. Note that, while the

state transition equation is linear, the measurement equation

is nonlinear both in data-aided tracking and in blind tracking,

hence we have to renounce to exact Bayesian tracking with the

Kalman filter. For sufficiently small phase noise and data-aided

tracking, one can linearize the complex exponential and use

the linearized Kalman filter to perform approximated Bayesian

tracking as in [23], [28]–[30].
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Fig. 2. Power spectral density of phase noise generated by accumulating white
Gaussian noise with zero mean and unit variance filtered through a causal,
monic, and minimum phase transfer function. Solid line: phase noise model
of [22]. Dash-dotted line: phase noise generated by (66) with m = 4 followed
by accumulation. Dashed line: Wiener phase noise. Dotted line: white phase
noise.

A. Numerical Results

As a representative case of a class of frequency noise spectra

that are difficult to deal with we take

c(z) =
m
∏

i=1

1− (1− 3 · 4−2i+1)z−1

1− (1− 3 · 4−2i)z−1
. (66)

The m poles and m zeros in the right side of (66) are

interleaved and spectrally spaced of two octaves from each

other. Starting from low frequency, one finds for i = m the

pole at z = 1− 3 ·4−2m. This pole is followed by pairs of the

type zero-pole, and the sequence of zeros and poles terminates

when i = 1 with the zero at z = 0.25. Denoting by T the time

delay represented by z−1, the transfer function (66) is that of

a low-pass filter with −3 dB normalized frequency

f−3T ≈
3 · 4−2m

2π

determined by the pole at z = 1− 3 · 4−2m. Figure 2 reports

the power spectral density of four different spectra of phase

noise.

From Fig. 2 one appreciates that the spectrum of phase noise

obtained by frequency noise generated by (66) closely fits

the slope of −30 dB/decade at normalized frequency higher

than f−3T , a slope that is often encountered in real world

oscillators. The frequency noise that generates a phase noise

whose spectrum is a slope of −30 dB/decade is called Flicker

frequency noise, or pink frequency noise, and its spectrum

shows a slope of −10 dB/decade.

Upper and lower bounds to the information rate between the

state and the measurement for blind and data-aided tracking

are worked out by the particle filter. The results for 4-QAM

and 16-QAM with γ = 0.5, m = 4, and 104 particles are

reported in Fig. 3.

The upper and lower bounds of Fig. 3 are used to draw the

upper and lower bounds to the information rate between the
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Fig. 3. Phase noise channel. Mutual information I(S;Y ) computed by
the particle filter with 104 particles versus SNR with data-aided tracking
(I(S;X,R)) and blind tracking (I(S;R)). Dashed line: upper bound. Solid
line: lower bound.
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Fig. 4. Phase noise channel. Mutual information I(X;R) versus SNR.
Dashed line: upper bound with, from the upper to the lower curve, 104 parti-
cles, 5·104 particles. Solid line: lower bound with, from the lower to the upper
curve, 104 particles, 5 ·104 particles. Asterisks: sandwiched term in (53) with
5 · 104 particles. Circles: upper bound of [23] with 104 particles. Squares:
demodulation lower bound (55) based on data-aided linearized Kalman filter.

input modulation and the output of the channel reported in Fig.

4. Figure 4 shows that the upper bound (51), when evaluated as

proposed here, is substantially tighter than when it is evaluated

as proposed in [23]. The reason is that, although also the bound

of [23] is based on particle techniques, the inferred probability

in [23] is assumed to be Gaussian, the mean and variance of

the Gaussian distribution being computed from the particles,

while here the inferred distributions are allowed to be multi-

modal. Concerning the lower bounds of Fig. 4, we see that

the lower bound (52) outperforms the lower bound proposed

in [23], [28], [29] which relies upon demodulation performed

by a linearized Kalman filter.

VII. DISCRETE-TIME GAUSS-MARKOV FADING CHANNEL

Another example of communication channel with free-

running hidden state is the multiplicative fading channel. The

k-th output of the channel is

Rk = XkΛk +Nk, (67)

where X is the same as in Section VI, Λ is the complex fading

process which is assumed to be independent of X and N , and

N is complex white Gaussian noise with zero mean and two-

dimensional variance E
{

|Λk|2
}

SNR−1. A convenient model

for process Λ is again the ARMA model, where the state of the

ARMA model and the state transition equation are defined in a

straightforward way following the line of the previous section.

Blind inference is performed with the particle filter/smoother

taking process R as the measurement process and

p(rk|sk) =
∑

xk∈X

p(xk)gc(xkλk, SNR−1; rk) (68)

as the measurement probability. Exact data-aided Bayesian

filtering is feasible with the Kalman filter, therefore the data-

aided information rate I(S;R,X) can be exactly evaluated

using (18) in (8) and substituted in (49) and (50) in place of

the bounds, leading to

I(X ;R) = h(R) + h(S|X,R)− h(S|X)− h(R|X,S)

= h(R)− h(R|X) (69)

≥ I(X ;R)

≥ h(S) + h(R|S)− h(S|R)− h(R|X) = I(R;X).
(70)

Since h(R) is worked out by the particle filter, the upper bound

(69) coincides with the approximation of [14] and with the

upper bound of [23]. Conversely, the lower bound (70) is still

different from (55).

A. Numerical Results

A first-order model is assumed in [24] for the power spectral

density of Λ, while in [25] a brickwall spectrum is considered.

In what follows, we will take for Λ the first-order model of

[24], that is

Λ(z) =

√
γz−1V (z)

1−√1− γz−1
, (71)

where the complex process noise V has zero mean and unit

two-dimensional variance, and 0 < γ < 1 is a parameter
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that determines the bandwidth of the fading process. The

frequency response of the filter has unit energy, therefore the

additive white Gaussian channel noise has two-dimensional

variance SNR−1. Upper and lower bounds to the information

rate between channel’s input and output for 4-QAM and 16-

QAM with γ = 0.1 are reported in Fig. 5. Note that, in contrast

to the case of phase noise, here, since exact data-aided Kalman

filtering is performed, the probability q(xk|rk1 , xk−1
1 ) appear-

ing in (55) is equal to the actual p(xk|rk1 , xk−1
1 ). Therefore the

inaccuracy of the bound (55) is due only to the conditions rnk+1

that are removed in inequality (56). These conditions bring a

contribution of non data-aided type to demodulation which,

at low SNR, seems to have minor impact on the information

rate extracted by demodulation. In contrast, in the phase noise

channel, the inaccuracy introduced in (55) by linearizing the

measurement equation can be large, especially at low SNR.

Also note that the lower bound (54) is remarkably tight with

4-QAM, while it is less tight with 16-QAM, especially at

intermediate-to-high SNR. Again, this can be explained by

observing that, with 16-QAM, discarding the conditions rnk+1

can impact the quality of demodulation much more than with

4-QAM. This can be seen by noting that, at high SNR, the

decision error probability is small, therefore the quality of

blind, e.g. decision-directed, smoothing is virtually equal to

the quality of data-aided filtering. When the fading coefficient

is small and the pattern of input data shows symbols with

low amplitude up to time k and symbols of high amplitude in

the future time instants, then future measurements, although

non data-aided, can potentially contribute more than the past

data-aided measurements to the inference made on the fading

coefficient. Therefore, in these conditions, renouncing to blind

smoothing means renouncing to substantial information about

the fading coefficient, hence to substantial information rate.

VIII. CONCLUSION

In the paper, Shannon information between the hidden

Markov state process of a dynamical system and the mea-

surement process has been evaluated by the probabilities

inferred by Bayesian tracking. When the state transition and

measurement models are known and treatable but the system is

non-linear and/or non-Gaussian, exact inference is not feasible.

The main achievements of the paper are upper and lower

bounds to the information rate between the hidden state and

the measurement that can be computed from approximate

Bayesian tracking. The upper bound is based on filtering while

the lower bound is based on smoothing. Also, the quality

of the approximation to the wanted distributions obtained by

approximated inference can be assessed from the bounds.

Specifically, if the upper and lower bounds based on the

inferred distributions are close to each other, then the inferred

distributions are close to the true ones, while if this does

not happen then the fit between the inferred distributions

and the actual distributions is questionable. Application of

the mentioned upper and lower bounds to the information

rate transferred through channels with free-running hidden

Markov state has been proposed, and specific results have been

derived for the phase noise channel. These results show that,
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Fig. 5. Gauss-Markov fading channel. Mutual information I(X;R) versus
SNR. Dashed line: upper bound with, from the upper to the lower curve,
104 particles, 105 particles. Solid line: lower bound with, from the lower to
the upper curve, 104 particles, 105 particles. Squares: demodulation lower
bound (54) based on data-aided linearized Kalman filter.

compared to the existing literature, our proposed approach

allows to better deal with strong phase noise generated by a

state space with high dimensionality. The picture is completed

by numerical results that show application of our method to

the Gauss-Markov fading channel.
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