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ABSTRACT

Efficient Blind Symbol Rate Estimation and

Data Symbol Detection Algorithms

for Linearly Modulated Signals. (May 2008)

Sang Woo Park, B.S., Chung-Ang University, Seoul, Korea

Chair of Advisory Committee: Dr. Erchin Serpedin

Blind estimation of unknown channel parameters and data symbol detection

represent major open problems in non-cooperative communication systems such as

automatic modulation classification (AMC). This thesis focuses on estimating the

symbol rate and detecting the data symbols. A blind oversampling-based signal

detector under the circumstance of unknown symbol period is proposed. The thesis

consists of two parts: a symbol rate estimator and a symbol detector.

First, the symbol rate is estimated using the EM algorithm. In the EM algorithm,

it is difficult to obtain the closed form of the log-likelihood function and the density

function. Therefore, both functions are approximated by using the Particle Filter

(PF) technique. In addition, the symbol rate estimator based on cyclic correlation

is proposed as an initialization estimator since the EM algorithm requires initial

estimates. To take advantage of the cyclostationary property of the received signal,

there is a requirement that the sampling period should be at least four times less than

the symbol period on the receiver side.

Second, the blind data symbol detector based on the PF algorithm is designed.

Since the signal is oversampled at the receiver side, a delayed multi-sampling PF

detector is proposed to manage inter-symbol interference, which is caused by over-

sampling, and to improve the demodulation performance of the data symbols. In the

PF algorithm, the hybrid importance function is used to generate both data samples
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and channel model coefficients, and the Mixture Kalman Filter (MKF) algorithm is

used to marginalize out the fading channel coefficients. At the end, two resampling

schemes are adopted.
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CHAPTER I

INTRODUCTION

Recently, non-cooperative communication systems have attracted a lot of attention.

Especially in military and civilian application areas, many researchers have focused

on systems such as automatic modulation classification (AMC) [1],[2],[3],[4],[5]. Be-

fore or after identifying the modulation parameters, estimation of unknown channel

parameters represents a major open problem in AMC.

One of the key issues is that of symbol-rate estimation. After modulation classi-

fication, the demodulation step requires accurate symbol-rate estimation [6]. Several

approaches for symbol-rate estimation have been recently proposed in the literature.

A symbol-rate estimator which uses the wavelet transform is suggested in [6]. How-

ever, in reference [6], this algorithm is based on the assumption that the transmitted

signal has an invariant instantaneous amplitude during each symbol period. This

implies that a rectangular pulse shaping filter is used at the transmitter. However,

many practical communication systems do not use a rectangular pulse since it re-

quires large bandwidth. Another cyclic correlation (CC) based symbol-rate estimator

was proposed in [7] and [8]. Even though the CC-based symbol-rate estimator is very

powerful for AMC applications since no prior information is required, the performance

of the estimator should be improved for efficient demodulation of data symbols and

channel tracking.

In addition to symbol-rate estimation, data symbols should be also blindly de-

tected. In many real-world applications, narrowband mobile communication channels

are generally modeled as frequency flat Rayleigh fading channels. To estimate the

The journal model is IEEE Transactions on Automatic Control.
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symbol rate, oversampling, which causes inter-symbol interference (ISI), is used at

the receiver side. A lot of research has been reported for signal detection and channel

estimation in ISI circumstances. Most of these works rely on techniques such as the

maximum likelihood sequence estimation (MLSE) [9], [10]. Since these optimal solu-

tions are based on the Viterbi algorithm and require an additional channel estimation

step based on the Kalman Filter for each possible sequence, they entail huge decision

delays and computational complexity. Moreover, in conventional MLSE, the metrics

of trellis branches are evaluated based on the delayed channel parameter estimates

which are updated according to the detected data. Since the data symbol detection is

based on delayed estimates of the channel, this method is not suitable for fast fading

channels.

To reduce the complexity of MLSE, suboptimal detectors were proposed such as

the per-survival sequence detector [11] and [12]. This class of suboptimal detectors is

more appropriate for fast fading channels since it avoids delayed channel estimates.

However, it has a number of drawbacks. First, it still requires a huge computational

complexity since it detects the data symbols based on trellis. Second, it requires a

separate channel estimator, which needs preamble symbols to track the channel.

Recently, novel sequential Monte Carlo algorithms, which jointly estimate the

channel and detect the data symbols, have been suggested in [13] and [14]. Without

compromising the system model, they approximate the optimal solution using sequen-

tial Monte Carlo techniques. However, the assumption of known model coefficients

is required. In practice, the model coefficients should be estimated in advance. To

obtain accurate estimate, a large number of training data is required. Using a blind

Particle Filter (PF) detector, Huang et al. [15] suggested an improved algorithm. In

[15], the proposed algorithm employs a novel resampling algorithm, which increases

the computational complexity, to prevent the error floors caused by the modeling
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errors. However, this detector cannot be adopted when the symbol-rate is unknown

since the symbol rate estimation generally requires to oversample the received signal.

Therefore, this algorithm is not suitable for efficient demodulation of data symbols

in AMC.

This thesis proposes a blind oversampling-based signal detector under the cir-

cumstance of unknown symbol period to jointly deal with two major issues, mentioned

above, in AMC. The proposed algorithm consists of two major parts: a symbol rate

estimator and a symbol detector.

First, the symbol rate is estimated using a combination between a CC-based

approach and the Expectation Maximization (EM) algorithm, a framework which

requires oversampling or fractionally sampling (sampling faster than the symbol rate).

One of problems to use the EM algorithm is to obtain an appropriate initial value

of the unknown parameter. To figure it out, the CC-based approach is adopted

as an initial symbol-rate estimator. The difficulty of obtaining density functions is

another problem in the EM algorithm. By using the Particle Filter (PF) algorithm,

we not only solve the difficulty of finding the density functions but also reduce the

computational complexity in the EM algorithm.

Then, data symbols are detected by using the same PF algorithm based on the

oversampled received signal. The oversampling of the received signal improves the

performance of data-symbol detectors. In addition, the proposed scheme only re-

quires general resampling steps, which are much simpler than the novel resampling

steps proposed in [15]. The PF algorithm employs a modified hybrid importance

function [16] and the Mixture Kalman Filter algorithm [13] to reduce its computa-

tional complexity. An AR(2) process is used to model the fading channel, and both

the AR coefficients and channel coefficients are estimated. Finally, two resampling

techniques are adopted and compared in terms of their demodulation performance of
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data symbols.

Based on the proposed algorithms for the symbol-rate estimator and the data

symbol detector, we iteratively estimate a symbol-rate and detect data symbols.

The rest of this thesis is organized as follows. Basic principles which are as-

sociated with the proposed algorithms such as the PF, the cyclic correlations, and

the EM are explained in Chapters II-IV. A novel blind symbol-rate estimator and a

data-symbol detector are introduced in Chapter V. In Chapter VI, some simulation

results are provided to show the performance of efficient demodulation of the received

signal. Finally, conclusions and future directions are mentioned in Chapter VII.
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CHAPTER II

PARTICLE FILTER

A. Introduction

The Particle Filter (PF) is a sequential Monte Carlo method. Its basic idea is to recur-

sively compute relevant probability distributions using importance sampling and to

approximate the probability distributions with discrete random measures [17]. There

are some optimal algorithms for Bayesian state estimation such as the Kalman Fil-

ter (KF). However, the optimal solutions need some restricted requirements such as

Gaussian noise and a linear model. Therefore, several suboptimal algorithms were

proposed. The PF algorithms currently represent the most powerful suboptimal al-

gorithms because of their versatility such as parallel implementation. Based on the

PF algorithm, any distribution can be approximated by generating samples from the

proposal distributions. Moreover, the PF algorithms can be adopted in both linear

and nonlinear models.

In this chapter, the PF algorithms are introduced from fundamentals to details.

We mainly focus on the general Sequential Importance Sampling (SIS) algorithm.

B. Dynamic Models

In many cases of filtering applications, sequential processing is represented by state

space and observation equations as depicted by

xt = f(xt−1,vt),

yt = f(xt, et), (2.1)
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where xt is a state vector, vt denotes a processing noise, yt stands for an observation

vector, et represents a noise measurement, and f(·) is a system transition function.

The goal of filtering is to recursively estimate the state vector xt given the observation

yt.

C. Monte Carlo Integration

First of all, the concept of Monte Carlo integration will be introduced. Then, it is

expanded to the sequential Monte Carlo technique based on the state-space dynamic

model (2.1).

Consider the method of approximating a multidimensional integral represented

as

J =

∫
h(x)p(x)dx, (2.2)

where x ∈ Rn, p(x) is a probability density which satisfies
∫

p(x)dx = 1, and p(x) ≥ 0.

If we approximate the probability density p(x) as

p(x) =
1

N

N∑
i=1

δ(x− x(i)), (2.3)

JD, which is the approximation of the multidimensional integral J , is represented as

JD =

∫
h(x)(

1

N

N∑
i=1

p(x)δ(x− x(i)))dx

=
1

N

N∑
i=1

h(x(i)), (2.4)

where δ(·) is the Dirac delta function, and N is the number of samples drawn from the

probability density. Based on the assumption of independent samples, x(1), . . . ,x(N),

and large N , JD is an unbiased estimate and converges almost surely to J [18]. If the

variance of h(x) is finite, then by the central limit theorem [18], the estimation error



7

converges to the normal distribution,

lim
N→∞

√
N(JD − J) ∼ N(0, σ2), (2.5)

where

σ2 =

∫
(h(x)− J)2p(x)dx. (2.6)

In the Bayesian framework, p(x) is chosen as a posterior density. However, a

proposal density, which covers the original density, is alternatively adopted in many

cases since generating samples from the posterior density is generally intractable.

Consider a known density function q(x), which is called the proposal density

function, and where q(x) > 0. Then, the Monte Carlo integral (2.2) is rewritten as

J =

∫
h(x)p(x)dx

=

∫
h(x)

p(x)

q(x)
q(x)dx. (2.7)

If the samples, x(1),x(2),. . .,x(N), are drawn from the proposal density q(x), then

equation (2.7) is approximated as

JD =
1

N

N∑
i=1

h(x(i))ŵ(x(i)), (2.8)

with the weights

ŵ(x(i)) ∝ p(x(i))

q(x(i))
, (2.9)



8

for i = 1, . . . , N . After the weights are normalized, the equation (2.8) is written as

JD =

1
N

N∑
i=1

h(x(i))ŵ(x(i))

1
N

N∑
i=1

ŵ(x(i))

=
N∑

i=1

h(x(i))w(x(i)), (2.10)

where the normalized weight

w(x(i)) =
ŵ(x(i))

N∑
i=1

ŵ(x(i))

. (2.11)

This technique is generally used when generating samples from the original density

function is intractable. Instead of directly generating samples from the original den-

sity function, we generate samples from the known density function q(x), and assign

the weights as in the equation (2.11).

D. Sequential Importance Sampling (SIS)

The Importance Sampling is further improved by sequentially generating samples.

The sequential Monte Carlo sampling technique is referred in the literature under

different names such as the Particle Filter [19], the Bootstrap Filter [20], and so on.

The main idea of these algorithms is that the required posterior density function is

approximated by random samples and weights generated from the proposal density

function. As the number of samples increases, these algorithms become optimal

Bayesian estimators.

Suppose that the posterior density function, p(x0:t|y0:t), is approximated by the

discrete random samples {x(i)
0:t,w

(i)
t }, where i = 1, . . . , N . The approximation is se-

quentially updated by drawing new samples {x(i)
t ,w

(i)
t } based on the previous samples
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{x(i)
0:t−1,w

(i)
t−1}, for i = 1, . . . , N . In detail, the approximated joint posterior density is

given by

p(x0:t|y0:t) ≈
N∑

i=1

ŵ
(i)
t δ(x1:t − x

(i)
0:t), (2.12)

where

ŵ
(i)
t ∝ p(x

(i)
0:t|y0:t)

q(x
(i)
0:t|y0:t)

. (2.13)

Suppose that we approximate the joint posterior density p(x
(i)
0:t−1|y0:t−1) with the

samples drawn at the (t−1)th time index. When a new measurement yt is observed, we

re-approximate the density as p(x
(i)
0:t|y0:t). The posterior density function p(x0:t|y0:t)

is factorized such that

p(x0:t|y0:t) =
p(yt|x0:t,y0:t−1)p(x0:t|y0:t−1)

p(yt|y0:t−1)

=
p(yt|x0:t,y0:t−1)p(xt|x0:t−1,y0:t−1)p(x0:t−1|y0:t−1)

p(yt|y0:t−1)

∝ p(yt|xt)p(xt|xt−1)p(x0:t−1|y0:t−1). (2.14)

If the proposal density function is factorized as

q(x0:t|y0:t) = q(xt|x0:t−1,y0:t)q(x0:t−1|y0:t−1), (2.15)

then the weights can be expressed as

ŵ
(i)
t ∝ p(x

(i)
0:t|y0:t)

q(x
(i)
0:t|y0:t)

=
p(yt|xt)p(xt|xt−1)p(x0:t−1|y0:t−1)

q(xt|x0:t−1,y0:t)q(x0:t−1|y0:t−1)

= ŵ
(i)
t−1

p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1,y0:t)

= ŵ
(i)
t−1

p(yt|xt)p(xt|xt−1)

q(xt|xt−1,yt)
. (2.16)

These equations are developed using (2.14) and (2.15). Several density functions such
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as a prior density, a posterior density, or a hybrid density [21], can be adopted as

the proposal density function. Based on the generated samples and weights from the

proposal density function, the joint posterior density function is approximated.

E. Resampling Step

There exists a major problem in the sequential Monte Carlo sampling techniques. The

sequential Monte Carlo technique represents an approximation method using discrete

random samples. All the samples with negligible assigned weights except a few cause

a degeneracy problem. Whenever a significant degeneracy is observed, the resampling

is required as a countermeasure. The idea of the resampling step is very simple. The

samples, which are assigned small weights, are eliminated and the samples, which are

assigned large weights, are duplicated. Finally, the same importance weights, 1/N ,

are assigned to all samples. That is,

{x(i)
t , ŵ

(i)
t } ⇒ {x(ξi)

t ,
1

N
}, (2.17)

where i = 1, . . . , N , and ξi denotes a newly resampled index.

The time when the resampling step is required is easily determined with the

effective sample size Neff and the threshold value Nthr, which are introduced in [22].

The estimation of the effective sample size is represented via

N̂eff =
1

N∑
i=1

(w
(i)
t )2

, (2.18)

where w
(i)
t is the normalized weight. Neff is determined between 1 and N since Neff is

equal to N when all weights are equally assigned. The pseudcode of the resampling

algorithm is depicted in the Table I.

Even though the resampling step improves the performance of the Particle Filter
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Table I. Resampling Algorithm

• Assume the samples {x(i)
t , w

(i)
t }, for i = 1, . . . , N

• Define the new samples {x(j)
t , w

(j)
t } after resampling

• Initialize the cumulative sum of the weight: c0 = 0

• For i = 1 : N

∗ ci = ci−1 + w
(i)
t

• End

• Draw an initial point from the uniform distribution: u1 ∼ U [0, 1
N

]

• For j = 1 : N

∗ uj = u1 + (j − 1)/N

∗ While uj > ci

· i = i + 1

∗ End

∗ Assign the sample: x
(j)
t = x

(i)
t

∗ Assign the weight: w
(j)
t = 1

N

• End

(PF) by removing a degeneracy problem, it increases the correlation among samples

and the computational complexity. Therefore, the appropriate employment of the

resampling step is required.

F. SIR Filter (Bootstrap Filter)

The Sequential Importance Resampling (SIR) Filter (Bootstrap Filter) was intro-

duced by Gordon, Salmond, and Smith [20]. This algorithm is derived from the SIS

Filter by generating samples from a prior density and resampling every time index.
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Therefore, the resulting algorithm increases the correlation among samples and the

computational complexity while the importance weights and the density are easily

calculated.

Consider samples, x
(1)
t , . . . ,x

(N)
t , drawn from the prior density p(xt|x(i)

t−1). Then,

the weights are calculated as

w
(i)
t ∝ w

(i)
t−1p(yt|x(i)

t ). (2.19)

Since the resampling is carried during every step, the previous weights are always

1/N . At time index t, the weight is updated by

w
(i)
t ∝ 1

N
p(yt|x(i)

t )

∝ p(yt|x(i)
t ). (2.20)

G. Auxiliary Particle Filter

The Auxiliary Particle Filter (APF) was proposed by Pitt and Shephard [23]. The key

idea is that the APF reverses the order of drawing samples and resampling steps. By

considering an auxiliary variable κ, where κ ∈ {1, . . . , N}, the joint density p(xt, κ =

i|y1:t) is expressed by

p(xt, κ = i|y0:t) ∝ p(yt|xt)p(xt, κ = i|y0:t−1)

= p(yt|xt)p(xt|κ = i,y0:t−1)p(i|y0:t−1)

= p(yt|xt)p(xt|x(i)
t−1)ŵ

(i)
t−1. (2.21)

The samples {xt, κ} generated from the joint density p(x
(i)
t , κ(i)|y1:t) produce a

sample {x(κ)
t } from the marginalized density p(xt|y1:t). If we draw samples {x(i)

t , κ(i)}
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from the proposal density function depicted by

q(xt, κ|y1:t) ∝ p(yt|φ(i)
t )p(xt|x(i)

t−1)ŵ
(i)
t−1, (2.22)

where φ
(i)
t is the value related to the density p(xt|x(i)

t−1) such as a drawn sample,

a mean, or a mode. Applying Baye’s theorem, the joint proposal density can be

expressed as

q(xt, κ|y1:t) = q(xt|κ,y1:t)q(κ|y1:t). (2.23)

If we define

q(xt, κ|y1:t) , p(xt|x(i)
t−1), (2.24)

then, according to the equations (2.22), (2.23), and (2.24),

q(κ|y1:t) ∝ p(yt|φ(i)
t )ŵ

(i)
t−1. (2.25)

According to equation (2.16), the weight is updated by

ŵ
(i)
t ∝ ŵ

(κi)
t−1

p(yt|x(i)
t )p(x

(i)
t |x(κi)

t−1)

q(x
(i)
t , κ(i)|yt)

=
p(yt|x(i)

t )

p(yt|φ(κi)
t )

. (2.26)

The original APF presents an additional resampling step [23]. However, we remove

the additional resampling step since [24] shows that the last step is unnecessary.

Compared to the conventional PF algorithm, the APF exhibits the advantage

of more accurate estimation by resampling one step ahead since the resampling step

reflects higher likelihood function which does not include current step’s random vari-

ables.
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H. Kernel Smoothing

The Kernel Smoothing (KS) method was developed and extended by West in [25] and

[26]. The smoothing kernel density is given via

p(a|y0:t) ≈
N∑

i=1

w
(i)
t N(a; ã

(i)
t , h2Vt), (2.27)

where the smoothing parameter h > 0, N(·; ã,V) denotes a multivariate normal

density with the mean ã and the covariance matrix V. In the conventional kernel

methods, h is chosen as a slowly decreasing function of N . Therefore, the kernel

components are more concentrated near ã
(i)
t for large N . However, this result causes

an over-disperse problem relative to the posterior sample in the sense that the variance

matrix of the mixture normals is (1+h2)Vt, which is larger than the variance matrix

of the posterior samples Vt. To correct this problem, West suggested the new idea of

shrinkage of kernel location as

ã
(i)
t = εa

(i)
t + (1− ε)āt, (2.28)

where ε =
√

1− h2. Based on the proposed kernel location, the normal mixture

density has mean āt and the correct variance matrix Vt. Therefore, the over-dispersed

problem is resolved [25] and [26].
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CHAPTER III

CYCLOSTATIONARITY

A. Definitions

A signal having statistical properties which are periodic with time is called a cyclosta-

tionary process. This section briefly introduces some definitions of cyclostationarity

such as a cyclic mean and cyclic correlations.

Giannakis defined cyclostationarity as follows [27]. First, a mean and a covariance

are defined as µ(m) , E[y(m)] and c(m, τ) , E[(y(m)−µ(m))(y(m+τ)−µ(m+τ)].

Then, the discrete random process y(m) is cyclostationary (CS) if and only if the mean

and the covariance have an integer period M. In other words, µ(m) = µ(m + kM),

and c(m, τ) = c(m+kM, τ), ∀m, k ∈ Z where Z is the set of integers. Since they are

periodic, they can be represented by Fourier Series expansions over complex harmonic

cycles with the set of cycles defined as F c , {fk = 2πk/M, k = 0, . . . , M − 1}. For

example, the covariance and its Fourier coefficients, called cyclic correlations, are

c (m, τ) =
M−1∑

k=0

C

(
2πk

M
, τ

)
ej 2πkn

M , (3.1)

C

(
2πk

M
, τ

)
=

1

M

M−1∑
m=0

c(m, τ)e−j 2πkm
M . (3.2)

In engineering applications, almost periodicity is more common. Therefore, we

rather focus on this notion. If the mean and correlations of discrete random process

y(m) are almost periodic sequences, then y(m) is defined as almost cyclostationary

(ACS). Similar to equations (3.1) and (3.2), the time-varying and cyclic correlations
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are defined as

c(m, τ) =
∑

fk∈F c

C(fk, τ)ej2πfkm, (3.3)

C(fk, τ) = lim
M→∞

1

M

M−1∑
m=0

c(m, τ)e−j2πfkm, (3.4)

respectively, where the set of cycles, F c(τ) = {fk : C(fk, τ) 6= 0,−1
2

< fk ≤ 1
2
)}, must

be finite, and the limit is assumed to exist at least in the mean-square sense [28].

B. Estimation of Cyclic Statistics

Consider the ACS process with the known cycles fk. If y(n) has a nonzero mean,

then cyclic mean can be estimated as

Û(fk) =
1

M

M−1∑
m=0

y(m)e−j2πfkm. (3.5)

If the set of cycles is finite, we also estimate the time-varying mean as

µ̂(m) =
∑

fk

Û(fk)e
j2πfkm. (3.6)

Similarly, for zero-mean CS processes, cyclic correlations and time-varying correla-

tions are estimated, respectively, via

Ĉ(fk, τ) =
1

M

M−1∑
m=0

y(m)y(m + τ)e−j2πfkm, (3.7)

ĉ(m, τ) =
∑

fk∈F c

Ĉ(fk, τ)ej2πfkm. (3.8)

C. Cyclic Correlation Based Symbol Rate Estimators

Cyclic correlation based symbol rate estimator is very simple and powerful to blindly

estimate the symbol rates. The classical estimator based on cyclic correlation was
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proposed in [29]. However, its performance depends on the excess bandwidth. There-

fore, an improved estimator was suggested in [7] and [8]. The key concept of the

estimator is to choose the cyclic frequency which maximizes the sum of the square

moduli of cyclic correlations.

Assume that yc(t) denotes the continuous received signal at the output of a fading

channel. Signal yc(t) can be expressed as

yc(t) =
K−1∑

k=0

bkhc(t− kT ) + wc(t), (3.9)

where K is the number of the transmitted data symbols, bk denotes a zero-mean and

unit-variance independent and identically distributed (i.i.d.) sequence of symbols,

T denotes the symbol period, hc(t) represents the convolution of the shaping filter

with the unknown fading channel, wc(t) is an additive Gaussian noise. The sampled

received signal y(m) is yc(mTs), where the sampling period Ts is sufficiently small to

satisfy Ts < T/4 [8]. If the parameter p0 is defined by

p0 =
Ts

T
, (3.10)

estimating the symbol period T is equivalent to estimate the parameter p0. In ad-

ditions, cyclic frequencies only exist at −1/T , 0, and 1/T since the signal yc(t) is

bandlimited and cyclostationary. According to equation (3.3),

c(m, τ) = C(0, τ) + C(p0, τ)ej2πp0m + C(−p0, τ)e−j2πp0m. (3.11)

It is clear that C(fk, τ) = 0 when fk is not equal to 0 and ±p0.

Then, the symbol rate estimator is defined as

p̂0 = arg max
fk∈I

Ĉ(fk)
∗Ĉ(fk), (3.12)

where I is a searching interval. According to equation (3.7), the matrix Ĉ(fk) is
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defined as

Ĉ(fk) =
[
Ĉ(fk,−Λ), · · · , Ĉ(fk, Λ)

]T

. (3.13)

This estimator will be used as an initial symbol rate estimator in later chapters.
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CHAPTER IV

EXPECTATION MAXIMIZATION

A. Principles

The Expectation Maximization (EM) algorithm represents a powerful algorithm that

was applied successfully in numerous applications. Dempster proved the convergence

of the EM algorithm in [30]. The EM algorithm produces maximum likelihood (ML)

estimates of the parameters under many to one mapping [31]. The main idea of

the EM algorithm is that of the Maximization step (M-step), similar to ML approach

followed by the Expectation step (E-step), which marginalizes out unknown variables.

Consider two sample spaces, X and Y, and a many to one mapping from X to

Y. The observation data y are directly observed from the sample space Y. However,

the corresponding x in the sample space X are not observed directly but indirectly

observed through the observation data y. Dempster called the observation y the

incomplete data, and x the complete data even though x includes parameters in

certain cases [30].

Assume that the ML estimate of the parameter α is in the sample space A. The

probability density of the incomplete data y is depicted via

p(y|α) =

∫

X(y)

p(x|α)dx. (4.1)

The EM algorithm finds the parameter α0 which maximizes the density p(y|α). Equiv-

alently, if we assume that

B(α) , log{p(y|α)}, (4.2)

which denotes the log-likelihood function, the EM algorithm finds the value which

maximizes B(α).
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The EM algorithm assumes two steps: E-step and M-step.

E-step: Generate the Q function via

Q
(
α|α(n−1)

)
= E

[
log p(x|α)|y, α(n−1)

]
, (4.3)

where n denotes the index of the iterations.

M-step: Find α(n) which maximizes the Q function,

α(n) = arg max
α

Q
(
α|α(n−1)

)
. (4.4)

After several iterations, α(n) converges to a local maximum value.

B. Convergence

The convergence problem is very significant in every iterative algorithm. The conver-

gence of the EM algorithm is proved by the following procedures. Let

g(x|y, α) =
p(x|α)

p(y|α)
. (4.5)

According to equations (4.2) and (4.5), the log-likelihood function

L(α) = log p(y|α)

= log p(x|α)− log g(x|y, α). (4.6)

We also define

D (α̂|α) = E [log g (x|y, α̂) |y, α]

= E [log p (x|α̂)− L (α̂) |y, α]

= Q (α̂|α)− L (α̂) , (4.7)
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and

f : α(n−1) → α(n). (4.8)

Then,

L
(
f

(
α(n)

)) ≥ L(α), (4.9)

where the equality holds if and only if

Q(f(α)|α) = Q(α|α),

g(x|t, f(α)) = g(x|y, α). (4.10)

Proof.

L(f(α))− L(α) = Q(f(α)|α)−D(f(α)|α)−Q(α|α) + D(α|α). (4.11)

By the M step (4.4),

Q(f(α)|α) ≥ Q(α|α), (4.12)

∀α ∈ A. Also,

D (α̂|α) ≤ D(α|α), (4.13)
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∀(α̂, α) ∈ A× A. Based on Jensen’s inequality, equation (4.13) is satisfied by

D (α̂|α)−D(α|α) = E
[
log g (x|y, α̂)

∣∣∣y, α
]
− E [log g(x|y, α)|y, α]

= E

[
log

g (x|y, α̂)

g (x|y, α)
|y, α

]

≤ log E

[
g (x|y, α̂)

g(x|y, α)

∣∣∣y, α

]

= log

∫

X

g (x|y, α̂)

g(x|y, α)
g(x|y, α)dx

= log

∫

X
g (x|y, α̂) dx

= log(1)

= 0. (4.14)

By equation (4.13) and the conditions for equality in Jensen’s inequality, the equality

condition is only hold for above statement (4.10) [31], [32].

As mentioned above, the likelihood function increases at each iteration until

the equality condition is satisfied. If α0 is the Maximum Likelihood (ML) estimate,

L (f (α0)) ≥ L(α), ∀α ∈ A. Then, L (f (α0)) = L (α0). Since the likelihood function

is bounded, the parameter estimates α(0), . . . , α(n) yield a bounded nondecreasing

sequence L
(
α(0)

) ≤ · · · ≤ L
(
α(n)

)
, and the sequence must converge as n → ∞.

Moreover, by equations (4.9) and (4.10), the parameter estimate also converges as n

goes infinity [31].

C. Discrete EM

Wymeersch proposed a modified EM algorithm for discrete parameters [33]. Since it

is not guaranteed that α(n) converges to the ML estimates when the parameter α is

discrete [34], the EM algorithm cannot be used for the discrete parameters.

However, using the convergence state of the EM algorithm, it can be modified
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for the discrete parameters. Based on the equations (4.9) and (4.10), α(n) = α(n−1)

when the sequence α(n) converges. Therefore, equations (4.5) and (4.4) are rewritten,

respectively, as

Q(α|α) = E[log p(x|α)|y, α]. (4.15)

α0 = arg max
α∈A

Q(α|α)

= arg max
α∈A

Q(α). (4.16)

Even though this algorithm requires a discrete set of possible values for the parameter

α, it overcomes the difficulty of choosing initial values. In additions, when the finite

set A is known, equation (4.16) can be solved by a search algorithm without any

convergence problems. Therefore, this algorithm is adopted to estimate the symbol

rate in this thesis.
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CHAPTER V

SIGNAL MODELS

A. Dynamic Signal Models

We consider a blind data symbol detection problem assuming a wireless channel

environment modeled in terms of a Rayleigh flat fading channel [35]. The Rayleigh

flat fading channel is modeled using Jakes’ model. Because it is not feasible to directly

apply Jakes’ model into dynamic state-space models, alternatively, an AR process is

used to approximate Jakes’ model [36]. An AR(2) process was depicted as

ht = −a1ht−1 − a2ht−2 + vt, (5.1)

where ht denotes the fading channel coefficient, a1 and a2 are the model coefficients,

and vt is normally distributed noise with zero mean and σ2
v variance [37]. Based on

the assumption of unit power fading process, the noise variance σ2
v can be calculated

via

σ2
v =

(1− a2)((1 + a2)
2 − a2

1)

(1 + a2)
. (5.2)

Herein, we only consider linearly modulated signals. We assume M-ary PSK

modulated signals, and that a square-root raised cosine filter is used as a shaping

filter.

1. One Sample per Symbol Period

Consider one sample per symbol period. Based on the known symbol period, the

received data signal is sampled at every symbol period. It not only prevents inter-

symbol interference (ISI) but also reduces computational complexity. Based on the
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state-space dynamic equations (2.1),

state equations : at = at−1,

ht = Aht−1 + vt,

observation equation : yt = gThtbt + et, (5.3)

where, ht = [ht, ht−1]
T, at = [at,1, at,2]

T, vt = [vt, 0]T, g = [1, 0]T,and

A =



−at,1 −at,2

1 0


 .

Fading channel taps are represented by ht, and AR coefficients are denoted by at,1

and at,2. The process noise vt is assumed to be normally distributed with zero mean

and σ2
v variance. In the observation equation, yt denotes the received signal, bt stands

for data symbol, and et is an additive Gaussian noise (AWGN) with zero mean and

σ2 variance. Since the channel is assumed to be stationary, AR coefficients at,1 and

at,2 are considered as static parameters [15].

2. Multiple Samples per Symbol Period

In many references, e.g., [13], [15], the dynamic state-space model (5.3)of one sample

per symbol period was adopted. Based on the known symbol period, the received data

signal is sampled at every symbol period. Such an approach not only prevents inter-

symbol interference (ISI) but also reduces computational complexity. However, it

cannot be adopted when the symbol rate is unknown since the symbol rate estimation

generally requires oversampling of the received signal. Therefore, we suggest novel

state-space dynamic equations to capture the effects of oversampling.

To estimate the symbol period T , it is necessary to oversample the received

signal. If we assume that the sampling period is sufficiently small relative to the
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symbol period and satisfies Ts < T/4, where T and Ts denote the symbol period

and the sampling period, respectively, a dynamic state-space channel model can be

designed assuming multiple samples per symbol period. The dynamic state-space

model is depicted by

state equations : at = at−1,

ht = Atht−1 + vt,

observation equation : yt = gThtst + et, (5.4)

where

st =
L−1∑

l=0

bb t
α
c−lpt,l, (5.5)

where L denotes the number of past symbols correlated with the tth samples, pt,l

denotes the pulse shaping filter tap, and bγc denotes an integer less than or equal to

γ. Other parameters are defined in equation (5.3).

The Particle Filter algorithm is next applied to blindly detect the data symbols

based on this dynamic state-space model.

B. Blind Symbol Detection

Due to oversampling, inter-symbol interference is present. To exploit the information

contained in the received signal, the delayed PF algorithm is adopted.

First, consider the joint posterior density of transmitted symbols, b0, . . . , bb t
α
c,

and AR coefficients, a0, . . . , at. Using Bayes’ rule, the joint posterior density can be
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expressed as

p
(
b0:b t

α
c, a0:t+∆1|y0:t+∆1

)

∝ p
(
bb t

α
c|b0:b t

α
c−1, a0:t+∆1 , y0:t+∆1

)
p
(
b0:b t

α
c−1, a0:t+∆1|y0:t+∆1

)

∝ p
(
bb t

α
c|b0:b t

α
c−1, a0:t+∆1 , y0:t+∆1

)
p
(
b0:b t

α
c−1, a0:t+∆1 , yt+∆1−∆2+1:t+∆1|y0:t+∆1−∆2

)

∝ p
(
bb t

α
c|b0:b t

α
c−1, a0:t+∆1 , y0:t+∆1

)
p
(
at+∆1 , yt+∆1|b0:b t

α
c−1, a0:t+∆1−1, y0:t+∆1−1

)
· · ·

×p
(
at+∆1−∆2+1, yt+∆1−∆2+1|b0:b t

α
c−1, a0:t+∆1−∆2 , y0:t+∆1−∆2

)

×p
(
b0:b t

α
c−1, a0:t−dαe|y0:t−dαe

)

∝ p
(
bb t

α
c|b0:b t

α
c−1, a0:t+∆1 , y0:t+∆1

)

×
{

∆2−1∏
j=0

p
(
yt+∆1−j|b0:b t

α
c−1, a0:t+∆1−j, y0:t+∆1−j−1

)
p (at+∆1−j|at+∆1−j−1)

}

×p
(
b0:b t

α
c−1, a0:t+∆1−∆2|y0:t+∆1−∆2

)

∝ p
(
bb t

α
c|b0:b t

α
c−1, a0:t+∆1 , y0:t+∆1

) ∆2−1∏
j=0

p (at+∆1−j|at+∆1−j−1)

×
∆2−1∏
j=0

p
(
yt−j|b0:b t

α
c−1, a0:t−j, yt−j−1

)
p
(
b0:b t

α
c−1, a0:t−∆2|y0:t−∆2

)
,

(5.6)

where ∆1 denotes the number of samples delayed, and ∆2 stands for the number of

samples per symbol period, and ∆3 = ∆1 −∆2.

The samples are generated from the right hand side of equation (5.6) which is

referred to as a hybrid importance function,

p
(
bb t

α
c|b0:b t

α
c−1, a0:t+∆1 , y0:t+∆1

) ∆2−1∏
j=0

p (at+∆1−j|at+∆1−j−1) , (5.7)

where p(at+∆1−j|at+∆1−j−1) = δ(at+∆1−j−at+∆1−j−1), δ(·) is the Dirac delta function,
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and p(bb t
α
c|b0:b t

α
c−1, a0:t+∆1 , y0:t+∆1) is shown in Table II. The weight of the function

is updated by

ŵb t
α
c ∝ wb t

α
c−1

∆2−1∏
j=0

p
(
yt+∆1−j|b0:b t

α
−1c−1, a0:t+∆1−j, y0:t+∆1−j−1

)
. (5.8)

The proposal density function (5.7) does not include any vector related to the channel

taps. Therefore the channel vector must be marginalized out. This is implemented

using the predictive and update steps of the Kalman filter. The details are shown in

Table III.

Table II. Posterior Density Function

p
(
bb t

α
c = bl|b0:b t

α
c−1, a0:t+∆1 , y0:t+∆1

)

∝
∆1+∆2−1∏

j=0

p
(
yt+∆1−j|b(i)

b t
α
c = bl, b

(i)

1:b t
α
c−1

, y1:t+∆1−j−1

)

∝
∆1+∆2−1∏

j=0

p
(
yt+∆1−j|bf , b

(i)

b t
α
c = bl, b

(i)

1:b t
α
c−1

, y1:t+∆1−j−1

)

∝
∆1+∆2−1∏

j=0

∑
bf

∫
p
(
yt+∆1−j, ht+∆1−j|bf , b

(i)

b t
α
c = bl, b

(i)

1:b t
α
c−1

, y1:t+∆1−j−1

)
dht+∆1−j

∝
∆1+∆2−1∏

j=0

∑
bf

∫
N

(
ht+∆1−js

(i)
t+∆1−j,f,l, σ

2
)

N
(
µ

(i)
t+∆1−j,f,l, Σ

(i)
t+∆1−j,f,l

)
dht+∆1−j

∝
∆1+∆2−1∏

j=0

∑
bf

N
(
µ

(i)
t+∆1−j,f,ls

(i)
t+∆1−j,f,l, c

(i)
t+∆1−j,f,l

)
,

where bf denotes future symbols, bf = [bb t
α
c+1, bb t

α
c+2, . . . , bb t+∆1

α
c−1

, bb t+∆1
α

c],

c
(i)
t+∆1−j,f,l = gT Σ

(i)
t+∆1−j,f,lg + σ2s

(i)2
t+∆1−j,f,l, and all other parameters are

obtained by the Kalman filter in the Table III.

To prevent phase ambiguity, initial AR coefficients are generated via

a1 = −2rd cos(
2πfdT√

2
),

a2 = r2
d, (5.9)
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Table III. Kalman Filter

1. Time update the channel vector

µ
(i)
t+∆1,f,l = gTA

(i)
t+∆1

γ
(i)
t+∆1−1,f,l

Σ
(i)
t+∆1,f,l = A

(i)
t+∆1

Σ
(i)
t+∆1−1,f,lA

(i)T
t+∆1

+ σ
2(i)
v,t+∆1

ggT.

2. Measurement update the channel vector

K
(i)
t+∆1,f,l = Σ

(i)
t+∆1,f,lgc

(i)−1
t+∆1,f,ls

(i)
t+∆1,f,l

γ
(i)
t+∆1,f,l = A

(i)
t+∆1

γ
(i)
t+∆1−1,f,l + K

(i)
t+∆1,f,l

(
yt+∆1 − µ

(i)
t+∆1,f,ls

(i)
t+∆1,f,l

)

C
(i)
t+∆1,f,l =

(
I −K

(i)
t+∆1,f,lg

Ts
(i)
t+∆1,f,l

)
Σ

(i)
t+∆1,f,l.

and

fd =
v

λ
, (5.10)

where v denotes the speed of the vehicle, λ stands for the carrier wavelength, and

rd is the pole radius of the AR model and fd is the maximum Doppler frequency,

which are drawn from the regions [0.9, 0.999] and [0, 0.1], respectively. The region of

fdT is decided by considering real-world communication systems. For examples, fdT

must be less than 0.062 if a system assumes 2 GHz carrier frequency, symbol rates

are greater than 3600 Hz, and the vehicle speeds are less than 75 miles/h [15].

Having introduced all elements required for the implementation of the PF al-

gorithm, the resulting weighted samples, b
(i)

b t
α
c and w

(i)

b t
α
c, i = 1, . . . , N , approximate

p(bb t
α
c|y0:t), and the minimum mean square error (MMSE) estimate is calculated via

b̂b t
α
c =

N∑
i=1

b
(i)

b t
α
cw

(i)

b t
α
c. (5.11)

The resampling step should be added at the end. However, the general resampling

step does not prevent AR coefficients, at, from degenerating and assume very few
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different values. Huang and Djurić proposed a novel resampling step [15] based on the

Auxiliary Particle Filter (APF) and smoothing kernel approach, which was originally

proposed by Liu and West in [38].

Whenever the resampling step is required, instead of the general resampling step,

the following procedure is performed. First, the sampled mean and covariance matrix

are computed via

āt−1 =
N∑

i=1

w
(i)
t−1a

(i)
t−1,

Vt−1 =
N∑

i=1

w
(i)
t−1

(
a

(i)
t−1 − āt−1

)2

. (5.12)

A new mean vector is defined as ã
(i)
t = εa

(i)
t−1 + (1 − ε)āt−1. An auxiliary variable is

generated from the index set {1, . . . , N} with the probability proportional to

q(i|y0:t+∆1)

∝ wb t
α
c−1

∆2−1∏
j=0

p
(
yt+∆1−j|b(i)

0:b t
α
c−1

, ã
(i)
t+∆1−∆2+1:t+∆1−j, a

(i)
0:t+∆1−∆2

, y0:t+∆1−j−1

)
.

(5.13)

Consider the generated sample index as a new index ξ, and draw the channel model

coefficients a
(i)
t+∆1−∆2+1:t+∆1

from the density represented by

q
(
at+∆1−∆2+1:t+∆1|a(ξ)

0:t+∆1−∆2

)

= p
(
at+∆1|a(i)

t+∆1−1)p(a
(i)
t+∆1−1|a(i)

t+∆1−2

)
· · ·

×p
(
a

(i)
t+∆1−∆2+2|a(i)

t+∆1−∆2+1

)
p
(
a

(i)
t+∆1−∆2+1|a(i)

t+∆1−∆2

)

= δ
(
at+∆1 − a

(i)
t+∆1−1

)
δ
(
a

(i)
t+∆1−1 − a

(i)
t+∆1−2

)
· · ·

×TN
(
at+∆1−∆2+1; ã

(ξ)
t+∆1−∆2+1, h

2Vt+∆1−∆2+1| [al1, au1] , [al2, au2]
)

,

(5.14)
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where TN(β; γ1, ∆|[al1, au1], [al2, au2]) denotes a truncated multivariate normal distri-

bution with the mean γ1, covariance matrix ∆, and boundaries, [al1, au1] and [al2, au2].

Since the channel is assumed to be stationary, the Dirac delta function can be used as

the prior function of the channel model coefficients. However, the Dirac delta function

makes the algorithm depend on the initial sample values since the previous samples

are transferred without any changes. Therefore, at each data symbol b
(i)
t drawing,

the first Dirac delta function is replaced by the truncated normal distribution to vary

the samples. Based on the generated samples a
(i)
t+∆1−∆2+1:t+∆1

, other samples bb t
α
c are

drawn from the hybrid importance function (5.7). The new updated weight is also

evaluated via

ŵ
(i)

b t
α
c ∝

∏∆2−1
j=0 p

(
yt+∆1−j|b(i)

0:b t
α
−1c−1

, a
(i)
0:t+∆1−j, y0:t+∆1−j+1

)

∏∆2−1
j=0 p

(
yt+∆1−j|b(ξ)

0:b t
α
−1c−1

, a
(ξ)
0:t+∆1−j, y0:t+∆1−j+1

) . (5.15)

C. Symbol Period Estimation

The Expectation Maximization (EM) algorithm is adopted to estimate the symbol

rate. Based on the channel model, define the vectors

b =
[
b0, b1, · · · , bb t

α
c−1, bb t

α
c
]
,

y = [y0, · · · , yt+∆1 ] ,

A = [a0, · · · , at+∆1 ] . (5.16)

Based on the vectors in (5.16), the E-step in the discrete EM (D-EM) method is

implemented through

Q(α) =

∫

A

∫

b

p(b,A|y, α) log p(y|b,A, α)dbdA. (5.17)
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To simplify the Q-function in equation (5.17), we approximate both the probability

density function and log-likelihood function using the Particle Filter (PF) algorithm.

The joint probability density and the log-likelihood function are rewritten as

p(b,A|y, α) = p
(
b0:b t

α
c, a0:t+∆1|y0:t+∆1 , α

)
, (5.18)

log p(y|b,A, α) = log p
(
y0:t+∆1|b0:b t

α
c, a0:t+∆1 , α

)
. (5.19)

Based on the Table II, we generate samples b
(i)

0:b t
α
c and a

(i)
0:t+∆1

from the (5.18). The

Q-function of the D-EM can be approximated as

Q(α) ≈
∫

A

∫

b

N∑
i=1

w
(i)

b t
α
cδ

(
b0:b t

α
c − b

(i)

0:b t
α
c

)
δ
(
a0:t+∆1 − a

(i)
0:t+∆1

)

× log p
(
y0:t+∆1|b0:b t

α
c, a0:t+∆1 , α

)
dbdA

=
N∑

i=1

w
(i)

b t
α
c log p

(
y0:t+∆1|b(i)

0:b t
α
c, a

(i)
0:t+∆1

, α
)

=
N∑

i=1

w
(i)

b t
α
c log

t+∆1∏
j=0

p
(
yj|b(i)

0: t
α

, a
(i)
0:t+∆1

, y0:j−1, α
)

=
N∑

i=1

w
(i)

b t
α
c

t+∆1∑
j=0

log p
(
yj|b(i)

0: t
α

, a
(i)
0:t+∆1

, y0:j−1, α
)

=
N∑

i=1

w
(i)

b t
α
c

t+∆1∑
j=0

log N
(
µ

(i)
j s

(i)
j , c

(i)
j

)
. (5.20)

Then, the M-step of the D-EM takes the form

α
(n)
0 = arg max

α∈A(n)
Q(α), (5.21)

where n denotes the number of iterations of the EM and A represents a discrete set

of possible values for α. As the number of iteration increases, we should shrink the
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range of the discrete set A(n). The procedure is diagramed as

A(0)

↓

α
(1)
0 , ε(1) , η(1)

↓

A(1) = {α(1)
0 − η(1), α

(1)
0 − η(1) + ε(1), · · · , α

(1)
0 , · · · , α

(1)
0 + η(1) − ε(1), α

(1)
0 + η(1)}

↓
...

↓

α
(n)
0 . (5.22)

where ε and η are small values which satisfy the conditions ε(1) > · · · > ε(n−1) and

η(1) > · · · > η(n−1), respectively. Given the (n−1)th discrete set A(n−1), the estimated

oversampling factor α(n) is estimated by the D-EM. The nth discrete set A(n) consists of

the number of b2η(n)/ε(n)c elements neighboring α(n). For example, when α(n) = 5.2,

η(n) = 0.07, and ε(n) = 0.01, then

A(n) = {5.13, 5.14, . . . , 5.26, 5.27}. (5.23)

To represent the (n + 1)th discrete set A(n+1), we choose values for η(n+1) and ε(n+1)

smaller than η(n) and ε(n), respectively, and repeat the process until the convergence

is achieved. After certain iterations, we finally obtain an accurate estimate α̂.
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D. Initial Symbol Period Estimation

In the previous section, we have discussed the symbol rate estimator using the dis-

crete EM (D-EM) algorithm. The D-EM algorithm requires an initial finite set that

will be obtained by using the cyclic correlation based symbol-rate estimator. The

cyclic correlation based symbol rate estimator is suitable as an initialization estima-

tor because it only requires a sufficiently small sampling period so that Ts < T/4.

According to [7] and [8], the initial estimate can be obtained via

p̂0 = arg max
fk∈I

Ĉ(fk)
∗Ĉ(fk), (5.24)

where Ĉ(fk) stands for the vector of cyclic correlations (see [7], [8] for more details).

There is a reciprocal relation between the oversampling parameter α0 and the cyclic

frequency p0. Therefore, the estimate of oversampling factor can be represented by

α̂0 =
1

p̂0

. (5.25)

For more efficient estimation, based on equation (5.24), the symbol-rate estimator is

reformulated as

p̂0,j = arg max
fk∈Ij

Ĉ(fk)
∗Ĉ(fk),

α̂0,j =
1

p̂0,j

. (5.26)

where j = 1, . . . , J , and J is the number of searching sub-intervals. The searching

interval I should be divided into several sub-intervals, I1, . . . , IJ , and each local max-

imum value should be selected from the sub-intervals. The selected local maximum

values consist of the initial finite set A(0), i.e.,

A(0) = {α̂0,1, . . . , α̂0,J} . (5.27)
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CHAPTER VI

SIMULATION RESULTS

In this chapter, the performance of the proposed algorithm is illustrated through

computer simulations. In all computer simulations, a Rayleigh flat fading channel,

BPSK modulation with unit power, and a square-root raised cosine pulse shaping

filter are assumed. In addition, all transmitted data symbols are differentially encoded

to prevent phase ambiguities. The signal to noise ratio (SNR) is calculated as the

averaged received SNR.

In the first computer simulation, we compared the BER performance of the

multiple samples per symbol period signal data detector (MSSD) to the single sample

per symbol period signal data detector (SSSD). As shown in Fig. 1, the MSSD

improves the BER performance much more than the SSSD. Based on the PF with

general resampling, MSSD eliminates the visible error floor which is shown with the

SSSD. The performance gain is much larger at high SNR since the MSSD tracks the

channel much better, and the overall performance is limited by the channel fading.

In the Fig. 2, the BER performances of each method, namely Mixture Kalman

Filter (MKF) with known channel model coefficients, Particle Filter with general Re-

sampling (PF-RS), and Particle Filter with Smoothing Kernel (PF-SK), are plotted.

When we oversample the received signal, the gain due to the smoothing kernel is neg-

ligible. Therefore, using PF-RS, the complexity caused by smoothing kernel method

can be reduced. Both PF-RS and PF-SK show better performance than the Dual

Kalman Filter (DKF) method. To show the lower bound, the performance of the

MKF with known channel model coefficients is also presented.

In the Fig. 3, according to the number of particles that are considered, the
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Fig. 1. BERs of PF-SK and PF-RS with one sample per symbol period and 5.25 sam-

ples per symbol period (fdT=0.05, α = 5.25).

BER performances are compared. As the number of particles increases, the BER

performance is improved. Moreover, the PF-RS algorithm shows better performance

than the DKF.
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Fig. 2. BERs of PF-SK, PF-RS, and MKF with known AR coefficients with 50 parti-

cles, fdT=0.05, and α = 5.25.
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Fig. 3. BERs of the PF-RS with 50, 100, and 200 particles (fdT=0.05, α = 5.25).
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CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Recently, non-cooperative communication systems have attracted a lot of attention.

Numerous researchers have focused on systems such as automatic modulation clas-

sification in the military and civilian application areas. The importance of blind

estimation of the channel parameters and blind detection of the data symbols also

comes from the increasing attention given to AMC applications.

In this thesis, novel symbol rate estimators with improved performance compared

to the estimator based on cyclic correlation were proposed. The EM algorithm, which

is used in the symbol rate estimator, is simplified and made tractable by using the

PF algorithm. A delayed oversampling based data symbol detector is also proposed

under the modeling framework of Rayleigh flat fading channels. Using the delayed

oversampling data symbol detector, the performance of the data symbol detector

is improved compared to the classical blind PF detector. Moreover, the general

resampling technique, which is very simple, can be adopted since this detector reduces

the effect of the AR coefficient estimation errors. Finally, since both the symbol rate

estimator and data symbol detector rely on the same PF algorithm, the resulting

algorithm presents low computational complexity.

B. Future Works

There are numerous directions for future research work. First, other parameters such

as phase offset and timing offset can be jointly estimated. Combining the symbol

rate estimator and data symbol detector reduces the overall computational complex-



39

ity. Finally, this algorithm could be expanded in several different directions such as

frequency flat Rician fading channels, frequency selective Rayleigh fading channels,

and frequency selective Rician fading channels.
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