1,244 research outputs found

    Novelty-driven Particle Swarm Optimization

    Get PDF

    Particle swarm optimization with composite particles in dynamic environments

    Get PDF
    This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    Self-Optimization of Low Coverage and High Interference in Real 3G/4G Radio Access Networks

    Get PDF
    This paper presents a new single cell multi-objectiveoptimization algorithm. The objective is to optimize areas oflow coverage and high interference simultaneously, through theadjustment of the antenna tilts and/or antenna orientation. Theprocess is achieved using a specific implementation of a ParticleSwarm Optimization (PSO) algorithm. Both the detection ofsub-optimal performance areas and its subsequent optimizationare supported by Drive Test (DT) data and network topologyinformation. The antenna optimization algorithm was tested withreal data in 3rd Generation (3G)/4th Generation (4G) networks.In this work, a 3G urban scenario is highlighted, achieving anaverage optimization gain of 78%

    Steady state particle swarm

    Get PDF
    The following grant information was disclosed by the authors: Fundação para a Ciência e Tecnologia (FCT), Research Fellowship: SFRH/BPD/66876/2009. FCT PROJECT: UID/EEA/50009/2013. EPHEMECH: TIN2014-56494-C4-3-P, Spanish Ministry of Economy and Competitivity. PROY-PP2015-06: Plan Propio 2015 UGR. CEI2015-MP-V17 of the Microprojects program 2015 from CEI BioTIC Granada.This paper investigates the performance and scalability of a new update strategy for the particle swarm optimization (PSO) algorithm. The strategy is inspired by the Bak–Sneppen model of co-evolution between interacting species, which is basically a network of fitness values (representing species) that change over time according to a simple rule: the least fit species and its neighbors are iteratively replaced with random values. Following these guidelines, a steady state and dynamic update strategy for PSO algorithms is proposed: only the least fit particle and its neighbors are updated and evaluated in each time-step; the remaining particles maintain the same position and fitness, unless they meet the update criterion. The steady state PSO was tested on a set of unimodal, multimodal, noisy and rotated benchmark functions, significantly improving the quality of results and convergence speed of the standard PSOs and more sophisticated PSOs with dynamic parameters and neighborhood. A sensitivity analysis of the parameters confirms the performance enhancement with different parameter settings and scalability tests show that the algorithm behavior is consistent throughout a substantial range of solution vector dimensions.This work was supported by Fundação para a Ciência e Tecnologia (FCT) Research Fellowship SFRH/BPD/66876/2009 and FCT Project (UID/EEA/50009/2013), EPHEMECH (TIN2014-56494-C4-3-P, Spanish Ministry of Economy and Competitivity), PROY-PP2015-06 (Plan Propio 2015 UGR), project CEI2015-MP-V17 of the Microprojects program 2015 from CEI BioTIC Granada

    Nature Inspired Business Algorithms

    Get PDF

    Cluster Framework for Internet of People, Things and Services

    Get PDF

    Distributed Topology Control based on Swarm Intelligence In Unmanned Aerial Vehicles Networks

    Get PDF
    Unmanned aerial vehicles (UAVs) have shown enormous potential in both public and civil domains. Although multi-UAV systems can collaboratively accomplish missions efficiently, UAV network(UAVNET) design faces many challenging issues, such as high mobility, dynamic topology, power constraints, and varying quality of communication links. Topology control plays a key role for providing high network connectivity while conserving power in UAVNETs. In this paper, we propose a distributed topology control algorithm based on discrete particle swarm optimization with articulation points(AP-DPSO). To reduce signaling overhead and facilitate distributed control, we first identify a set of articulation points (APs) to partition the network into multiple segments. The local topology control problem for individual segments is formulated as a degree-constrained minimum spanning tree problem. Each node collects local topology information and adjusts its transmit power to minimize power consumption. We conduct simulation experiments to evaluate the performance of the proposed AP-DPSO algorithm. Numerical results show that AP-DPSO outperforms some known algorithms including LMST and LSP, in terms of network connectivity, average link length and network robustness for a dynamic UAVNET

    Novelty grammar swarms

    Get PDF
    Tese de mestrado, Engenharia Informática (Sistemas de Informação), Universidade de Lisboa, Faculdade de Ciências, 2015Particle Swarm Optimization (PSO) é um dos métodos de optimização populacionais mais conhecido. Normalmente é aplicado na otimização funções de fitness, que indicam o quão perto o algoritmo está de atingir o objectivo da pesquisa, fazendo com que esta se foque em áreas de fitness mais elevado. Em problemas com muitos ótimos locais, regularmente a pesquisa fica presa em locais com fitness elevado mas que não são o verdadeiro objetivo. Com vista a solucionar este problema em certos domínios, nesta tese é introduzido o Novelty-driven Particle Swarm Optimization (NdPSO). Este algoritmo é inspirado na pesquisa pela novidade (novelty search), um método relativamente recente que guia a pesquisa de forma a encontrar instâncias significativamente diferentes das anteriores. Desta forma, o NdPSO ignora por completo o objetivo perseguindo apenas a novidade, isto torna-o menos susceptivel a ser enganado em problemas com muitos optimos locais. Uma vez que o novelty search mostrou potencial a resolver tarefas no âmbito da programação genética, em particular na evolução gramatical, neste projeto o NdPSO é usado como uma extensão do método de Grammatical Swarm que é uma combinação do PSO com a programação genética. A implementação do NdPSO é testada em três domínios diferentes, representativos daqueles para o qual este algoritmo poderá ser mais vantajoso que os algoritmos guiados pelo objectivo. Isto é, domínios enganadores nos quais seja relativamente intuitivo descrever um comportamento. Em cada um dos domínios testados, o NdPSO supera o aloritmo standard do PSO, uma das suas variantes mais conhecidas (Barebones PSO) e a pesquisa aleatória, mostrando ser uma ferramenta promissora para resolver problemas enganadores. Uma vez que esta é a primeira aplicação da pesquisa por novidade fora do paradigma evolucionário, neste projecto é também efectuado um estudo comparativo do novo algoritmo com a forma mais comum de usar a pesquisa pela novidade (na forma de algoritmo evolucionário).Particle Swarm Optimization (PSO) is a well-known population-based optimization algorithm. Most often it is applied to optimize fitness functions that specify the goal of reaching a desired objective or behavior. As a result, search focuses on higher-fitness areas. In problems with many local optima, search often becomes stuck, and thus can fail to find the intended objective. To remedy this problem in certain kinds of domains, this thesis introduces Novelty-driven Particle Swarm Optimization (NdPSO). Taking motivation from the novelty search algorithm in evolutionary computation, in this method search is driven only towards finding instances significantly different from those found before. In this way, NdPSO completely ignores the objective in its pursuit of novelty, making it less susceptible to deception and local optima. Because novelty search has previously shown potential for solving tasks in Genetic Programming, particularly, in Grammatical Evolution, this paper implements NdPSO as an extension of the Grammatical Swarm method which in effect is a combination of PSO and Genetic Programming.The resulting NdPSO implementation was tested in three different domains representative of those in which it might provide advantage over objective-driven PSO, in particular, those which are deceptive and in which a meaningful high-level description of novel behavior is easy to derive. In each of the tested domains NdPSO outperforms both objective-based PSO and random-search, demonstrating its promise as a tool for solving deceptive problems. Since this is the first application of the search for novelty outside the evolutionary paradigm an empirical comparative study of the new algorithm to a standard novelty search Evolutionary Algorithm is performed

    Adapting Swarm Intelligence For The Self-Assembly And Optimization Of Networks

    Get PDF
    While self-assembly is a fairly active area of research in swarm intelligence and robotics, relatively little attention has been paid to the issues surrounding the construction of network structures. Here, methods developed previously for modeling and controlling the collective movements of groups of agents are extended to serve as the basis for self-assembly or "growth" of networks, using neural networks as a concrete application to evaluate this novel approach. One of the central innovations incorporated into the model presented here is having network connections arise as persistent "trails" left behind moving agents, trails that are reminiscent of pheromone deposits made by agents in ant colony optimization models. The resulting network connections are thus essentially a record of agent movements. The model's effectiveness is demonstrated by using it to produce two large networks that support subsequent learning of topographic and feature maps. Improvements produced by the incorporation of collective movements are also examined through computational experiments. These results indicate that methods for directing collective movements can be extended to support and facilitate network self-assembly. Additionally, the traditional self-assembly problem is extended to include the generation of network structures based on optimality criteria, rather than on target structures that are specified a priori. It is demonstrated that endowing the network components involved in the self-assembly process with the ability to engage in collective movements can be an effective means of generating computationally optimal network structures. This is confirmed on a number of challenging test problems from the domains of trajectory generation, time-series forecasting, and control. Further, this extension of the model is used to illuminate an important relationship between particle swarm optimization, which usually occurs in high dimensional abstract spaces, and self-assembly, which is normally grounded in real and simulated 2D and 3D physical spaces
    corecore