585 research outputs found

    EMFtoCSP: A Tool for the Lightweight Verification of EMF Models

    Get PDF
    International audienceThe increasing popularity of MDE results in the creation of larger models and model transformations, hence converting the specification of MDE artefacts in an error-prone task. Therefore, mechanisms to ensure quality and absence of errors in models are needed to assure the reliability of the MDE-based development process. Formal methods have proven their worth in the verification of software and hardware systems. However, the adoption of formal methods as a valid alternative to ensure model correctness is compromised for the inner complexity of the problem. To circumvent this complexity, it is common to impose limitations such as reducing the type of constructs that can appear in the model, or turning the verification process from automatic into user assisted. Since we consider these limitations to be counterproductive for the adoption of formal methods, in this paper we present EMFtoCSP, a new tool for the fully automatic, decidable and expressive verification of EMF models that uses constraint logic programming as the underlying formalism

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    An Automatically Verified Prototype of the Tokeneer ID Station Specification

    Full text link
    The Tokeneer project was an initiative set forth by the National Security Agency (NSA, USA) to be used as a demonstration that developing highly secure systems can be made by applying rigorous methods in a cost effective manner. Altran Praxis (UK) was selected by NSA to carry out the development of the Tokeneer ID Station. The company wrote a Z specification later implemented in the SPARK Ada programming language, which was verified using the SPARK Examiner toolset. In this paper, we show that the Z specification can be easily and naturally encoded in the {log} set constraint language, thus generating a functional prototype. Furthermore, we show that {log}'s automated proving capabilities can discharge all the proof obligations concerning state invariants as well as important security properties. As a consequence, the prototype can be regarded as correct with respect to the verified properties. This provides empirical evidence that Z users can use {log} to generate correct prototypes from their Z specifications. In turn, these prototypes enable or simplify some verificatio activities discussed in the paper

    Constraints, Lazy Constraints, or Propagators in ASP Solving: An Empirical Analysis

    Full text link
    Answer Set Programming (ASP) is a well-established declarative paradigm. One of the successes of ASP is the availability of efficient systems. State-of-the-art systems are based on the ground+solve approach. In some applications this approach is infeasible because the grounding of one or few constraints is expensive. In this paper, we systematically compare alternative strategies to avoid the instantiation of problematic constraints, that are based on custom extensions of the solver. Results on real and synthetic benchmarks highlight some strengths and weaknesses of the different strategies. (Under consideration for acceptance in TPLP, ICLP 2017 Special Issue.)Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 page

    On Relation between Constraint Answer Set Programming and Satisfiability Modulo Theories

    Full text link
    Constraint answer set programming is a promising research direction that integrates answer set programming with constraint processing. It is often informally related to the field of satisfiability modulo theories. Yet, the exact formal link is obscured as the terminology and concepts used in these two research areas differ. In this paper, we connect these two research areas by uncovering the precise formal relation between them. We believe that this work will booster the cross-fertilization of the theoretical foundations and the existing solving methods in both areas. As a step in this direction we provide a translation from constraint answer set programs with integer linear constraints to satisfiability modulo linear integer arithmetic that paves the way to utilizing modern satisfiability modulo theories solvers for computing answer sets of constraint answer set programs.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP
    • ā€¦
    corecore