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A Comparison of 
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Jan Peleska I, Cornelis H uizing2 , Carsta Petersohn3 

September 27, 1993 

Abstract 

A comparison between Strtlcl.ured Nlcthods, as represented by the Essential Model 
of \Vard&Mcllor's Transformat.ion Schcmil..'>. and the Statemate specification language 
consisting of St.atc- and Act.ivitychart.s, is presented. The comparison is based on the lan
guages' semant.ic properties. An example from the field of fault-tolerant systems serves 
as a "benchmark prohlelll" 1.0 invest.igate tile practical applicability of bot.h Transfor
mation Sdlcillas and St.atelilalt: ill a context of lIleaningful "real-world" systems. \Vllile 
the art.icle's cout.ellt.s is fOIlIlJI~d 011 [ofliial llIathema.tical COllccpts, its objective is also 
to reach the software ~~lIgilleer:; aud CASE tool builders who not Ileccessarily are experts 
in the field of FOTIliid f\lcthods. Therefore all ollr results arc prescnted in an informal 
natur;d-Ianguagc st.yl(~ of reasolliug. 

Keywords: Fault-Tolcrant. Sysl,ellls - State- & Activit.ycharts - Structured Analysis 
and Design l\kl.llOds - Transi"ofillal.ioll Schema - Transition Systems 

1 Introduction 

In this paper we presellt ;l collll'anson oetween Structul'e(] Aletho(ls (5,11) and the State
fj Jlclivityclwl'ls specification langllage, a$ implemented in the Statemate tool (d. [Ha90], 
[IlPPSS87], [IlGdlt88]). Ollt of today's existing SM dialects we focus on Ward&Mellor's 
Tmllsjomlfltioll Schema ('1'8), as introdllced in [WM85J, [Wa86J. 

COlIJmercially motivat.ed compa.risons of CASE t.ools often concentrate on the tool interface's 
ease of usc! on thc Glpahilities to gcncratc code from specifications, on configuration manage
ment and other featllres likely to facilitate the industrial software production process. Such 
comparisons can he ra.thcr mislca.ding, jf they fa.il to analyze the differences of the underlying 
specificatioJI methods. They suggest - a.t least to the inexperienced user -, that a specific 
specification prohlem can he properly solved wit.h any method, as long as the CASE tool looks 
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good. The experienced developer knows, tha.t the selection of a sllitable .sIH~ci(jc.ation method 
- i. e. a formal language and an associated semantics - is crucial for every non-trivia.l software 
project. Especially in the field of safety-critical systems it is mandatory for the specification 
language to be sufficiently expressive to cover all the su btleties of the system to be developed 
and to enable the developer to produce, correct abstractions of complex requirements without 
grossly simplifying the problem. As a consequence, the comparison presented in this article 
is based on TS and State- & Activitycharts semantics, with an empl""is on the language 
features neccessary to model parallel systems. 

The article is structured as follows: In section 2 we present an informal requirements specifI
cation from the field of fault-tolerance. The dual computer system described will serve as a 
"benchmark" problem for the comparison of Transformation Schema and State- & Activity
charts. The example's signific.ance as a basis for comparison will be motiva.ted. 

Section 3 describes the TS solution of the benchmark probl"m. To this elld, subsection :1.1 
introduces the graphical TS language and informally sketches the semantics to be used forTS 
interpretation. Though explicitely intended to support the development of complex command 
and control systems, Ward&Mellor did not provide a formal semantics for their specification 
language. However, their informal language descriptions give suHicicnt indications as to try 
to reconstruct its intended meaning. But on closer inspection, Ward's original ideas about 
S~I semantics (see [Wa8GJ) are only applicable to describe systems that "Ilow an extremely 
moderate degree of parallcUsm. As a consequence, this original semantics is inappropriate to 
model a solution for our fault-tolerant system. Our presenta.tion or TS semantics is therefore 
based on research work described in [CAU9:lJ, [l't92J, where the mentioned flaws have [wen 
overcome by defining a family of operational semantics in the style of 1'10 .kin [PIS:!] suitable 
for a great variety of target systellls. Subsection 3.2 motivates the selection of it suitable 
candidate from this collection to interpret the example's TS solution. Section 3 closes \vith 

the presentation of the TS solution. 

Also for Statemate'::; statc- and activitycharts, a. va.riety of sema.ntics have been suggested. 
Section 4 is therefore structured in the sa.me way a,s section :1 a.nd IJrescnts the corresponding 
St.a.te- & Acti\'itycilal't:::; solution for our benchma.rk problem. 

Section 5 presents the comparison part, using the prcviollsly introduced exa.mple sp(·r.ificatiolls 
to point out the main language differences. Some people regard W&M's method as already 
outdated and succeeded by lIarel' s State- & Activityc.harts [l!a88J. This is only partially 
so. As we argue in Section 6, on the basis of comparing the two methods, \V&M's method is 
probably still the best there is when a lot of data-processing is required, in combination with 
only mildly complicated control. In case of modelling really complex real-time embedded 
systems, which do not involve such an amount of data-processing, Statemate is regarded 
as superior [W089J. Moreover W&M's method is the most widely spre,; CASE method of 
the SM family in industry, so it makes sense to try and improve it. While their different 
abilities to express systelll control a,re a lIIere "technica.I" leatun~, we also !,ry to point out the 
more sophisticated differences induced by the underlying semalltic models. Here superficially 
similar State- & Activitycharts and TS Specifica.tions have difrerent meaning with respect 
to the possibilities of nondeterministic system behaviour, parallel execut.ion of ('vents and 
fairness properties. Our position is that the derision whPlher to chose a Si\l or Statecharts 
description technique should Hot he a global one but always he lIIa.de h.Y analyzing which 
semantics most closely fits for the problem to he solved. 

The prescnt paper has been stimulated hy a project a.t DST to make strllct,lll'('d sp('cifirat.ioll 



mdhods like [WlIlS5] automatically analysahle and suitahle for application in the field of 
safety-critical systems. 

Though the article's underlying concepts are of a formal mathematical nature, our intention 
is to make this paper readable for a greater audience of CASE experts and CASE tool users, 
not neccessarily working in the field of formal methods. We have therefore restricted ourselves 
to natural-language presentation style. For a further exploration of the article's theoretical 
foundations the reader is referred to [CAU93j. 

2 Fault tolerant dual computer system - informal reqUIre
ments specification 

In this section we informally describe a typical set of requirements from the field of fault
tolerance. We motivate, that this set can be used as a meaningful example for the comparison 
of Transformation Schema to State- & Activitycharts. 

The objective is to specify a fault-tolerant solution for a computation service P that can be 
charactcri7,cd as follows: 

• P inputs data provided by a. produce1" 011 channel A. 

• For each input x on A, a colllPutation y = I(x) is performed by P and delivered vIa 
channel B to a. consume,', 

• vVe assume a ,<;Yllchroftow; cOlnnllwicalion between server and environment: The pro
ducer will oilly selld a. new joh after having received a NEXT-message from the server 
computer to indicate that P ha.s finished the last computation. 

Next, we descrihc the houndary conditions for the desired type of a fanlt-tolerant server 
platform: The fault-tolera.llt systelll sha.1I he desiglled a.s a. dual computer system DCP ac
cording to the l1wslcl'-slave principle: DCP consists of two computers CPl and CP2. Each of 
these components lIIay fail independently. As a Inuit hypothesis, we IIIay assume that each 
computer acts as a loil-slop co"'pOllent, i. e. the failure event leads to the computer's total 
deactivation witllOut any remaining sub-activities. In normal operation (both components 
available), CPl acts as the "'(lstCI: a copy Pl of P runs 011 CP1, producing computations 
after which a protocol handler of CPl requests a new job by means of a message NEXT1- CP2 
operates in standby mode hy only storing jobs in its local memory without activation of a 
P-capy. Each joh is kept hy CP2 at least until the NEXTl-mcssage indicates that it has been 
successfully delivered to the consumer. 

If CPl fails, this will a.lso he detected by CP2 whiclt then continues as the master component by 
a.ctivating a. copy P2 of P and produciug lIIessages NEXT2 to request neW jobs. Though CPl 's 
failure can occur while a joh is still being processed, it is requircd that this job must lIot bc 
lost: CP2 shall use its still availahle copy of the illput and calculate the ccrresponding result. 
It must be ta.ken into accollnt, that CP1's failure can OCCllr afler having deliv('rcd a result on 
cha.lInd B a.nd before having produced the NEXT1-TIlcssage. In such a case it cannot be avoided 
that CP2 also processes this joh, and the result is sent to the consumcr for a second time. To 
this cnd, each input is equipped by the producer with an alternating bit, that is also attached 
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to the result transferred to t.he consumer. We a.ssullle that t.he ("I)IISIIIW'r has illlplellH'lllPd 
an alternating-bit protocol to detect duplicated bits a.nd discard the corre"ponding result.s. 

Before presenting the Transformation Schema and State- & Activitycliarl.s specifications. it 
is appropriate to justify why we think that the above example is adequate for the comparison 
of specification techniques: 

• Both Transformation Schemas and State- & Activitycharts claim to be powerful means 
for the specification of problems in the field of "eactive systems. OCP presents a typical 
example of such a system. 

• The graphical presentation style of both Transformation Schema and State- & Activi
tycharts is intended to facilitate a quick understanding of complex specifica.tions. We 
feel that the DCP specificatioJl is sufficiently complica.ted, so that allY proposed solution 
should be supported by graphical visualiza.tion. Ex[)(~riellces with formal specifications 
have shown, that a pure textual presentation is rather hard to communicate to people 
unfamiliar with the problem. 

• Both specification languages claim to be helpful in the description of problems of a 
complexity, that makes a natural-language specification unlikely t~ cover all aspects 
\vith sufficient precision. DCP presents a protocol specification pro )Icm. where it has 
to he ensured t.ha.t rerlaill saJdy- and liv('IH~ss-colldit.i{)lls Glil be gl:a.ralltecd ··in every 
possible situation". In general - beeallse of its "fuzzy" s('lIIantics --, it is very hard to 
examine natllral·langllage specifications for completeness of case analyses. Therefore 
it is interesting to sec how mnch help our specification languages offcr with respect to 
completeness checks. 

• Problems from the field of fault-tolerance have been widely used to wmpare the power 
of formal specification languages and vcrilication methods, since the lise of fa.ult-tolerant 
systems in safety critical applications also suggests formal devcloplllcnt tcchniqucs to 
produce trustworthy specification, design and code. Our example allows the compari
son of semi-forma'! .specification methods to mcthods of greater fo rill a.1 rigollr (sec for 

example [PeWI]' where a CSP solution has been specified, designed a.nd verified fur 
the above example). rvloreover, the development of fault-tolerant systems requires that 
«'rtain design decisions must be incorpora.lt'd a.lready 011 sJH'cific;tliulI l('veL Th('s(~ dp
cision, are related to the collcept of hardware redundancy selectedllike chosing a dual 
computer or triple-modular redundancy) and the design-depende"t falllt hypotheses 
(like "each comp"ter behaves like a fail-stop component"). They IIlllst he shown in the 
specification, to allow a complete capture of safety requirements. As a consequence, 
specifications in the field of fault-tolerance do not allow a "pllre" top· down approach 
from specificat.ion to design, and therefore represent a significant tOllchstone both to 
the specification langua.ge and to the developer's skil1. 

3 A Transformation Schema solution 

In this section, a transforma.tion schema specification for the fault-tolerant dual computer 
system DCP informall.\.' introduced above will he gi\'(,11 (SllhS('ftion :L:J). To make this article 
sufficiently self-contained, we also present an inforlllal introduction of TS syntax and a. class 



of semantics for their interpretation (subsection :Ll). "Vard's original selllantics is a member 
of this da.ss; however, it is inappropriate for the DCP specification. This and the selection 
of a class member with properties suitable for the DCP interpretation. will be discussed in 
subsection :J.2. 

3.1 Informal description of TS syntax and semantics 

Transformation Schema use grapllical language elements to describe a system's flow of 
data and control. Most of these elements can be seen in the diagram in Fgure 5. 

Data Transformations are depicted as solid circles (e. g. RC2, P2) and represent specifi
cation parts where the processing of data is described. 

Data Flows The data exchanged between the environment and the system and between 
different data transformations inside the system travels on data flows, depicted as labelled 
solid-line arrows (like ACP2). Data flows only carry typed information. New types can be 
constructed from atomic types using constructors, such as cartesian products (denoted as 
A + B) and union (denoted as [A I B). Consuming the data item travelling on a flow is a 
destructive operation. Therefore t.he value -1 extends each flow's type to indicate that no data 
is presently available. FIO\v!; of product or union type can divcrge to feed their components 
into different transi"orma.tions. For example now R2 in ligurc 5 ~P'lts into A2J.. A2..B and 
the control flow YrA2. If a value is placed ob R2, the corresponding components are placed 
on A2...x and A2..R at the same time. Moreover, flows emerging from different sources can 
conVErge to be fed into a single sink.E. g. BCP2 is composed of Y2 + A2..E. As soon as values 
have been placed Oil both Y2 and A2..E, the corresponding composed value is defined for BCP2. 

If two nows A, B converge into a. union flow C = [A I B], a C-valllc is defined, as 800n as a 
value is placed on either A or B. 

Stores To introduce data containers for non-dcstructive rea.d operations, the st01'e symbol 
is used (solid-lille labelled "pou boxes, e. g. 52). 

Control Transformations are depicted as dashed-line circles and represent specification 
parts where the system's dynamic behaviour is controlled (e. g. CCP2). 

Control Flows carry the control information exchanged between the environment and the 
system and between different transformations inside the system. They are represented by 
dashed-line arrows (e. g. NEXTl). In contrast to data flows, each control flow only has a 
finite range of allowed values (including 1.). Each control flow must start or end in a control 
transforma.tion. If it is generated by da.ta tra.nsforma.tions, it is callc( a data condition. 
There arc specific control flows ha.ving data. transformations as sink, The) arc tlsed to trigger 
(c. g. TRIGGER P2), to wab/e (c. g. ENABLE Pl iu figure ;1) or to ,Ii.wlble (c. g. DISABLE Pl 

in figure 3) the da.ta transformation. A trigger leads to it single execution of the associated 
data. transfol'lpatioll; after having produced its output it will wait for the next trigger event. 
Triggef(~d data trallsformations do Hot input from nows, they only lise stores. Disabling a 
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data transformation will prevent it from producing any outputs unt.iI on:urrenc,e of t.he next 
enable event. 

Process Specifications are textual descriptions associated with each data transformation 
to define the relation between input data and output data. 

State~Transition Diagrams describe the transformation of control iteITIs arriving on in
put control flows into output control flows by means of Mealy-style automacons (e. g. figure 6). 
Incoming events passed via input control flows can be processed, if the all tomaton 's actual 
state defines a corresponding transition. In this case the transition will be performed. At the 
same time, new actions arc generated by placing va.lues on output control flows. For example 
in figure 6, ocurrcnce of event llrA2 in state ACTIVE-NO.J)ATA will lead to the automaton's 
transition into state ACTIVE-DATA and produce the action TRIGGER P2. 

Scope Rules Each process specification or state-transition diagra.m ca.n reference only flows 
and/or stores connected as input to the corresponding transformat.ion and write only outo 
flows and/or stores connected as outputs. 

Top-Down Presentation of TS To reduce the complexity of Ia.rt;e SIH'cifiGl.tioIlS, a TS 
can be presented in tOJ1-down fashion. For the DCP specificatioll, sHeh a top-(Iown present.ation 
is given in figures 1 to 6. The top-level diagram (figure I) shows the complete system as a 
black box (bubble DCP), together with its interface to the environment (flows between DCP 

and the terminators PRODUCER, CONSUMER, FAILURES). The top-level bubble is refined by 
a new TS, in our example given by figure 2. Each bubble on the new TS can either be 
associated with a process specifica.tion or again be decomposed into ano:;her dia.gram , until 
the associated transformations are sufficiently small and cohesive to be represented by a single 
process speCification. However, the behaviour of it TS is completely defined by the flattened 
TS associated with each top-down presentation, where a.ll the transforma.tion::;, stores and 

flows are "glued" into a single diagram by connecting the correspondillg Hows. 

TS Semantics of Dynamic Behaviour The behaviour of a TS is most appropriately 
interpreted in the framework of transition systems as defined in [MJ>92j. The stule8[Juce of a 
TS is defined by the cartesian product generated by the suh-statespaces of flows and stores, 
by the states of data transformations (state values ENABLED/DISABLED) and the states of the 
automatons associated with control transforma.tions. The initial condition of a TS requires 
that all flows assume the "clear" state J.. and all state-transit.ion diaf.,!;raills assume their initial 

state (specified by the tra.nsition arrow without sOl)rce state). The tnl1tsilio1lS of a. TS arc 
defined by the data. a.nd control t.rallsformations. :\ TS o:(,(:lllioTl is <L seqll('IlCe 

where each Sj is a state and each Tj is a transilion cnahlpd ill stale .':>j, ~lIch that (Sj,.'>i+l) 

is a possible pair of pre-state ami after-state of Ti· ~"o lIlust he consistent with the initial 
condition. 

Ii 



In the context of transformation schemas, each Si -..,. Ti - Si+l is called c: micro step. Infor
mally speaking, micro steps represent the system's internal processing ste~s, that are not. ob
servable by the environment. They are atomic and happen in "zero-time" (see [BB92]). Macro 
steps define sequences of micro steps that always terminate with a step '''n-l -..,. Tn_l - Sn al
lowing in its after-state,';" the placement of new input data on the system '5 interface. Macro 
steps are interpreted as the observa.ble interactions between system and environment. 

Given the TS syntax as introduced above, micro step rules define the set of possible transitions 
To with their pre-state/after-state relations. Macro step ndes restrict the space of possible 
TS executions by imposing additional 4'glohal" conditions for a micro step to he executed. 
These conditions depend on the complete sequence of micro steps already executed during the 
macro step. Each set of micro step rules plus macro step rules defines a new type of transition 
system, each operating on the TS statespace. Therefore these sets of micro step/macro step 
rules define a family of semantics for Transformation Schemas. This approach has been 
followed in [CAU9:l]. 

The family of semantics introduced in [CAU93] has the following membe 's: 

Causal-Chain Selnantics This semantics most closely reflects \Val'd'~ original ideas de
scribed in [W"il6]. 

Each micro step is defined hy execution of either a complete data transformation or 
a complete eontrol tra.nsforma.tion. A transition defined by a data tra.nsforma.tion is 
enabled a.ccording to the micro step rnles, if its input flow or trigger has a value :fl., 
and if the 0\1\1'\1\ 1I0w (if cxbting) has val\lc L The latter condition means that the 
output flow's conSllIller must have consumed any data item previously transmitted via 
this flow. As a res\llt of the data transformation the input flow has value .1 and the 
output flow and/or output stores have values defined by the corresponding process 
specifica.tion's input/output rela.tion. If the data transformation ha.s been previously 
disabled by a control flow, the transition results only in resetting the input flow to 1.. 
A transition defined by a coutro} transformation is enabled, if a value :f1. is placed on a 
control flow, Moreover, the control transformation must be either in a disabled state or 
the a!:>sociated state-transition diagram must be ill a state where this event stimulates 
a transition. As a result the state transition is performed, and the associated output 
events are placed 011 the output control flows. If the control tra.nsformation is disabled, 
the input is discarded. 

A macro step is always initiated by an input on the system's interface. It will then 
be processed in causal chaills: In such a sequence of micro steps, the output of one 
transformation causes the activation of the corresponding consumer transformation. If 
more than olle input is pla.ced at the macro step's heginning or a transition enables 
more than olle SIICc.essor, the next transition is chosen nondeterministic:ally. If the 
causal ehain cannot he prolonged, because the last transformation has produced an 
output to the cnviromnent or the eonsulIler transformation needs additional data to 
operate, a new chain is activated starting with any of the transitions enabled according 
to the micro step rules. The macro step terminates, if no more enabled tra.nsitions 
are left. If any flow values have not been processed at the macro step's end, they are 
reset to 1.. New inputs at the system's interface may only be placed at a macro step's 
be~inlling. 
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Weakly-Fair Interleaving Semantics This semantics has the same micro step rules as the 
causal-chain semantics. The macro step rule has the same initiation a.nd termina.tion 
rules. but it drops the causal chain condition by allowing anyenahled transition to be 
taken for each micro step. The semantics' name is motivated by the fact that nOIl

diverging specifications automatically possess a weak fairness property. This will he 
discussed in section 5. 

Full Interleaving Semantics This semantics has the same micro step rules as the two 
above, but it drops the input rule by allowing new inputs from the environment to 
be placed and processed at each micro step. Therefore macro steps are identical to 
micro steps and there is no situation, where data resp. control signals placed on flows 
is discarded. 

CSP Semantics This semantics has been introduced in [Pe193J, by giving translation rules 
of Transformation Schemas into CSP ([11085)). It introduces "shorter" micro steps by 
separating each transformation's input and output phase into two transitions, where 
other micro steps may interleave. The macro step rules arc the same as in the full 
interleaving semantics. 

3.2 Selection of an appropriate TS semantics 

In this subsection we motivate, which of the TS semantics available is tlF~ most appropriate 
to interpret a TS specification of the OCP-problem. Informally speaking, we are looking for 
a semantics that allows to model all critical aspects of the system, but is 1I0t unneccessarily 
complex by allo\o,:illg executions of the specification that an~ irreleva.llt Of (~ven impossible ill 
the target system. 

One of the cn;cial difficulties when developing fault· tolerant systems lies in the fact that 
it is not possible to influence the point in time when a f;tilllre happens. In terms of our 
example. this means that occurrence of CPt's failllre event CRASHt must a.lso he considered 
for situations when a job is just being processcd by P1. 

We first motivate, why the causal-ch~in semantics introduced above is inadequate. Using 
transformation schemas, CRASHl will be modelled as an external event (cf. figure 7), since 
it happens spontaneously and independently on OCP's internal state. Thcrdore invcstigating 
the consequences of a CRASH1 occurrence means a.ppJying the execution ruJc:-i of TS sema.ntics 
from a pre-state, where a token is placed on the control flow CRASH1 on OcP's interface. But 

even if an input token is placed at the same time on data flow A, the cau<;a.l-chain semantics 
offers no possibility to investigate the impact of CP1's failure while a job is ueing processed: 
The semantics' execution rules specify, that in the situation described eith •. " the impact of the 
A-input or that of the CRASH1 event is completely processed in its corresponding causal chain 
before the other token is taken into account. This means, that only the situation "failure 
occurs after the last job has been completely carri~d alit and before the next A·input arrives" 
can be analyzed in the causal-chain semantics. 

The full-interleaving semantics is not selected. heca.use it. requires tha.t the developer cx
plicitcly expresses all fairness properties necded in the specification. \Ve will sce in the TS 
solution presented below, that a certain fairness property is a. "natural" fequirement for thc 
OCP specification. Therefore it would he an a<h·antagc to have this propcrty automatically 
conta.ined in the specification. without making it explicitcly visible. 
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Though the CSP~hased sl'mantics introduced in [Pt'I!Xl] w01lld he' il.ll appropriate ca.ndidate 1.0 

model the DCP syst.em, it introduces an lInlH~ccessary degrf'e of cOlllplexit.~· for t.his applica.tion. 
First, fairness properties have to he cxplicitcly express('ci, just as in t.he ftlll~intcrleaving 

semantics. Second, the higher degree of interleaving ofrered is not required for the DCP 
problem. For a data transformation P the CSP semantics allows to model situations like 
"CRASfl1 appear8 after f' has iT/put x and before it could produce output y." It will become 
apparent that for our example this situation can be "approximated" by the event sequence 
"CRASfl1 occurs before f' inputs x". 

This leaves us with the weakly· fair interleaving semantics as a well suited candidate for a 
TS specification of the DCP. The solution for DCP and the weakly-fair interleaving semantics' 
appropriateness will be discussed in the next subsection. 

3.3 Dual Computer System - TS solution 

The TS solution for DCP is presented in figures 1 to 6. Note that our specification of CPl 
and CP2 is asymmetric, as shown in figures ;~ and 5, because we only wish to specify DCP's 
behaviour in the situation where CPl fails, while it acts as master. A symmet.ric specification 
could also cover the cases where repaired components are re~integratcd into the system. 
However, this would make our exa.mple unnecessarily complicated without adding new insight 
for the compa.rison between TS a.nd Statech"rts. 

Description of interfaces The interface of DCP in the TS model is shown in figure 1. New 
jobs for the service l' implemented in DCP arc input on data flow A, the results are delivered 
on data flow B. Control flow NEXTl is defined as NEXTl = [!lOKIi I "WATCHDOG ALARMII]. The 
producer is notified via signal NEXTl = "OK" (or NEXT2, if CP2 acts as master) that DCP is 
ready to (lccept a new job. (The fIleaning of "WATCHDOG ALARM" will be explained further 
below.) The occurrence of CP1's faililre (we do 1I0t consider the crash of CP2) is modelled by 
means of the control flow CRASH1. 

The diagram in figure 2 shows the interfaces between CPl and CP2 and the outside world: 
Each input on A is broad casted on ACPl and ACP2 to CPl and CP2, respectively. The new 
names ACP1, ACP2 have only been introduced to distinguish CP1's and CP2's input flows. 
Formally, A is defined as A = ACPl + ACP2, and both ACPl and ACP2 carry the same value. 

Output B has structure B = [BCPl I BCP2] and passes values from either BCPl or BCP2 to the 
environment. NEXTl = "OKI! is both sent to the environment and also to CP2 to indicate that 
the last job has been successfully terminated. CRASHl is consumed by CP1; after its occurrence 
CPl stops processing A-inputs. As a reaction to CRASH1, the signal NEXTl = "WATCHDOG 
ALARM" is transmitted. This can be interpreted as a watchdog mechanism that controls CP1, 
detects oeCllfre-nee of the failure CRASH! and passes the alarm messa.ge on flow NEXT14. ,\s a 
reaction to this signal, CP2 will take over as the master component. (The environment will 
simply discard this signal.) After occurrence of CRASHl and NEXTl = "WATCHDOG ALARM", CP2 

iTo motivate that it is rca.sonablc to speciry an alarm signal that still can he gcnerated after CPt has 
cra.'ihed, think of an indcpclld(:nt hardware device like a watchdog ohserving CPt's local bus. If CPt fails. 
this will not afrect the watchdog, so it <:all detect that 110 messa.l!;es pass CPt's bus a:lymore aud signal the 
alarm mcssage to CP2. On our specificatioll's level of abstraction, it makes sense lIot to show the watchdog 
explicitcly, hut simply demand il dcsi~1I t.h;lt is ahle to si)!,ual CPt's f,titurc t.o CP2. 



Nf..XTl 

--
,-- ---

A 
PRODUCER DCP CONSt..'}lf..R 

----
---NEXT2 

: CRASHI 

Figure 1: Dual Computer System DCr - 1'S specilication of the interface. 

will start to produce outputs on BCP2 and requcst ncw jobs via NEXT2. Thc alarm mcssage 
"WATCHDOG ALARM II is transmitted for reasons of proper sequcncing on the same flow as the 
request "OK" for ncw inputs. This will he further motivated in section S. 

Behaviour of CP 1 Figure 3 shows the internal structure of CPl. Its behaviour is controlled 
by control transformation CCPl ("Control CP1", figure 4). At system startup, CPl assumes 
state UP, and data transformation Pl is enabled. Additionally a NEXTl ; "OK" message is 
sent to the environment to indicate that DCP is ready for dat.a processing. 

An input on ACPl is split into the components ALX carrying the data to be processed and 
ALB carrying the bit that alternates with each job. Data. transformation Pl conslImes ALX 
and computes the result Yl :; f(ALX). This result is combined with signal wrBl ("written 
Bl") on output flow Yll. 

The Yl-component is combined with the alternating bit ALB, so that BCPl ; Yl + ALB 
carries both the result calculated by Pl and the unchanged bit received with the calculation's 
corresponding input. The signal wrBl is passed to CCPl to indicate that the job has been 
delivered. By definition of our semantics, the data transfer on BCPl and the placing of the 
wrBl signal happen in the same micro step that includes the output. production of Pl on Yll. 
On reception of the wrBl signal, CCPl outputs the NEXTl ;; ··OK" message. The state UP is 
kept until occurrence of event CRASHl. Then CCPl performs the transition illto the final state 
DOWN, at the same time producing signal NEXTl ;; ··WATCHDOG ALARW· a.nd disabling P1. so 
that CPl is completely deactivated. 

The weakly-fair interleaving semalltics adeqIJatPly mod pis t.he situat.ion when a IH'W input 
A and the failure CRASHl occur "at the same tillIe", i. c. ill the same m;HTO step. as it is 
observable by the outside world. If at the beginning of a macro stC'p tokens are placed hoth 
on A and CRASH1. the impact of the failure eVC'lIt can intC'rleavc in three 1'\;ICl'S: 
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A 

A • ACPl + ACP2 

B", [BCP2!BCP7.) 

CRASHl 

ACPl 

ACP;? 

NEXTl '" r ·OK· ! ·WATCHDOG ALARM"] 

, , BCPl 

~ 
: NEXTl , , 8 

! NEXTl --------> 

: NEXTl , 

BCP2 

Figure 2: Dual Computer System ncr - TS specification of the interfaces of computers CPl 
and CP2. 

Ae?l 

ENABLE 

PI 

CHASHI 

AI B 

PI 

- --- - --. - -- ---- ---

'. , , 
~\ 

." 

Y1 BCPl 

:wrBl 

", 

CCPl 
~ NEXTl r---------- ______ > 

Figure 3: Dual Computcr Systcm DCI' - TS specification of computer CP1. 
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j IENABLE PI; N.XTl-"OK" 

wrBl/NEXTl="OK" 

CRASHl! 
D I SABLE PI; 

NEXT1="WATCllDOG ALARM" 

Figure 4: Dual Computer System DCI> - Control transformation CCI'I of computer CPl. 

1. before Pl consumes the ALX-input 

2. after Pl has placed the output, but before the NEXTl is produced 

3. after NEXTl has been produced 

The "most complicated" second case, making the introduction of a.n alternating bit protocol 
necessary, corresponds to a 1'5 execution, where event CRASH1 is already .>iaccd OIl CCPl but 
has not yet been conslimed, the result has been delivered Oil Bep1, so that wrBl is ;)lso placed 
on CCP1, and the next micro step starts by processing the CRASH1 token. 

The fairness property that every token that can he permanently processed during one macro 
step will be processed cluring this step, ensures that CPt will always react to the pl;l"ccmcnt 

of the CRASHl token during the actual macro step. If this condition would be dropped, CPi 
could "ignore" the occurrcnce of the failure a.nd {:ontinue processing Hew jobs. This would 
certainly not be an appropriate model for a failure event, that typically has just the unpleasent 
property that its impact cannot bp postponed. 

Note that we also have to make use of the condition that unused tokens arc discarded at the 
end of each macro step: In state DOWN, a new input on ACPl is split into ALX and ALB. The 
ALX-token is thrown away, because Pi is disabled, but the ALB-token remains unconsumed 
until the macro step's end. Now our semantics for diverging flows (in our case ACP1, ALX 
and ALB) demands that all outgoing branches must be cleared, before a new token can be 
placed on the flow. Therefore ACPl would be blocked and as a conseqtH'llce also prevent 
new messages from being placed on the input flow A, if the unuscd ALB-token would not be 
discarded at the macro step's end. 

Behaviour of CP2 Figure.1 shows tlH~ illternal structure of CP2. lu; hehaviour is con
trolled by control transformation CCP2, shown in figure (). At systC'1ll start.up, CP2 ClsSUlllPS 

state PASSIVE-NO-DATA. A receive proeess RC2- rOIlSIIIll(,S new jobs arrivillg on ACP2. Using 
output flow R2 = A2--X + A2...B, it then places the joh's data component A2--X in store S2 and 
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the alternating bit on flow A2J3, at the same time signalling the job's arrival to CCP2 via 
wrA2, CCP2 then assumes state PASSIVE-DATA, Occurrence of the signal NEXT1="OK" in(li
cates that the job has been successfully completed by CP1. Therefore C(;P2 again assumes 
state PASSIVE-NO-DATA. The remaining token on A2J3 is discarded at th" end of the macro 
step. 

ACP2 R2 A2 

, , 

" " , 

m:XTl --------------------, 

X 

, wrA2 

" , , 

, 

-"', , 

, , 

" , , 

A2 B 

S2 

CCP2 , , 
/-

BCP2 

Y2 

Y21 

A2 X 

" 

" 

-' TRIGGER P2 

wrB2 ,--------.-----------------------

.. NEXT2 ----------_.----------. 

Figure 5: Dua.! COIIlj>lIter Sy~tcm DC}> - TS specification of cOlllput.er CP2. 

If the failure of CPt is indicated via. NEXT1::: II WATCHDOG ALARM", two cases must be considered: 

l. CP2 i8 in stllie PASSIVE-NO-DATA: In this state it is ensured that no job was being pro

cessed when CRASH1 occurred. Therefore CP2 will simply assume slate ACTIVE-NO-DATA. 

At the next arrival of a job on ACP2, the corresponding signal wrA2 will cause CCP2 to 

trigger P2 and perform the transition into state ACTIVE-DATA. PlaceInent ofwrA2 is per
formed in the same micro step where the new input data is placed in store S2. Therefore 
P2 always fillds the actual input data in 52, when the trigger lead:j to P2's activation 

in the subseqnent micro step. P2 reads input data A2....x from the .;tore and produces 
the output Y2l = Y2 + wrB2, where Y2 = f(A2J:) carries the calculated result that is 

combined with the bit A2J3 on BCP2 = Y2 + A2J3. and wrB2 indicates that the output 
BCP2 has heeu delivered, so tha.t CCP2 [an produce tile required NEXT2 signal and return 
iuto state ACTIVE-NO-DATA. 

2. CP2 is in sialc PASSIVE-DATA: In this situation, CP2 has to reproduce the job stored in 
52, because it is ullcertain, if CPt could deliver the result before the failure happened. 
CCP2 therefore directly triggers P2 and performs the transition into state ACTIVE-DATA. 
Afterwards it exactly opcrates as dcscribpd in the first casco 
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Figure 6: Dual Computer System DCI' - Control transformation CCP2 of computer CP2. 

4 A State- & Activitycharts solution 

In this section. we present a. StaLc- & Activitych"rts sppcificat.ioll of DCP. As ill the previolls 
section, a short introduction ill to the Stale- & Activityt'ilarts specifictioll la.nguage is given 

in subsection '1.1. For a morc detailed description, the reader is referred 1.0 [Ha.nO], [iL89]. 

4.1 Informal description of State- & Activitycharts syntax and semantics 

In general, a Statc- & Activitycharts specification consists of two p<Lrts. The first part, 
called activitycha1"l, describes the conceptual structure of the system, showillg the flow of 
information and control between the components. The second part, consisting of one or lIlorc 

statecharts, specifics the actual behaviour of these components, i.e., how the information flow 
is processed. 

Activitycharts In figure 7, we see the activitychart of the Dual Computer. It consists of 
one root activity DCP, which is connected by the environment activities PRODUCER, CONSUMER, 

and FAILURES. DCP consists of two suhadivitics, CP1 and CP2. In W'lwral, this nestill~ of 

activities can he applied to any (Iepth. The heha.viour of <l.n activity cal] IH! specified \villi 
a statechart, as shown for CPt a.nd CP2 which a.re cont.r<)lIed h,Y two s1,alecharts CCPl and 
CCP2 in figures ~ and 9. Activities that aTe 1I0t fUI't.iH·r rdined by sub-activities alld/or 

statecharts represent processes that perform transformatioll of da.ta without tontrollillg ;lIlY 
other components. In our example, P1 and P2 arc such transformation prOCl'sses (we left the 
actual transforma.tion unspccified, bccause its {h'finitioll is not J'(·lcv;tnt ill ollr ('ontl'xt). All 
activities Illay be scif-tCl'lIIillatill~ or be tcrminatt'd hy a sl.4l.1{'cha.rt (spp hplow) via. sppcial 
siol'-cvcnls. Furthermore, thc exccution of an activity may he tpmporarily slIslH'nded and 
lalpr be resumpd by sen{ling it specific ('vcnts, 

1·\ 
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Figure 7: Dual Computer System DCI' - Activitychart. 
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Figure 8: Dllal Computer System DCI' - Staterhart CCI'I of COlllp"ter CPI. 
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Figure 9: Dual Computer System DCI' - Statechart CCP2 of computer CP2. 
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Statecharts The Statechart formalism is derivf'd from the finite state diagram. States are 
denoted like rounded cornered boxes and connected by arrows called transitions. 

'rhe label of a transition has two parts, separated by the symbol /: all cnablin9 part., or 
trigger, and an action part. 

The trigger part specifies under which conditions the transition cOl.n be t.aken. To this end, 
the trigger is defined by means of an event expression plus a boolean expression ranging over 
variables and states. Events are the basic means to mediate control, they can be interpreted 
as atomic signals that are only visible "for one moment of time" (this will be explained 
in more detail below). In our DCP example, the events are are CRASH 1 , NEXTi, NEXT2, to 
be interpreted as signals exchanged between the environment and the system, and vr(A) , 
vr (Yi) , ... ("written A "), to be interpreted as signals internally generated by DCP, as soon 
as new data is written on A, Yi, .... Event expressions are defined by boolean expressions 
ranging over events. In figure 9 for example, the event expression CRASHi and not "r(A) is 
interpreted as "the corresponding transition may be taken, if event CRASHi is signalled, and 
at the same time no data is written on A". If an additional expression over variables and 
states is associated with the trigger, the corresponding transition is enabled. as soon as both 
expressions evaluate to TRUE. For example, a transition with the trigger 

a and not b[x=5 or not in(DATA)] 

can be taken the moment that the event a occurs and b docs not and at the same time the 
value of variable x equals 5 or the system is not in the state DATA. When a transition has an 
empty trigger, such as in the transition from READY to NO.1lATA, it can be taken immediately 
and unconditionally. 

\Vhen a transition is taken, its action part specifies a list of a.tomic a.ctions generated by the 
transition. These actions may consist of a generation of Hew evcnts that can be ~ensed by 
other tansitions' triggers and the environment. Furthermore, they can define assignments 
to varibles, and specific actions can be defined to control (i. c. start, stop, suspend etc.) 
activities. In figure 8 for example, the action st! (P2) is interpreted as an acti\'ation of 
activity P1, as soon as the corresponding transition is taken. 

States Unlike ordinary Finite State Diagrams, states arc boxes and may contain subcharts, 
i.e., specifications of state machines that are to be executed when the system is in the sur· 
rounding state. When the surrounding state is entered, the subchart is started in the initial 
state, designated by a bullet-tailed arrow and when it is exited, the execution inside is aborted. 
For CCPi, this means that UP is started at the beginning and consequently NO.1lATA is en· 
teredo Depending on the occurrence of the events vr(A) and "r(Y1), the system will cycle 
through the three substates of UP, until the event CRASH1 orcllrs. This will 1Il0ve the systr'lII 
immediately to the stale DOWN, irrespective of \vhich sta.te in the cyde it occllpi('s. Notice, 
however, that transit.ions a.re cOllsidered a1.ollli(:, so all action is always completed a.nd I. I. l' 
occupied state js always defined. 

Variables Data t.hat should persist over time ca.n be storNi into so-railed data-item . .:;, which 
arc hasically program variables (e. g. Xl, 81 in ti).!;ure H). Thp.\, fan he intq.;('rs. reals. hoole<lns 
(called conditions), or strin~s, and compositions of tll('se. slirh as records and lists. Data.
items can be changed by the action parts of t ransitiollS l1sin).!; ordinary assignments. The 
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lifetime of a data-item is limited by the existence of the activity to which it belongs. ff they 
should live independent of activities, they should be explicitly introduced in a so-called data 
store. I 

State- & Activitycharts Semantics of Dynamic Behaviour The dynamic behaviour 
of a State· & Activitycharts specification is completely controlled by its statecharts. A variety 
of semantics has been defined over the last five years (see [HG89J, [JIG92], [KP92J, [iL89]). 
We give a short summary of these definitions. 

As introduced for Transformation Schemas, we can also define micro steps and macro steps 
for the Statecharts semantics introduced in [iL89] and by H uizing and Gerth [IlG89J. A micro 
step is executed in three phases: 

1. All input events are evaluated in order to decide which components are enabled to 
perform a transition. 

2. All enabbd parallel components perform their transitions in parallel; there is no in· 
terleaving. If two transitions write in parallel on the same data item, this conflict is 
resolved nondeterministically ([iL89, p. 2·r;O]), i. e. it is unpredictable whose write op· 
eration will be effective at the micro step's end. However, the developer is encouraged 
to write only specifica.tions where such racing conditions cannot occur. 

:1. The actions triggered by the transitions performed are collected and made available for 
the next micro step. This means, that a component cannot sense events generated by 
any other component during the same micro step. 

(iLR9] descrihes the semant.ics actua.lIy implemented in the Statemate tool's simulation com
ponent: 

"Go Repeat" Sinlulation In this regime, events live only for the duration of the micro 
step directly following their generation. A macro step (called "slIpcr step" in [iL89]) 
consists of a maximal sequence of micro steps: The output of the first micro step is 
evaluatec. as the input set of the second micro step and so on, until the last micro step's 
output does not enahle any additional transition. New inputs at the system's interface 
can only be gi\'en at the beginning of a macro step and they are only visible in the first 
micro step. Data inputs live for the duration of a complete macro step, and reading 
them is non-destructive. 

"go step" Simulation The lifespan of events is defined as in the Go REPEAT semantics. 
Ilut in this regime, a macro step coincides with a micro step. Therefore new data 
and events can always be input on the system's interface as soon as a micro step has 
terminated. 

In [IIG89] five Statecharts sernanties (A-scnuintics, ... , E-semantics) are introduced. The 
A-semantics corresponds to the co STEP semantic.s. The other four semantics differ from the 
GO STEP /GO REPEAT models in the way they handle the observability of events during each 
macro step. Specifically, each of the [IIG8DJ-sclI1a.ntics assigns a lifetime of a. complete macro 
step to input events placed on the system's interface. 
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The semantics introduced by Kesten and Pnueli in [KP92] stron!(ly differs from those sketched 
above: Here the notion of micro- and macro steps is dropped, instead the possible transitions 
are classified as untimed and timed transitions. Untimed transitions consume and manipulate 
data and events. In contrast to the semantics above, their execution does not affect the 
lifetime of events. Furthermore, parallel untimcd transitions arc executed in an interleaved 
mode. Timed transitions synchronously advance the clock and terminate the lifetime of 
existing events. Consecutive nntimed transitions are interpreted to happen "in the same 
time interval" defined by the surrounding timed transitions. 

4.2 Selection of an appropriate Statecharts semantics 

In analogy to our observations in section refselectTS leadin!( to a selection of the weakly· fair 
interleaving semantics to interpret the 1'5 specification, we will now chose an appropriate 
Statecharts semantics for the DCP problem. 

The Go REPEAT semantics and the [IIG89]·semantics n to E arc all inadequate due to the 
same reason: A failure event placed on the system's interface will always enforce the transition 
of CCP2 from state PASSIVE-DATA into state ACTIVE-DATA. The interleaving of the processing 
of an input A and the occurrence of the failure CRASHl - i. e. a transition from PASSIVE-DATA 
into ACTIVE - could not be simulated. 

In contrast to this, the GO STEP semantics allows placement of a failure event at each critical 
processing step. This is a consequence of the step definitions allowing new inputs after each 
micro step. Specifically, CRASHl can be placed nfter CCP2 has reached PASSIVE-DATA and 
before it returns into initial state PASSIVE-NO.DATA. 

The [KP92]·semantics would also be an interesting candidate for the DCP problem, hecause it 
allows to model and investigate more complicated situations involving explicit time intervals 
given for the duration of computations and for the lifcspan of evcnts. How(~v(~r, this scmantics 
is at present unavailable in the Statcmate tool. Furthermore, we explicitely chos(~ an IIlltillled 
approach to model the DCP problem. Therefore we will interpret ollr State· .v Activitycharts 
solution by means of the GO STEP semantics. 

4.3 Dual Computer System - State- & Activitycharts solFtion 

Master CCPl When the Dual Computer System is started, its root activity DCP is au· 
tomatically started. Since it does not contain a control part, its suhactivities CPl and CP2 
are started also. This means that the statecharts CCPl and CCP2 are started in their initial 
states. The activities P1 and P2 remain inactivc. CCP1 starts in t.he slate UP and substate 
NO..DATA. Whcn a value is written Oil the incoming varia.ble (data-item) A, this gClleratcs .L11 

event vr(A) ("written A") and CCPl goes to the state DATA, performing two a.ssignillents aHd 

sending a start signal (st! (P») to Pl. The va.ria.ble A is ill fact a. r('cord consisting of a data. 
component A....l and an alternating bit A....B. These two components arc stored in loca.l varia.hles 
Xl, Bl as a result of the transition from NO.DATA to DATA. 

As a third result of t.his transition, Pi is st.arted. Its hehaviour is lIot specirif'd formfllly here, 
it may be implemented in somc other programming language or Iwrhaps ill hardware. It will 
read the input vaille writtcn on Xl and use this to compute a t:ertain fUlIction f(Xl), return 
the result in Vi and t.erminate. 
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As soon as CCPi sees that Pi writes its result, it will move from DATA to READY and write the 
result on the output B. From READY it will move to NO...DATA and generate a synchronisation 
event NEXTl to the environment activity PRODUCER. This notices the producer process that 

it can provide a new value on A, which will start the cycle all over again. Notice that in 
contrast to the TS specification above the NEXTi event is single-valued. This difference will 
be explained in section 5. 

This will continue until the event CRASH1 occurs. This immediately stops the execution of 
CCPi and CCP2 should take over as smoothly as possible. 

Slave CCP2 As long as no CRASHi occurs, CCP2 will stay in the state PASSIVE, following a 
simple version of the cycle of CCPi, in which the input value on A is stored but not processed. 
Notice that the transitions from NO...DATA to DATA in CCPl and CCP2 are taken simpltaneously. 

When suddenly the event CRASHl occurs, CCP2 goes from PASSIVE to ACTIVE, ideally to the 
same state as CCPl occupied when it crashed. Note that the transitions from DATA to READY 

arc driven by events internal to CCP1. lIence, when event "rCA) has occurred but NEXTi has 
not, CCP2 has no mea.ns to know, and should not have indeed, whether CCPl was in DATA or 
in READY at the Illoment of the (:r,,,h. So the protocol decides to stay on the safe side and 

go to DATA, possibly duplicating the output on B. This is the reason that an alternating bit 
is added to the dat.a. In this case, the CONSUMER activity will see two consecutive values with 

the same bit and discard the secoll<i. 

There is a subtlety here in the case that the events CRASHl and wreA) occur at exactly the 
same moment. ]n order for CCP2 not to miss one of these events, the '''cross'' transition from 
NO...DATA in PASSIVE to DATA in ACTIVE is added. 

In analogy the ca.be where CRASH1 a.nd NEXT1 become visible to CCP2 at the same time must be 
handled: If CCPi performs the transition frolll READY to NO...DATA generatil!g event NEXTl, this 
becomes visible to CCP2 in the next micro step. In the GO STEP semantit::s described above, 

also CRASHl may be placed for this next step, so while CCPi goes to state DOWN, CCP2 has to 
cope both with CRASHi and NEXT!. If CCP2 ignores CRASHi, it will never reach state ACTIVE. 
If it ignores NEXTl' it will reproduce the last A-input (which does not do any harm), while 
the PRODUCER might send a neW job as a reaction to NEXT1. As a consequence, a wreA)-event 
could occur while CCP2 was ill state ACTIVE with substate DATA or READY and therefore be 

lost (which definitely does a lot of harm). Therefore the transition from substate DATA in 

PASSIVE to subst"te NO...DATA in ACTIVE is introduced. 

When CCP2 has ent.ered ACTIVE~ it will stay there, performing the same cycles as CCPl did 

hefore. In the full protocol, CCPi will have the possibility to be repaired and turning to UP 
again, now adopting the passive role and waiting for CCP2 to receive a CRASH2 event. This 
would make the two diagrams completely symmetric hut also more complicated, so we left it 

out to concentrate Oil one represent.ative half of the protocol. 

5 Comparison between Transformation Schemas and State- & 
Activitycharts 

III this section we cOlllpa.re Transformation Schcmas and Statc- & Activitycharts and illustrate 
the major diffci'cnces hy means of the dual computer system example DCP introduced above. 
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As a basis for this comparison. we concentra.te on the wea.kly-fair interlp;,ving semant.ics for 
Transformation Schema and on the GO STEP/GO REPEAT semant.ics for 5t.ate<"l\"rts. 

5.1 Presentation of specifications 

Though the ev;Juation of State- & Activitycharts' and Transformation Schema's graphical 
presentation style is not the main objective of this article, it may be appropriate to point 
out, which differences are the most im'portant ones from our point of view when llsing the 
specification methods in "real-world projects". 

State- & Activitycharts offers two concepts to present the modularity of a specification: 
Activity charts can be modularized by drawing new boxes into the top-level activity (as 
shown in figure 7); in analogy the modularization of statecharts can be shown by drawing 
higher-level boxes around subordinate states on the same sheet. The second concept allows 
top-down presentation of activities and statecharts, where the structure of a subactivity or a 
sub statechart is shown on a separate diagram, while they appear as bla('k boxes on higher
level sheets (as shown for the statecharts CCP1 and CCP2). 

For Transformation Schemas top-down presentation by means of sepa--ate diagrams asso
ciated with higher-level black boxes is the only way of showiug the structUl e of a specification. 

5.2 Scope and persistency of data objects 

In State- & Activitycharts, the data item entering an activity on a flow is in the scope 
of every subordinate activity or statechart, and it can be read arbitrary llIany times without 
changing its contents. In principle, data itel11s can be processed both by activities and state
charts. Additional data items can be defined inside an activity or a statechart (like Xl, 81, 
Y1 in statecrart CCP1). These items also have the defining chart and all suuordinate charts 
as scope; hut in contrast to incoming data flows, they live as long a.s the definin~ activity. 
The third category of data items are stores which preserve their font.Pllts indeJl(\I\(lently of 
any activity's lifespan. 

A consequence of the non-destructive read concept defined for Sta.techart~; data items is that 
activities processing data must always be controlled by statechart.s. beG) use the data items 
themselves do not provide a trigger that indicates to the activity when t() start executing. 

Using Transformation Schemas, only two types of data items are a·Ia.iI"ule: flows and 
stores. In contrast to State- & Activitycharts. every potential COIISUf.wr of a data flow 
must be made explicit by feeding a branch of the corresponding input flow into the data 
transformation. Ullllsed tokens on flows call be used until the cnd of the macro step; uut the 
usage is destructive. Therefore the only type of jl('rsistent dir.ta container for TS is the store, 
and the data contents of stores rema.ins well dC'fiJlcd over the S<'<]"(,IICC of lIIacro st.eps. 

The destructive read operation on flows allows to define TS that are exeellt.ed in the dala

triggered mode: In absence of control transformations the dynamic behaviour of the TS is 
cOlnpletely controlled by the data flow, as defined in the micro step rules for data transfor
mations. 

Moreover, TS strictly separate information tra\'(\lIill~ 011 data flows and inforIliatioll 011 control 
flO\vs: It is impossible to process both data and n>Iltroi items inside t.he ScWH' transrormatioll. 
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If control decisions depend on certa.in data values, these have to be evaluatr-d by means of data. 
transformations and fed into the corresponding control transformation as data conditions. 

5.3 Scope and persistency of control objects 

While the scope of control objects (i. e. events) in State- & Activitycharts is defined in 
the same way as for data objects, events in the GO STEP/GO REPEAT semantics only live for 
the duration of the micro step directly following the step where the events were created. As 
a consequence, processing of events cannot be "postponed" to later micro steps. This implies 
the necessity to evaluate event expressions for transition triggers instead of atomic events 
only. 

For Transformation Schemas, scope and persistency of control flows is defined exactly as 
for data flows, so events live until they are consumed by the consumer control transformation 
or - if they stay unconsumed - until the end of the macro step. 

The persistency rules for control objects are motivated by the difference" of the underlying 
semantics: For State- & Activitycharts, consuming an event cannot be destructive, because 
just as in the case of data flows the event can be consumed by more than one transition. On 
the other hand, keeping events alive until the end of a macro step would lead to undesirable 
behaviour of very simple specifications, when interpreted in any seITlantics allowing several 
micro steps per macro step. For example, the trivial flip-flop switch shown in figure 10 would 
lead to a never-terminating macro step. 

{!/aff 

o--~ON OFF 

elan 

Figure 10: In any semantics allowing several micro steps per macro step this flip-flop switch 
operation only terlllinates, if events just live for the micro step directly following their gen
eration. 

For Transformation Schemas, events mllst not be discarded after one micro step, because 
the interleaving semantics only allows oue transition per micro step. As a consequence, the 
read must be destructive, hecause otherwise the analogous situation as dcscribed in figure 10 
would arise for the corresponding control transformation. 

5.4 Parallelism 

The co STEP Ico IU:I'EA'l' semantics as well as the [I1G89] semantics of State- & Activi
tycharts arc ba.sed on the concept. of simultaneous processing of every input or event that is 
ellahled ill a micro step. Therefore in our DCP·example, feedillg the failure event CRASHl into 
DCP has the effect that both CPl alld CP2 perform their reactioll in the same micro step, alld 
this is exa.ctly what we wish to express: Occurrence of CRASH! ha.s the dfect of a high-priority 
interrupt that leads to immediate reactions on computer CP2. 

On the other hand, simultaneity introduces additional cOI"nplcxity in handling the inputs of 
a statcchart, as for exa.mple shown in CCP2: For the transition from state PASSIVE, NO-.DATA 



to state ACTIVE the in~lt signals CRASHl and "r(A) have to be simllll,;.neously taken into 
account, because every event (like wr(A)) must be consumed in the micro ~tep following their 
creation; afterwards they are lost. 

In contrast to State- & Activitycharts' behaviour, the interleaving semantics of Transfor
mation Schemas does not allow to abstract from the signal "WATCHDOG ALARM" and simply 
feed CRASHl into CP2, too, as it is specified by the Statecharts solution: Input of CRASHl into 
CPl and CP2 might lead to a sequence of micro steps, where the failure event is processed 
by CP2 before it is processed by CP1. As a consequence, CP2 could produce the output of 
a job before the same output is re-produced by CP1. This would not do any harm to the 
consumer, because he will detect the duplicated result by means of the alternating bit. But 
this situation could also lead to a duplicated NEXT-message (first NEXT2, then NEXnl, and 
this has to be regarded as a specification flaw, because the producer might send a new job 
in reaction to the superfluous NEXTl message. The "WATCHDOG ALARM" is produced by CCPl 
after CRASH1 has been consumed. Therefore the reasonable causal relation 'Jirst CPt's failm'e, 
then its detection by CP2" is ensured by our TS. 

There is a second case in the TS specification where specific measnfes had to be taken to 
exclude unwanted sequences of transitions: It is necessary to ensure thvt the NEXT-request 
for a ne~ job sent to the PRODUCER and the "WATCHDOG ALARM" are transmitted on the same 
flow. Otherwise the weakly-fair interleaving semantics could allow the "WATCHDOG ALARM" to 
"overtake" the NEXT-request i. e. a NEXT token and it "WATCHDOG ALARM" token could both be 
placed on CCP2, and CCP2 could first chose the "WATCHDOG ALARM" token. As a consequence, 
CP2 would disregard the NEXT signal, reproduce the last job already delivered by CP1, and -
just as in the case described above - produce a superfluous NEXT2 signal. Transmitting both 
the "OKI! and the "WATCHDOG ALARM" signa.ls on flow NEXTl cnsures that CP2 will receive them 
in the same order as it has been produced by CPl, i. e. "first "OK", then "WATCHDOG ALARM"". 

These two cases show that for certain cases the degree of interleaving offered hy the wea.kly
fair interleaving semantics is too ample, so tha.t specific specification constructs have to he 
inserted to reduce the set of possible execut.ion sequcnces. 

5.5 Nondeterminism 

An important difference between the DCP-examplc's Statecharts and Trallsformation Schema 
solution is, that the former's execution under the GO STF,I' regime is co,npletely determin· 
istic, while the latter allows nondeterministic executions: In the Statecharts solution, both 
automatons CCPl and CCP2 arc deterministic. Since they do lIot write Ull the same data 
items (i. e. racing conditions do not occur), their pa.rallel cOlllpo:-;ition is detcrmillistic, too. 
Nondetcrminism with respect to the failure's occurrcnce has to he "silllulated" by placing 
the CRASH1·event at random into the series of macro step inputs. In contrast to this, each 
macro step of the TS solution is nondeterministic, as soon as both the CRASH1 event plus an 
A·input are placed on the DCP-interface. This is not only caused by the fact that CPl 's control 
transformation CCPl is nondeterminstic in the T5 solution, but mainly by the properties of 
the interleaving semantics: It camiot be predicted. at which micro step t.he failure event will 
lead to the corresponding transitions. At the system's interface this bcwllIes visihle by the 
fact that it cannot be predicted whether the NEXT signal will be delivered via NEXn (i. e. CPl 
was still able to prodllqc the NEXT-PH'llt lH'forp crashing) or via NEXT2. 
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This stronger degree of nondeterminism in Transformation Schcmas is ill fact not very as
tonishing. For interleaving semantics, it is well known that parallel specifications ca,n be 
transformed into nondeterministic sequential specifications (see [A091, PI'. 33·1]). Therefore 
in TS, parallelism introduces nondetcrminism. 

Statccharts allows cvcnt cxpressions as triggers of transitions. As a cOlls~quence, nondeter
ministic statccharts call he made deterministic by assigning priorities to events. In figure 8 
CRASH! is the high· priority event forcing a transition into state DOWN, regr.rdless of any other 
events. This corresponds to event expressions not CRASHl and wr(A) > ••• as triggers for 
the internal transitions between the UP substates. In W&M's definition of Transformation 
Schemas, only single events are allowed to trigger transitions. Therefore nondeterministic 
control transformations in general cannot be replaced by deterministic ones. This problem 
has been addressed by some builders of CASE tools for structured methods by also allowing 
event exprcssions as triggers. From our point of view, this is not an appropriate solution, 
because interleaving semantics do not suggest simultaneous evaluation of events. 

5.6 Lifeness properties - fairness 

When analyzing the differences hetween specification languages intended for parallel systems, 

it is interesting to ask whether certain liveness properties are automatically guaranteed by 
specific types of specifications. St.ate· & Activitycharts and Transformati·)n Schema seem to 
be rather similar with respect to the divergence of specifications: They b,)th allow specifica· 
tions with macro step executions that diverge due to statc.charts resp. central specif\cat\ons 
tha.t perform continllolls internal communications without providing any output at the sys
tem's interface. III c.olltrast to the divergence livcness property, we call observe importa.nt 
difrercnces State- s...: Activitycharts and Transformation Schema when looking a.t jai1'1zcss 
properties. 

Recall that an execution of any tl'a,nsition system is weakly fair with respect to a specific 
transition T, if it is not the case that T is continually enabled beyond some position in the 
execution. but is taken only a finite number of times. The execution is ,')irongiy fair with 
respect to T, if it is 1I0t the caSe that T is enabled infinitely many times in the execution, but 

is taken only a finite number of times (see [MP92, pp. 128]). 

Fairness Observation 1 State· fj Activityciwrts allows specij/cations that do not have the 
weak fairness Pl'0PC1·ty (and as a C011."equcnce also not the St7'OTlg jairncb·s property). 

For example a system described only by the nondeterministic automaton shown in figure 11 
can lead to an unrair execution, if for each macro step the environment rrovides both a and 
b a.s input. 

\Vith the same inputs the ana.logous Transformation Schema specification would even lead to 
a strongly [air execution with respect to both ale and bid: Suppose hoth a and b arc placed 
on the interface. Ir the first micro step choses transition alc, then for the second micro step 

ale is no longer enabled, but bid st.ill is. Since bid is now the only ena.bled transition. it 
must be taken according to our semantics. 

lkc<lIlSe both the ca.usal-chain semantics and the weakly-fair interlea.ving semantics do 1I0t 
allmv a macro step to end, as long as an cnabl{~d tra.nsition still exists, any pf'rmanelltiy 
ena.bled trallsition will he taken before the macro step ends. Since bId is now the olily 



ale bid 

Figure 11: Statechart allowing unfair executions. 

enabled transition, it must be taken according to our semantics. Only a non-terminating 
macro step, where other components communicate to produce "infinite internal chattering" 
can prevent a permanently enabled transition from being finally taken. This leads to 

Fairness Observation 2 When interpreted in the Causal-Chain or the Weakly-Fair In
terleaving Semantics, every trons/ormation schema only allows execution,') that are at least 
weakly fair with respect to all possible transitions or ]JO!;se,';s (1 non-terminating macro step. 

One of the major differences between the Statecharts semantics and the Transformation 
Schema semantics can be expressed by analy;dng the reasons for absence of strong fairness: 
For Statecharts, an execution that is unfair with respect to a tra.nsition T can only occur 
in a specification tha.t contaill8 T in a. 1l0lllidc1'11li1l.'dic automaton (like ill the example of 
figure 11), where several transitions are enabled at the same time, but only one of them can 
be taken. The parallel composition of deterministic statecharts 8" ... , Sn will be strongly 
fair with respect to all of its transitions, because for each Si, at most one transition Tj can be 
enabled at the beginning of a micro step, so all enabled transitions are performed in parallel 
during this step. Note however, that the parallel composition of deterrninstic statecharts 
is not necessarily deterministic, because the racing conditions mentioned in section 4.1 arc 
resolved nondeterministically. 

Fairness Observation 3 The parallel composition of deterministic ,t(lkeharts only alloUls 
executions, whe7'e every transition is taken as often as it is enabled. A . .., u consequence, lhe 

executions are strongly fair with respect to all their tmnsitions. 

III contrast to this, when examining ollr TS semantics, unfair behaviour can be caused both 
by nondeterministic automatons and by parallel composition of (possibly deterministic) com
ponents. As mentioned in the previous subsection, for interleaving semantics, parallelism 
introduces nondeterminism and ~ just as in the Statccharts semantics - nondetcrminism 
gives rise to unfair bphavionr. This will be illustrated in the following example. 

Consider the TS shown in figure 12 and assume a sequence of inputs from the environment 
that looks like 

(a;b), a, (a,b), a, 

Both control transformations Cl. C2 are deterministic. l(owever, an execution to t.he inputs 
above could be as follows: In the first macro step, both transitions a/disable C2 and bId 

are enabled in the first micro step. Assume, transition a/disable C2 is taken. In the second 
micro step, the disable C2 event prevents bId fro Ill. being taken. The macro step ends 
without havillg engaged into transition bId. In the second macro step, thc input a leads to 
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enabling C2. The third macro step will be as the first and so on. As" consequence, this 
execution is not strongly fair with respect to transition bId. 

a , 
---------- Cl 

af 

, , 

disable C2 

b 

........ ,~ 
\ enable c2 I 

,I- -- - - - - - - - - - - - - - - - - - - - - - - - - - -~, 
,- ' 

, disble C2 _or" .. 

af 

enable C2 

, d 
c2 ]---------. , , 

Figure 12: Para.lIel compositIOn of determinstic control transformations allows executions 
that are not strongl,Y fa.ir with respect to certain transitions. 

6 Conclusion 

In this article a comparison between the CASE specification languages Transformation Schema 
and State- & Activitycharts has been presented, based on an example from the field of fault
tolerance. Having analysed the lallguages' semantics, we can evaluate ,his comparison as 
follows: 

1. Doth Transformation Schema and State- & Activitycharts do not possess a semantics 
that is "univcrsalli' applicable for most types of target systems. This has been moti
vated by :.he selection process neccessary to find a suitable interpretation for the Dual 
Computer System specification. Instead different semantics had to be defined for both 
languages, and it is an important task at the beginning of a project's specification phase 
to select the most appropriate interpretation model for the system to be developed. 

2. Transformation Schema only allow one gra.phical presentation style for the top-down 
specification of systcms. Frolll pra.ctical expcrience we know, that rigorous top-down 
presentatioll ,. while being appropriate for the inspection of completed specifications 
- is 1101. hclpr,Ji wilt'll dev('ioping a new specification. Here a. mixed approach using 

both top-dow II a.lld hottolll-IIP t.('fillliqups is~. better. Therefore W(~ prefer the Sl,ate
K·, i\(",tivit,vril;lrts pr{'st'lIt.atioll style, wilpw the d('grpe or l.op-doWIi structurillg c;l.II he 

dlOS(,1I hy tlw dpve\olH'r hilllspif. \Vp thillk tha.t the variety of Statt~- So.: Activil.ycltarts 

27 



presentation techniques could also be used for Tranformatioll Schemas in an analogous 
way without inducing another understanding of the TS meaning. It just depends on 
tool builders to sit down and implement it. 

3. Transformation Schema and State- & Activitycharts use different communication pa
radigms. The scope and persistency rules of data. items in Transformation Schema 
suggest communication concepts based on one-to-one or multi-cast channels for the 
target system. In contrast to this, State- & Activitycharts suggest mechanisms based 
on shared. variables. Note that in most practical cases the underlying communication 
concepts cannot simply be selected according to the developer's personal taste. Instead 
they are often predefined by boundary conditions regarding the target environment and 
should be taken into account during the selection process for the appropriate CASE 
method. 

4. While TS strictly separates the manipulation of data and control items, State- & Adv
itycharts allow to specify operations on data directly with the state transition, without 
introducing a corresponding activity. From our experience, the strict separation of 
data processing and control enforced by TS rules leads to clearer specifications, there
fore we do not regard this as a disadvantage. For Statecharts, the more flexible data 
manipulation concept requires quite an amount of discipline from the developer. 

5. For specifications that do only require a moderate amount of control. TS specifications 
require less effort to write than the corresponding State- & Activitycharts, because TS 
allows to specify without coutrol transformations. The data·driven dynamic behaviour 
will then be defined by the micro step rules for data transformations plus the macro 
step rule. 

6. The TS semantics introduced and the semantics of Statc- &. Activilycharls incorpo
rate different notions of parallelism, nondeterminism and fairness, that are suitable for 
different types of target systems. As a consequence, syntactically similar transforma
tion schemas and statecharts differ strongly with respect to their dynamic behaviour. 
Because 0f its restrictive use of micro step interleaving, the causal-chain semantics for 

TS maps well on multi-tasking/single CPU systems. The full-interleaving semantics is 
appropriate for distributed systems with a low degree of synchronisation, prcferrably 
implemented by means of message passing mechanisms. The State- &. Activitycharts 
semantics are especially well suited for multi processor systems with tight memory cou
pling and rather strict mechanisms for the synchronisation of the processors' input and 
output. 

7. In the Dual Computer System example the Statecharts solution appears to be superior 
to the Transformation Schema solution, because the simultaneous processing of parallel 
components is just appropriate for the specification of reactions to a failure event. In 
this example, the TS solutions appears to possess a lower lev('l of abst.raction, because 
an additional event ("WATCHDOG ALARM") had to be introduced to guarantee proper 
causal relationships. That is, the develop('r had to ('xplicite\y inl roduce "t('chnical" 
synchronization and schedulin~ constructs, because ot.herwise the w(~akly-fair interleav
ing semantics would allow "ullwantt'd" sequencps of micro sh'ps. However. in 100s(>ly 
coupled or even wide-area networks the COIIC<'pt of silllHltalH'ous para.llel proccssinK 
steps, as inherent to the State- SoL ,\divitycharts sC'lllantics present{'d, rna .... · suggest 



misleading simplifications, so that such systems could be better represented by the 
interleaving semantics of Transformation Schema. 

8. Though we have not studied real-time aspects in this article, it is interesting to note 
that TS concepts for incorporating real-time as sketched in [Wa86] are not suitable for 
complex applications. In contrast to this, the built-in real-time simulation features as 
implemented in Stalemate are at least a step in the right direction, and more universal 
and theoretically sound techniques for real-time specifications with State- & Activity
charts have been worked out in the formal methods community ([KP92]). The devel
opment of TS extensions that incorporate real-time aspects will be a main objective of 
our future activities in this field. 

There are a number of conceptual disadvantages or flaws, that are inherent both in Trans
formation Schema and State- & Activitycharts, but have not been discussed in this article, 
because we focused on problems ;elated to parallel systems. Some of these draw backs 
can be solved in a similar way for TS and State- & Activitycharts; this is currently under 
investigation at DST in cooperation with Eindhoven University of Technology and Christian
Albrechts-Universitiit zu Kid. 

• Both languages offer insufficient means for the precise definition of complex data struc
tures and functions operating on these structures. This could be .~asily improved by 
adopting the concepts of formal specification languages like Z ([SP92]) or VDM ([J086]) 
for the definition of data items and operations specified in data transformations resp. 
activities. This approach has been investigated at DST ([PeI92]). 

• Doth Ia.ngua.ges do not provide constructs for data refinement. If a "concrete" specifica
tion is intended to be it rdill(~lHcni of an "ab::.tract" one, the relatIon between concrete 
and a.bstract data. structures cannot be expressed. Again, this can be overcome by 
importillg the Z or VDM concepts for data refinement. 

• Both la.nguages do only provide i1l5ufficient support [or re-use of specification parts. 

• noth languages do not support object-oriented specification styles. 

It is often said, tllat a specification language merely serves as a vehicle hr the developer to 
express hcr or his concepts for the system to be built. From our experi,."ce, the impact of 
using a specific lallguage is much deeper, because both syntax and serna) .tics not only influ
en!:e the developer's specification style, but also his way of thinking abeut the system. As 
a consequence, the nse of different languages will lead to different systera solutions. There
fore the choice between CASE methods - as between Transformation Schema and State- & 
Activitycharts - should always be based upon a close analysis of the methods' underlying 
semantics and their appropriateness for the target system. 
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