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A Comparison of

Ward & Mellor’s TRANSFORMATION SCHEMA
| ~ with
STATE- & ACTIVITYCHARTS

Jan Peleska', Cornelis Huizing?, Carsta Petersohn®

September 27, 1893

Abstract

A comparison between Structured Methods, as represented by the Essential Model
of Ward&Mcllor’s Transformation Schemas, and the Statemate specification language
consisting of State- and Actlivitycharts, is prescuted. The comparisen is based on the lan-
guages’ semanlic properties. An examiple from the field of [ault-tolerant systems serves
as a “benchmark problem™ to investigale the practical applicability of both Transfor-
mation Schiemas and Stateriate in a contexi of meaninglul “real-world” systems. While
the article’s contents is founded on formal mathematical concepts, its objective is also
to reach the sollware engineers and CAST: tool builders who not neccessarily are experts
in the ficld of Formal Meihods. Therefere all our resulis are presented in an informal
natural-language style ol reasoning,.

Keywords: Fault-Tolerant Systems — State- & Activilycharts — Structured Analysis
and Design Methods - Fransformation Schema - Transition Systems

1 Introduction

In this paper we present o comparison between Structured Methods (SM) and the State-
& Activitycharts specilication language, as implemented in the Statemate tool (cf. {Ha9g],
[IPPSS87], [IIGARSS]). Out of today’s existing SM dialects we focus on Ward&Mellor’s
Transformation Schema (TS), as introduced in [WMS85], [Wa86].

Commercially motivated comparisons of CASE tools often concentrate on the tool interface’s
ease of use, on the capabilities to generate code from specifications, on configuration manage-
ment and other features likely to lacilitate the industrial software production process. Such
comparisons ¢an be rather misleading, if they fail Lo analyze the differences of the underlying -
specification methods. They suggest — at least to the inexperienced user —, that a specific
specification problem can be properly solved with any method, as long as the CASE tool looks
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good. The experienced developer knows, that the selection of a snitable spacilication method
—i. e. a formal language and an associated semantics - is crucial for every non-trivial software
project. Especially in the field of salety-critical systems it is mandatory for the specification
language to be sufficiently expressive to cover all the subtleties of the system to be developed
and to enable the developer to produce correct abstractions of complex requirements without
grossly simplifying the problem. As a consequence, the comparison presented in this article
is based on TS and State- & Activitycharts semantics, with an emphasis on the language
features neccessary to model parallel systems.

The article is structured as follows: In section 2 we present an informal requirements specifi-
cation from the field of fault-tolerance. The dual computer system described will serve as a
“benchmark” problem for the comparison of Transformation Schema and State- & Activity-
charts. The example’s significance as a basis for comparison will be motivated.

Section 3 describes the TS solution of the benchmark problem. To this end, subsection 3.1
introduces the graphical TS language and informally sketches the semantics to be used for TS
interpretation. Though explicitely intended to support the development of complex command
and control systems, Ward&Mellor did not provide a formal semantics for their specification
language. However, their informal language descriptions give suflicient indications as to try
to reconstruct its intended meaning. But on closer wnspection, Ward’s original ideas about
SM semantics (see [Wa86]) are only applicable to describe systems that allow an extremely
moderate degree of parallelism. As a consequence, this original semantics is inappropriate to
model a solution for our fault-tolerant system. Qur presentation of I'S seiantics is therefore
based on research work described in [CAUY3], [Pt92], where the mentioned flaws have been
overcome by defining a family of operational semantics in the style of o kin [PI83] suitable
for a great variety of target systems. Subseclion 3.2 motivates the selection of a suitable
candidate from this collection to interpret the example’s TS solution. Scction 3 closes with
the presentation of the 'E'S solution.

Also for Statemate’s state- and aclivitycharts, a variety ol semantics have been suggested.
Section 4 is therefore structured in the same way as section 3 and presents the corresponding

State- & Activitycharts solution for our benchmark problem,

Section 5 presents the comparison part, using the previously introduced example specifications
to point out the main language differences. Some people regard W&M's method as already
outdated and succceded by Harel” s State- & Activitycharts [[{a88]. This is only partially
so. As we argue in Section 6, on the basis of comparing the two methods, W&M’s method is
probably still the best there is when a lot of data-processing is required, in combination with
only mildly complicated control. In case of modelling really complex real-time embedded
systems, which do not involve such an amount of data-processing, Statemate is regarded
as superior [Wo89]. Morcover W&M’s method is the most widely spre¢ CASE method of
the SM family in industry, so it makes sense to try and improve it. While their different
abilities to express systein control are a mere “technical” feature, we also Lry Lo point out the
more sophisticated differences induced by the underlying semantic models. Here superficially
similar State- & Activitycharts and TS Specifications have different meaning with respect
to the possibilities of nondeterministic system behaviour, parailel execution of events and
fairness properiies. Qur position is that the decision whether to chose a SM or Statecharts
description technique should not be a global one but always be made by analyzing which
semantics most closely fits for the problem to be solved.

The present paper has been stimulated by a project at DST to make structured specification



methods like [WAS5] automatically analysable and suitable for application in the field of
safety-critical systems.

Though the article’s underlying concepts are of a formal mathematical nature, our intention
is to make this paper readable for a greater audience of CASE experts and CASE tool users,
not neccessarily working in the ficld of formal methods, We have therefore restricted ourselves
to natural-language presentation style. ¥or a lurther exploration of the article’s theoretical
foundations the reader is referred to [CAUS3].

2 Fault tolerant dual computer system — informal require-
ments specification

In this section we informally describe a typical set of requirements from the field of fault-
tolerance. We motivate, that this sct can be used as a meaningful example for the comparison
of Transformation Schema to State- & Activitycharts.,

The objective is to specify a fault-tolerant solution for a computation service P that can be
characterized as follows:

e P inputs data provided by a producer on channel A.

o For each input = on A, a computation y = f(z) is performed by P and delivered via
channel B to a consumer.

o We assume a synclronous communicetion between server and environment: The pro-
ducer will only send a new job afier having received a NEXT-message from the server
computer to indicate that £ has finished the last computation.

Next, we describe the boundary conditions for the desired type of a fault-tolerant server
platform: The fault-tolerant system shall be designed as a dual computer system DCP ac-
cording to the master-slave principle: DCP consists of two computers CP1 and CP2. Each of
these componceats may fail independently. As a foult hypothesis, we may assume that each
computer acts as a fail-stop component, i. e. the failure event leads to the computer’s total
deactivation without any remaining sub-activities. In normal operation (both components
available), CP1 acts as the masfers a copy P1 of P runs on CP1, producing computations
after which a protocol handler of CP1 requests a new job by means of a message NEXT1. CP2
operates in standby mode by only storing jobs in its local memory without activation of a
P-copy. Each job is kept by CP2 at lcast until the NEXT1-message indicates that it has been
successfully delivered to the consumer.

If CP1 fails, this will also be detected by CP2 which then continues as the master component by
activating a copy P2 of P and producing messages NEXT2 to request new jobs. Though CP1’s
failure can occur while a job is still being processed, it is required that this job must not be
lost: CP2 shall use its still available copy of the input and calculate the ccrresponding result.
It must be taken into account, that CP1’s failure can occur after having delivered a result on
channel B and before having produced the NEXTi-message. In such a case it cannot be avoided
that CP2 also processes this job, and the result is sent to the consumer for a second time. To
this end, each input is equipped by the producer with an alternating bit, that is also attached



to the result transferred to the consumer. We assume that the consumer has implemented
an alternating-bit protocol to detect duplicated bits and discard the correspouding results.

Before presenting the Transformation Schema and State- & Activitycharts specifications, it
is appropriate to justify why we think that the above example is adequate for the comparison
of specification techniques:

¢ Both Transformation Schemas and State- & Activitycharts claim to be powerful means
for the specification of problems in the field of reactive systems. DCP presents a typical
example of such a system.

e The graphical presentation style of both Transformation Schema and State- & Activi-
tycharts is intended to facilitate a quick understanding of complex specifications. We
fee] that the DCP specification is sufficiently complicated, so that any proposed solution
should be supported by graphical visualization. Experiences with forinal specifications
have shown, that a pure textual presentation is rather hard to communicate to people
unfamiliar with the problem.

¢ Both specification languages claim to be helpful in the description of problems of a
complexity, that makes a natural-language specification unlikely to cover all aspects
with sufficient precision. DCP presents a protocol specification proslem, where it has
to be ensured that cerlain safety- and liveness-conditions can be guaranteed “in cvery
possible situation”. In general - because ol its “Tuzzy” semantics -, 1t is very hard to
examine natural-language specifications for completencess of case analyses. Therefore
it is interesting to see how much help our specification languages offer with respect to
completeress checks.

e Problems from the field of fault-tolerance have been widely used to compare the power
of formal specification languages and verification methods, since the use of fault-tolerant
systems in safety critical applications also suggests formal development techniques to
produce trustworthy specification, design and code. Qur example allows the compari-
son of semi-formal specification methods to methods of greater formal rigour (see (or
example [Pel91], where a CSP solution has been specified, designed and verilied for
the above example). Moreover, the development of fault-tolerant systems requires that
certain design decisions must be incorporated already on specification level. These de-
cisions are related to the concept of hardware redundancy selected {like chosing a dual
computer or triple-modular redundancy) and the design-dependert fault hypotheses
(like “each computer behaves like a fail-stop component”). They must be shown in the
specification, to allow a complete capture of safety requirements. As a consequence,
specifications in the field of lault-tolerance do not allow a “pure” top-down approach
from specification to design, and therefore represent a significant touchstone both to
the specification langnage and to the developer’s skill.

3 A Transformation Schema solution

In this section, a traunsformation schema specification for the fault-tolerant dual computer
system DCP informally introduced above will be given {subsection 3.3). To make this article
sufficiently self-contained, we also present an informal introduction of TS syntax and a class



of serantics for their interpretation (subsection 3.1}, Ward’s original scinantics is a member
of this class; however, it 1s inappropriate for the DCP specification. This and the selection
of a class member with properties suitable for the DCP interpretation, will be discussed in
subsection 3.2.

3.1 Informal description of TS syntax and semantics

Transformation Schema use graphical language elements to describe a system’s flow of
data and control. Most of these elements can be seen in the diagram in figure 5.

Data Transformations are depicted as solid circles (e. g. RC2, P2) and represent specifi-
cation parts where the processing of data is described.

Data Flows The data exchanged between the environment and the system and between
dilferent data transformations inside the system travels on data flows, depicted as labelled
solid-line arrows (like ACP2). Data flows only carry typed information. New types can be
constructed from atomic Lypes using constructors, such as cartesian products (denoted as
A + B) and union (denoted as [A | Bl). Consuming the data item travelling on a flow is a
destructive operation. ‘Therefore the value L extends cach flow’s type to indicate that no data
is presently available. Flows of product or union type can diverge to feed their components
into different trausformations, For example flow R2 in figure 5 splits into A2.X, A23B and
the control flow wra2. If a value is placed ob R2, the corresponding components are placed
o A2.X and A2R at the same time. Morcover, flows emerging from different sources can
converge to be fed into a single sink.E. g. BCP2 is composed of Y2 + A2 B. As soon as values
have been placed on both Y2 and A2.B, the corresponding composed vaiue is defined for BCP2.
Il two flows A, B converge into a union flow € = [A | B, a C-value is delined, as scon as a
value is placed on either A or B,

Stores To introduce data containers for nen-destruciive read operations, the store syinbol
is used (solid-line labelled open boxes, e. g. $2).

Control Transformations are depicted as dashed-line circles and represent specification
parts where the system’s dynamic behaviour is controlled (e. g. CCP2),

Control Flows carry the control inforination exchanged between the environment and the
system and between different transformations inside the system. They are represented by -
dashed-line arrows (e. g. NEXT1). In contrast to data flows, each control flow only has a
finite range of allowed values (including L). Each control flow must start or end in a control
transformation. If it is generated by data transformatiouns, it is callec a data condition.
There are specific control flows having data transformations as sink. They are used Lo trigger
(¢. g. TRIGGER P2), to enable (c. g. ENABLE P1 in figure 3) or to disabic (e. g. DISABLE P1
in figure 3) the data transformation. A trigger leads to a single exceution of the associated
data transforwation; after having produced its output it will wait for the next trigger event.
Triggered data transformations do uot input from flows, they only use stores. Disabling a



data transformation will prevent it from producing any outputs until occurrence of the next
enable event,

Process Specifications are textual descriptions associated with cach data transformation
to define the relation between input data and output data.

State-Transition Diagrams describe the translormation of control items arriving on in-
put control flows into output control flows by means of Mealy-style automawons (e. g. figure G).
Incoming events passed via input control flows can be processed, if the automaton’s actual
state defines a corresponding transition. In this case the transition will be performed. At the
same time, new actions are generated by placing values on output control flows. For example
in figure 6, ocurrence of event wrA2 in state ACTIVE-NO_DATA will lead to the automaton’s
transition into state ACTIVE-DATA and produce the action TRIGGER P2.

Scope Rules Each process specification or state-transition diagram can reference only flows
and/or stores connected as input to the corresponding transformation and write only onto
flows and/or stores connected as outputs.

Top-Down Presentation of TS o reduce the complexity of large specilications, a 'I'S
can be presented in top-down fashion. For the DCP specification, such a top-down presentation
is given in figures 1 to 6. The top-level diagram (figure 1} shows the complete system as a
black box (bubble DCP), together with its interface to the environment {llows between DCP
and the ferminators PRODUCER, CONSUMER, FAILURES). The top-level bubble is refined by
a new TS, in our example given by figure 2. Each bubble on the new TS can either be
associated with a process specification or again be decomposed into another diagram, until
the associated transformations are sufficiently small and cohesive to be represented by a single
process specification. However, the behaviour of a TS is completely defined by the flaltened
TS associated with cach top-down presentation, where all the transformations, stores and

flows are “glued” into a single diagram by connecting the corresponding lows.

TS Semantics of Dynamic Behaviour The behaviour of a TS is most appropriately
interpreted in the framework of transition systems as defined in [MP92]. The statespace of a
TS is defined by the cartesian product generated by the sub-statespaces of flows and stores,
by the states of data transformations (state values ENABLED/DISABLED) and the states of the
automatons associated with control transformations. The inilial condition of a TS requires
that all flows assume the “clear” state L and all state-transition diagrams assume their initial
state (specified hy the transition arrow without source stale). The transilions of a TS are -
defined by the data and control trausformations. A TS czecution is a sequence

Sg—Tg— S — T — 8 — ...

where each s; is a state and each 7; is a transition cnabled in state s, such that (sq, s;41)
is a possible pair of pre-state and after-state of ;. s must be consistent with the initial
condition.



In the context of transformation schemas, each s; — 7, — ;4 is called & micro step. Infor-
mally speaking, micro steps represent the system’s internal processing stens, that are not ob-
servable by the environment. They are atomic and happen in “zero-time” (see [BB92]). Macro
steps define sequences of micro steps that always terminate with a step s,_; — 1,_y — s, al-
lowing in its after-state s, the placement of new input data on the system’s interface. Macro
steps are interpreied as Lhe observable interactions between systemn and environment.

Given the TS syntax as introduced above, micro step rules define the set of possible transitions
1; with their pre-state/after-state relations. Macro step rules restrict the space of possible
TS executions by imposing additional “global” conditions for a micro step to be executed.
These conditions depend on the complete sequence of micro steps already executed during the
macro step. Fach set of micro step rules plus macro step rules defines a new type of transition
system, each operating on the TS statespace. Therefore these sets of micro step/macro step
rules define a family of semantics for Transformation Schemas. This approach has been

followed in [CAU93].

The family of semantics introduced in [CAU93] has the following membe s:

Causal-Chain Semantics This semantics most closely reflects Ward’s original ideas de-
scribed in [Was6).

Each micro step is deflined by execution of either a complete data transformation or
a compleie control transformation. A transition defined by a data transformation is
enabled according to the micro step rules, il its input flow or trigger has a value # 1,
and if the output flow (if existing) has value L. The latter condition means that the
output flow’s consumer must have consumed any data item previously transmitted via
this flow. As a result of the data transformation the input flow has value L and the
output flow and/or output stores have values defined by the corresponding process
specification’s input/output refation, If the data transformation has been previously
disabled by a control flow, the transition results only in resetting the input flow to 1.
A transition defined by a control transformation is enabled, if a value # L is placed on a
control flow. Moreover, the control transformation must be either in a disabled state or
the associated state-transition diagram must be in a stale where this event stimulates
a transition. As a result the state transition is performed, and the associated output
events are placed on the output control flows. If the control transformation is disabled,
the input is discarded.

A macro step is always initiated by an input on the system’s interface. It will then
be processed in causal chains: In such a sequence of micro steps, the output of one
transformation causes the activation of the corresponding consumer transformation. If
more than one input is placed at the macro step’s beginning or a transition enables
more than one snccessor, the next transition is chosen nondeterministically. If the
causal chain cannot be prolonged, because the last transformation has produced an
output to the environment or the consumer transformation needs additional data to
operate, a new chain is activated starting with any of the transitions enabled according
to the micro step rules. The macro step terminales, if no more enabled transitions
are left. If any flow values have not been processed at the macro step’s end, they are

reset to L. New inputs at the system’s interface may only be placed at a macro step’s
beginning.



Weakly-Fair Interleaving Semantics This semantics has the same micro step rules as the
causal-chain semantics. The macro step rule has the same initiation and termination
rules. but it drops the causal chain condition by allowing any enabled transition to be
taken for each micro step. The semantics’ name is motivated by the fact that non-
diverging specifications automatically possess a weak fairness property. This will be
discussed in section 5.

Full Interleaving Semantics This semantics has the same micro step rules as the two
above, but it drops the input rule by allowing new inputs from the environment to
be placed and processed at each micro step. Therefore macro steps are identical to
micro steps and there is no situation, where data resp. control signals placed on flows
is discarded.

CSP Semantics This semantics has been introduced in [Pel93], by giving translation rules
of Transformation Schemas into CSP ([Ho85]). It introduces “shorter™ micro steps by
separating each transformation’s input and output phase into two transitions, where
other micro steps may interleave. The macro step rules are the same as in the full
interleaving semantics.

3.2 Selection of an appropriate TS semantics

In this subsection we motivate, which of the TS semantics available is th> most appropriate
to interpret a TS specification of the DCP-problem. Informaily speaking, we are looking for
a semantics that allows to model all critical aspects of the system, but is not unneccessarily
complex by allowing executions of the specification that are irrelevant or even impossibie in
the target system.

One of the crucial difficulties when developing fault-tolerant systems lies in the fact that
it is not possible to influence the point in time when a failure happens. In terms of our
example, this means that occurrence of CP1’s failure event CRASH1 must also be considered
for situations when a job is just being processed by P1.

We first motivate, why the causal-chain semantics introduced above is inadequate. Using
transformation schemas, CRASH1 will be modelled as an external event {cf. figure 7}, since
it happens spontaneously and independently on DCP’s internal state. Therefore investigating
the consequences of a CRASH1 occurrence means applying the execution rules of TS semantics
from a pre-state, where a token is placed on the control llow CRASH1 on DCP’s interface. $3ul
even if an input token is placed at the same time on data llow A, the causal-chain semantics
offers no possibility to investigate the impact of CP1’s failure while a job is being processed:
The semantics’ execution rules specify, that in the situation described either the impact of the
A-input or that of the CRASH1 event is completely processed in its corresponding causal chain
before the other token is taken into account. This means, that only the situation “failure
occurs after the last job has been completely carried out and before the next A-input arrives”
can be analyzed in the causal-chain semantics.

The full-interleaving semantics is not selected, because it requires that the developer ex-
plicitelv expresses all fairness properties needed in the specification. We will see in the TS
solution presented below, that a certain fairness property is a “natural” requirement for the
DCP specification. Therefore it would be an advantage to have this property automatically
contained in the specification, without making it explicitely visible.



Though the CSP-based semantics introduced in [Pel93] would be an appropriate candidate to
model the DCP system, it introduces an unneccessary degree of complexity for this application.
First, fairness propertics have to be explicitely expressed, just as in the full-interleaving
semantics. Second, the higher degree of interleaving offered is not required for the DCP
problem. For a data transformation P the CSP semantics allows to model situations like
“CRASIH! appears after P has input z and before it could produce output y.” It will become
apparent that for our example this situation can be “approximated” by the event sequence
“CRASH! occurs before P inputs z”.

This leaves us with the weakly-fair interleaving semantics as a well suited candidate for a
TS specification of the DCP. The solution for DCP and the weakly-fair interleaving semantics’
appropriateness will be discussed in the next subsection.

3.3 Dual Computer System -~ TS solution

The TS solution for DCP is presented in figures 1 to 6. Note that our specification of CP1
and CP2 is asymmetric, as shown in figures 3 and 5, because we only wish to specify DCP’s
behaviour in the siteation where CP1 faills, while it acts as master. A symmetric specification
could also cover the cases where repaired components are re-integrated into the system.
However, this would make our example unnccessarily complicated without adding new insight
for the comparison between TS and Statecharts.

Description of interfaces The interface of DCP in the TS model is shown in figure 1. New
jobs for the service P’ implemented in DCP are input on data flow A, the resuilts are delivered
on data flow B, Control flow NEXT1 is delined as NEXT1 = ["OK"|"WATCHDOG ALARM"]. The
producer is notificd via signal NEXT1 = "0K" (or NEXT2, if CP2 acts as master) that DCP is
ready to accept a new job. {The meaning of "WATCHDOG ALARM” will be explained further
below.) The occurrence of CP1's failure (we do not consider the crash of CP2) is modelled by
nmeans of the coutrol flow CRASHI1.

The diagram in figure 2 shows the interfaces between CP1 and CP2 and the outside world:
Fach input on A is broadcasted on ACP1 and ACP2 to CP1 and CP2, respectively. The new
names ACP1, ACP2 have only been introduced to distinguish CP1’s and CP2's input flows.
Tormally, A is defined as A = ACP1 + ACP2, and both ACP1 and ACP2 carry the same value.

Qutput B has structure B = [BCP1 | BCP2] and passes values from either BCP1 or BCP2 to the
environment, NEXT1 = "OK" is both sent to the environment and also to CP2 to indicate that
the last job has been successfully terminated. CRASH1 is consumed by CP1; after its occurrence
CP1 stops processing A-inputs, As a reaction to CRASH1, the signal NEXT: = "WATCHDOG
ALARM" is transmitted. This can be interpreted as a watchdog mechanism that controls CP1, -
detects ocenrrence of the failure CRASH1 and passes the alarm message on flow NEXT1Y. As a
reaction to this signal, CP2 will take over as the master component. (The environment will
simply discard this signal.) After occurrence of CRASH1 and NEXT1 = "WATCHDOG ALARM",CP2

*To motivate that it is reasonable to specily an alarn signal that still can be generated after CP1 has
crashed, think of an independent hardware device like a watchdog observing CP1’s local bus. If CP1 [ails,
this will not affect the watchdog, so it can detect that no messages pass CP1's bus anymore and signal the
alarm message to CP2. On our specification’s level of abstraction, it makes sense not to show the watchdog
explicitely, but simply demand a design that is able to sigual CP1’s failure to CP2.

9
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Figure 1: Dual Computer System DCP - TS specification of the interface.

will start to produce outputs on BCP2 and request new jobs via NEXT2. The alarin message
“"WATCHDOG ALARM" is transmitted for reasons of proper sequencing on the same flow as the
request "0K” for new inputs. This will be further motivated in section 5.

Behaviour of CP1 Figure 3 shows the internal structure of CP1. Its behaviour is controlled
by control transformation CCP1 (“Control CP1”, ligure 4). At system startup, CP1 assumes
state UP, and data transformation P1 is enabled. Additionally a NEXT1 = "OK" message is
sent to the environment to indicate that DCP is ready for data processing.

An input on ACP1 is split into the components A1_X carrying the data to be processed and
A1.B carrying the bit that alternates with cach job. Data transformation P1 consumes A1.X
and computes the result Y1 := f£(A1X). This result is combined with signal wrB1 (“written
B1”) on output flow Y11,

The Yi-component is combined with the alternating bit A1.B, so that BCP1 = Y1 + A1B
carries both the result caiculated by P1 and the unchanged bit received with the calculation’s
corresponding input. The signal wrB1 is passed to CCP1 to indicate that the job has been
delivered. By definition of our semantics, the data transfer on BCP1 and the placing of the
wrB1 signal happen in the same micro step that includes the output production of P1 on Y11,
On reception of the wrB1 signal, CCP1 outputs the NEXT1 = "OK" message. The state UP is
kept until occurrence of event CRASH1, Then CCP1 performs the transition iuto the final state
DOWN, at the same time producing signal NEXT1 = "WATCHDOG ALARM" and disabling P1. so
that CP1 is completely deactivated.

The weakly-fair interleaving semantics adequately models the situation when a new input
A and the failure CRASH1 occur “at the same time”, i. e. in the same macro step, as it is
observable by the outside warld. If at the beginning of a macro step tokens are placed both
on A and CRASH1, the impact of the failure event can interleave in three places:
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CRASH1

A = ACP1 + ACH2
B = [BCP2iBCP2]
NEXT1 = ["OK®|*WATCHDOG ALARM™)

Figure 2: Dual Computer System DCP — TS specification of the interfaces of computers CP1
and CP2.

Al B

ACP1 Al X Y11 Y1 BCPL

.
|
i
;
'
;
;

: iwrBl
~ b
ENABLE | DISABLE :
P1 P1 | :
. ) ]

: VoY

L] L ~\

- L4 .

* . ’ ~

‘n‘. ’ *

| NEXT1
1 cecel | R RREEEE >
- ;
__ CRASHI R L ‘.‘ L

Figure 3: Dual Computer System DCP — TS specification of computer CP1.
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/ENABLE P1; NEXT1="0K"

Up <

wrB1/NEXT1="0K"

CRASH1/
DISABLE P1;
NEXTL1="WATCHDOG ALARM"

|

DOWN

Figure 4: Dual Computer System DCP — Control transformation CCPP1 of computer CP1.

1. before P1 consumes the A1 X-input
2. after P1 has placed the output, but before the NEXT1 is produced

3. after NEXT1 has been produced

The “most complicated” second case, making the introduction of an alternating bit protocol
necessary, corresponds to a TS execution, where event CRASH1 is already >aced on CCP1 but
has not yet been consumed, the result has been delivered on BCP1, so that wrBl is also placed
on CCP1, and the next micro step starls by processing the CRASHL token.

The fairness property that every token that can be permanently processed during one macro
step will be processed during this step ensures that CP1 will always react to the placement
of the CRASH1 token during the actual macro step. If this condition would be dropped, CP1
could “ignore” the occurrence ol the failure and continue processing new jobs. ‘This would
certainly not be an appropriate model for a failure event, that typically has just the unpleasent
property that its impact cannot be postponed.

Note that we also have to make use of the condition that unused tokens are discarded at the
end of each macro step: In state DOWN, a new input on ACP1 is split into A1 X and A1.B. The
A1 X-token is thrown away, because P1 is disabled, but the A1 B-token remains unconsumed
until the macro step’s end. Now our semantics for diverging flows (in our case ACP1, A1.X
and A1.B)} demands that all outgoing branches must be cleared, before a new token can be
placed on the flow. Therefore ACP1 would be blocked and as a consequence also prevent
new messages from being placed on the input flow A, if the unused A1 B-token wouid not be
discarded at the macro step’s end.

Behaviour of CP2 Figure 5 shows the internal structure of CP2. Its behaviour is con-
trolled by control transformation CCP2, shown in fignre 6. At system startup, CP2 assumes
state PASSIVE-NO-DATA. A reccive process RC2 consumes new jobs arriving on ACP2. Using
output flow R2 = A2_X + A2.B,il then places the job’s data component 42X in store 52 and
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the alternating bit on flow A2_B, at the same {ime signalling the job’s arrival to CCP2 via
wrA2. CCP2 then assumcs state PASSIVE-BATA. Occenrrence of the signal NEXT1="0K" indi-
cates that the job has been successfully completed by CP1. Therefore CCP2 again assumes
state PASSIVE-NO-DATA. The remaining token on A2.B is discarded at the end of the macro
step.

A
BCP2
A2 B
Y2
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[}
¥21 '
1
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. L}
ACP2 R2 AZ X A2 X '
— 52 p2 '
\‘ :
Ll 1
1Y 1
. 1
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NEXTI TN P NEXT2
_____________________ . . SO 1,

Figure 5. Dual Computer System DCP - TS specification of computer CP2.
If the failure of CP1 is indicated via NEXT1="WATCHDOG ALARM", two cases mnust be considered:

L. CP2 is in stutc PASSIVE-NO-DATA: In this state it is ensured that no job was being pro-
cessed when CRASH1 occurred. Therefore CP2 will simply assume state ACTIVE-NO-DATA.
At the next arrival of a job on ACP2, the corresponding signal wrA2 will cause CCP2 to
trigger P2 and perform the transition into state ACTIVE-DATA. Placeinent of wrA2 is per-
formed in the same micro step where the new input data is placed in store S2. Therefore
P2 always finds the actual input data in S2, when the trigger leads to P2’s activation
in the subsequent micro step. P2 reads input data A2_X from the store and produces
the output Y21 = Y2 + wrB2, where Y2 = £{A42_X) carries the calculated result that is
combined with the bit A2.B on BCP2 = Y2 + A2 RB. and wrB2 indicates that the output
BCP2 has been delivered, so that CCP2 can produce the required NEXT2 signal and return
into statec ACTIVE-NO-DATA.

2. CP2 is in stafc PASSIVE-DATA: In this situation, CP2 has to reproduce the job stored in
52, because it is uncertain, if CP1 could deliver the result before the failure happened.
CCP2 therefore directly triggers P2 and performs the transition into state ACTIVE-DATA.
Afterwards it exactly operates as described in the first case.
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PASSIVE- NEXT1="WATCHDOG ALARM" ACTIVE-
NO-DATA — =] NO-DATA

A

WrA2 NEXT1="0K" WrAZ2/ WIB2/
TRIGGER P2 NEXT2
PASSIVE-
NEXT1="WATCHDOG ALARM"/ ACTIVE-
DATA DATA
TRIGGER P2

Figure 6: Dual Computer System DCP - Control transformation CCI’2 of computer CP2,

4 A State- & Activitycharts solution

In this section, we present a Stale- & Activitycharts specification of DCP. As in the previous
section, a shorl introduction into the State- & Activityeharts specifiction language is given
in subsection 4.1. l'or a more detailed description, the reader is referred to {11a90], [1L89].

4.1 Informal description of State- & Activitycharts syntax and semantics

In general, a State- & Activitycharts specification consists of two parts. The first part,
called activitychart, describes the conceptual structure of the system, showing the flow of
information and control between the components. The second part, consisting of one or more
statecharts, specifics the actual behaviour of these components, i.e., how the information flow
is processed.

Activitycharts [In figure 7, we see the activitychart of the Dual Computer. It consists of
one roof activity DCP, which is connected by the environment activities PRODUCER, CONSUMER,
and FAILURES. DCP consists of two subactivities, CP1 and €P2. In general, this nesting of
activities can be applied to any depth. The behaviour of an activily can be specified with
a statechart, as shown for CP1 and CP2 which are controlled by two statecharts CCPY and
CCP2 in figures 8 and 9. Activities that are not further refined by sub-activities and/or
statecharts represent processes that perforin transformation of data withont controlling any
other components. In our example, P1 and P2 are such transformation processes (we left the
actual transformation unspecified, because its definition is not relevant in our contextj. All
activities may be self-terminating or be terminated by a statechart (see below) via special
stop-cvents. Furthermore, the execution of an activity may be temporarily suspended and
later be resumed by sending it specilic events.
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Figure 8: Dual Computer System DCI* - Statechart CCP1 of computer CP1.
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CRASH1 and wr (A} /X2:=A X; B2:=B X; st!{P2)

CCP2
(oassive not CRASHL and wr (A}/ )
X2:=A X: B2:=A B
NO_DATA DATA i
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Figure 9: Dual Computer System DCP - Statechart CCP2 of computer CP2.
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Statecharts The Statechart formalisin is derived from the finite state diagram. States are
denoted like rounded cornered boxes and connected by arrows called fransitions,

The label of a transition has two parts, separated by the symbol /i an enabling part, or
lrigger, and an action part. '

The trigger part specifies under which conditions the transition can be taken. To this end,
the trigger is defined by means of an event ezpression plus a boolean expression ranging over
variables and states. Events are the basic means to mediate control, they can be interpreted
as atomic signals that are only visible “for one moment of time” (this will be explained
in more detail below). In our DCP example, the events are are CRASH1, NEXT1, NEXT2, to
be interpreted as signals exchanged between the environment and the system, and wr{A),
wr(Y1),... { “written A7), to be interpreted as signals internally generated by DCP, as soon
as new data is written on &, Y1,.... Event expressions are defined by boolean expressions
ranging over events. In figure 9 for example, the event expression CRASHI and not wr(4) is
interpreted as “the corresponding transition may be taken, if event CRASH1 is signalled, and
at the same time no data is written on A”. If an additional expression over variables and
states is associated with the trigger, the corresponding transition is enabled, as soon as both
expressions evaluate to TRUE. For example, a transition with the trigger

a and not b[x=5 or not in(DATA)]

can be taken the moinent that the event « occurs and b does not and at the same time the
value of variable z equals 5 or the systemn is not in the state DATA. When a transition has an
empty trigger, such as in the transition from READY to NO_DATA, it can be taken iinmediately
and unconditionally.

When a transition is taken, its action part specifies a list ol atomic actions generated by the
transition. These actions may consist of a generation of new events that can be sensed by
other tansitions’ triggers and the environment. Furthermore, they can define assignments
to varibles, and specific actions can be defined to control (i. e. start, stop, suspend etc.)
activities, In figure 8 for example, the action st!(P2) is interpreted as an activation of
activity P1, as soon as the corresponding transition is taken.

States Unlike ordinary I'inite State Diagrams, states are boxes and may contain subcharts,
i.e., specifications of state machines that are to be exccuted when the system is in the sur-
rounding state. When the surrounding state is entered, the subchart is started in the initial
state, designated by a bullet-tailed arrow and when it is exited, the execution inside is aborted.
For CCP1, this means that UP is started at the beginning and consequently NO_DATA is cen-
tered. Depending on the occurrence of the events wr(A) and wr(Y1), the system will cycle
through the three substates of UP, until the cvent CRASH1 occurs. This will move the system
immediately to the state DOWN, irrespective of which state in the cycle it ocenpies. Notice,
however, that transitions are considered atomic, so an action is always completed and the
occupied state is always defined.

Variables Data that should persist over time can be stored into so-called data-items, which
are hasically program variables (e. g. X1, Btlin figure 8). They can be integers. reals. booleans
(called conditions), or strings, and compositions of these, such as records and lists. Data-
items can be changed by the action parts of transitions using ordinary assignments. The
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lifetime of a data-item is limited by the existence of the activity to which it belongs. If they
should live independent of activities, they should be explicitly introduced in a so-called data
store. ’

State- & Activitycharts Semantics of Dynamiec Behaviour The dynamic behaviour
of a State- & Activitycharts specification is completely controlled by its statecharts. A variety
of semantics has been defined over the last five years (see [HG89], (HG92|, {(KP92], [iL89]).
We give a short summary of these definitions.

As introduced for Transformation Schemas, we can also define micro sfteps and macro steps
for the Statecharts semantics introduced in [il.89] and by Huizing and Gerth [ITG89]. A micro
step is executed in three phases:

L. All input events are evaluated in order to decide which components are enabled to
perform a transition.

2. All enablzd parallel components perform their transitions in parallel; there is no in-
terleaving. If two transitions write in parallel on the same data item, this conflict is
resolved nondeterministically ([iL89, p. 2-60]), i. e. it is unpredictable whose write op-
eration will be eflective at the micro step’s end. However, the developer is encouraged
to write only specifications where such racing conditions cannot occur.

3. The actions triggered by the transitions performed are collected and made available for
the next micro step. This means, that a component cannot sense events generated by
any other component during the sae micro step.

[1L89] describes the semantics actually implemented in the Statemate tool’s sitnulation com-
ponent:

“Go Repeat” Simulation In this regime, events live only for the duration of the micro
step directly following their generation. A macro step (called “super step” in [iL89])
consists of a maximal sequence of micro steps: The output of the first micro step is
evaluated as the input set of the second micro step and so on, until the last micro step’s
output does not enable any additional transition. New inputs at the system’s interface
can only be given at the beginning of a macro step and they arc only visible in the first
micro step. Data inputs live for the duration of a complete macro step, and reading
them is non-destructive.

“go step” Simulation The lifespan of events is defined as in the GO REPEAT semantics.
But in this regime, a macro step coincides with a micro step. Therefore new data

and events can always be input on the system’s interface as soon as a micro step has
terminated.

In [HG89] five Statecharts semantics (A-semantics,. .., E-semantics) are introduced. The
A-semantics correspends to the GO $TEP senantics. The other four semantics differ from the
GO STEP/GO REPEAT models in the way they handle the observability of events during each
macro step. Specifically, cach of the [I[IG89]-semantics assigns a lifetime of a complete macro
step to input events placed on the system’s interface.
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The semantics introduced by Kesten and Pnueli in [KP92] strongly differs from those sketched
above: Here the notion of micro- and macro steps is dropped, instead the possible transitions
are classified as untimed and timed transitions. Untimed transitions consume and manipulate
data and events. In contrast to the semantics above, their execution does not affect the
lifetime of events. Furthermore, parallel untimed transitions are executed in an interleaved
mode. Timed transitions synchronously advance the clock and terminate the lifetime of
existing events. Consecutive untimed transitions are interpreted to happen “in the same
time interval” defined by the surrounding timed transitions.

4.2 Selection of an appropriate Statecharts semantics

In analogy to our observations in section refselectTS leading to a sclection of the weakly-Tair
interleaving semantics to interpret the TS specification, we will now chose an appropriate
Statecharts semantics for the DCP problem.

The Go REPEAT semantics and the [HG89]-semantics B to E are all inadequate due to the
same reason: A failure event placed on the system’s interface will always enforce the transition
of CCP2 from state PASSIVE-DATA into state ACTIVE-DATA. The interlcaving of the processing
of an input A and the occurrence of the failure CRASH1 — i. e. a transition {roin PASSIVE-DATA
into ACTIVE — could not be simulated.

In contrast to this, the GO STEP semantics allows placement of a failure event at each critical
processing step. This is a consequence of the step definitions allowing new inputs after each
micro step. Specifically, CRASH1 can be placed after CCP2 has reached PASSIVE-DATA and
before it returns into initial state PASSIVE-NO_DATA.

The [KP92]-semantics would also be an interesting candidate for the DCP problem, because it
allows to model and investigate more complicated situations invelving explicit time intervals
given for the duration of computations and for the lifespan of events. However, this semantics
is at present unavailable in the Statemate tool, Furthermore, we explicitely chose an untimed
approach to model the DCP problem. Therefore we will interpret our State- & Activitycharls
solution by means of the GO STEP semantics.

4.3 Dual Computer System — State- & Activitycharts solution

Master CCP1 When the Dual Computer System is started, its root activity DCP is au-
tomatically started. Since it does not contain a control part, its subactivities CP1 and CP2
are started also. This means that the statecharts CCP1 and CCP2 are started in their initial
states. The activities P1 and P2 remain inactive. CCP1 starts in the state UP and substate
NO_DATA. When a value is written on the incoming variable (data-item} A, this generates an
event wr(A) (“written A”) and CCP1 goes to the state DATA, performing two assignments and
sending a start signal (st!(P)) to P1. The variable A is in fact a record consisting of a data
component A_X and an alternating bit A_B. These two components are stored in local variables
X1, B1 as a result of the transition from NO_DATA to DATA.

As a third result of this transition, P1 is started. Its behaviour is not specified formally here,
it may be implemented in some other programming language or perhaps in hardware, It will
read the input valne written on X1 and use this to compute a certain function £(X1), return
the result in Y1 and terminate.
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As soon as CCP1 seces thal P1 writes its result, it will move from DATA to READY and write the
result on the output B. From READY it will move to NODATA and generate a synchronisation
event NEXT1 to the environment activity PRODUCER. This notices the producer process that
it can provide a new value on A, which will start the cycle all over again. Notice that in
contrast Lo the TS specification above the NEXT1 event is single-valued. This difference will
be explained in section 5.

This will continue until the event CRASH1 occurs. This immediately stops the execution of
CCP1 and CCP2 should take over as smoothly as possible.

Slave CCP2  As long as no CRASH1 occurs, CCP2 will stay in the state PASSIVE, following a
simple version of the cycle of CCP1, in which the input value on A is stored but not processed.
Notice that the transitions from NO_DATA to DATA in CCP1 and CCP2 are taken simyltaneously.

When suddenly the event CRASH1 occurs, CCP2 goes from PASSIVE to ACTIVE, ideally to the
same state as CCP1 accupied when it crashed. Note that the transitions from DATA to READY
are driven by events internal to CCP1. Hence, when event wr(A) has occurred but NEXT1 has
not, CCP2 has no means to know, and should not have indeed, whether CCP1 was in DATA or
in READY at the moment of the crash. So the protocol decides to stay on the safe side and
go to DATA, possibly duplicating the output on B. This is the reason that an alternating bit
is added to the data, In this case, {}ie CONSUMER activity will sce two consecutive values with
the same bit and discard the second.

There is a subllety here in the case that the events CRASH1 and wr{A) occur at exactly the
same moment. In order for CCP2 not to miss one of these events, the “cross” transition from
NO_DATA in PASSIVE Lo DATA in ACTIVE is added.

In analogy the case where CRASH1 and NEXT1 become visible to CCP2 at the same time must be
handled: IT CCPL performs the transition {romn READY to NO_DATA generaling event NEXT1, this
becomes visible to CCP2 in the next micro step. In the GO STEP semantics described above,
also CRASH1 may be placed for this next step, so while CCP1 goes to state DOWN, CCP2 has to
cope both with CRASHI and NEXT1. If CCP2 ignores CRASH1, it will never reach state ACTIVE.
If it ignores NEXT1, it will reproduce the last A-input (which does not do any harm), while
the PRODUCER might send a new job as a reaction to NEXT1. As a consequence, a wr(A)-event
could occur while CCP2 was in state ACTIVE with substate DATA or READY and therefore be
lost {which definitely does a lot of harm). Therefore the transition from substate DATA in
PASSIVE to substate NODATA in ACTIVE is introduced.

Wlen CCP2 has entered ACTIVE, it will stay there, performing the same cycles as CCP1 did
before. In the full protocol, CCP1 will have the possibility to be repaired and turning to UP
again, now adopting the passive réle and waiting for CCP2 to receive a CRASH2 event. This
would make the two diagrams completely symmetric but also more complicated, so we left it
out {o concentrate on one representative half of the protocol.

5 Comparison between Transformation Schemas and State- &
Activitycharts

In this section we compare Transformation Schemas and State- & Activitycharts and illustrate
the major differences by means of the dual computer systein example DCP introduced above.
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As a basis for this comparison, we concentrate on the weakly-fair interleiving semantics for
Transformation Schema and on the GO STEP/GO REPEAT semantics for Statecharts.

5.1 Presentation of specifications

Though the evaluation of State- & Activitycharts’ and Transformation Schema’s graphical
presentation style is not the main objective of this article, it may be appropriate to point
out, which differences are the most important ones from our point of view when using the
specification methods in “real-world projects”.

State- & Activitycharts offers two concepts to present the modularity of a specification:
Activity charts can be modularized by drawing new boxes into the top-level activity (as
shown in figure 7); in analogy the modularization of statecharts can be shown by drawing
higher-level boxes around subordinate states on the same sheet. The sccond concept allows
top-down presentation of activities and statecharts, where the structure of a subactivity or a
sub statechart is shown on a separate diagram, while they appear as black boxes on higher-
level sheets (as shown for the statecharts CCP1 and CCP2).

For Transformation Schemas top-down presentation by means of sepa-ate diagrams asso-
ciated with higher-level black boxes is the only way of showing the structuie of a specification.

5.2 Scope and persistency of data objects

In State- & Activitycharts, the data item entering an activity on a flow is in the scope
of every subordinate activity or statechart, and it can be read arbitrary many times without
changing its contents. In principle, data itemns can be processed both by activities and state-
charts. Additional data items can be defined inside an activity or a statcechart (like X1, B1,
Y1 in statechart CCP1). These items also have the defining chart and all subordinate charts
as scope; but in contrast to incoming data flows, they live as long as the defining activity.
The third category of data items are stores which preserve their contents independently of
any activity’s lifespan.

A consequence of the non-destructive read concept defined for Statecharts data items is that
activities processing data must always be controlled by statecharts, because the data items
themselves do not provide a trigger that indicates to the activity when to start executing.

Using Transformation Schemas, only two types of data items are available: flows and
stores. In contrast to State- & Activitycharts, every potential consurmer of a data flow
must be made explicit by feeding a branch of the corresponding input flow into the data
transformation. Unused tokens on flows can be used until the end of the macro step; but the
usage is destructive. Therefore the only type of persistent data container for TS is the store,
and the data contents of stores remains well defined over the sequence of macro steps.

The destructive read operation on flows allows to define TS that are executed in the dala-
triggered mode: In absence of control transformations the dynamic behaviour of the TS is
completely controlled by the data flow, as defined in the micro step rules for data transfor-
mations.

Morcover, TS strictly separate information travelling on data flows and information on control
flows: It is impossible to process both data and control items inside the same translormation.
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If control decisions depend on certain data values, these have to he evaluated by means of data
transformations and fed into the corresponding control transformation as data conditions.

5.3 Scope and persistency of control objects

While the scope of control objects (i. e. events) in State- & Activitycharts is defined in .
the same way as for data objects, events in the GO STEP/GO REPEAT semantics only live for

the duration of the micro step directly following the step where the events were created. As

a consequence, processing of events cannot be “postponed” to later micro steps. This implies

the necessity to evaluate event expressions for transition triggers instead of atomic events

only. ;

For Transformation Schemas, scope and persistency of control flows is defined exactly as
for data flows, so events live until they are consuimed by the consumer control transformation
or — if they stay unconsumed — until the end of the macro step.

The persistency rules for control objects are motivated by the differences of the underlying
semantics: For State- & Activitycharts, consuming an event cannot be destructive, because
just as in the case of data {lows the event can be consumed by more than one transition. On
the other hand, keeping events alive until the end of a macro step would lead to undesirable
behaviour of very simple specifications, when interpreted in any semantics allowing several
micro steps per macro step. For example, the trivial flip-flop switch shown in figure 10 would
lead to a never-terminating macro step.

afoff

ON OFF

e/on

Figure 10: In any semantics allowing several micro steps per macro step this flip-flop switch
operation only terminates. if events just live for the micro step directly following their gen-
eration.

For Transformation Schemas, events must not be discarded after one inicro step, because
the interleaving semantics only allows one transition per micro step. As a consequence, the
read must be destructive, because otherwise the analogous situation as described in figure 10
would arise for the corresponding control transformation.

5.4 Parallelism

The GO STEP/GO REPEAT semantics as well as the [IIG89] semantics of State- & Activi-
tycharts are based on the concept of simultancous processing of every input or event that is
enabled in a micro step. Therefore in our DCP-example, feeding the fajlure event CRASHI into
DCP has the effect that both CP1 and CP2 perform their reaction in the same nicro step, and
this is exactly what we wish to express: Ocenrrence of CRASH1 lias the effect of a high-priority
interrupt that leads to immediate reactions on computer CP2.

On the other hand, simultaneity introduces additional (:m'nplcxity in handling the inputs of
a statechart, as for example shown in CCP2: For the transition from state PASSIVE, NO_DATA
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to state ACTIVE the input signals CRASH1 and wr{A) have to be simultancously taken into
account, because every event (like wr(4)) must be consumed in the micro siep following their
creation; afterwards they are lost.

In contrast to State- & Activitycharts’ behaviour, the interleaving semantics of Transfor-
mation Schemas does not allow to abstract from the signal "WATCHDOG ALARM" and simply
feed CRASH1 into CP2, too, as it is specified by the Statecharts solution: Input of CRASH1 into
CP1 and CP2 might lead to a sequence of micro steps, where the failure event is processed
by CP2 before it is processed by CP1. As a consequence, CP2 could produce the output of
a job before the same output is re-produced by CP1. This would not do any harm to the
consumer, because he will detect the duplicated result by means of the alternating bit. But
this situation could also lead to a duplicated NEXT-message (first NEXT2, then NEXT1), and
this has to be regarded as a specification flaw, because the producer might send a new job
in reaction to the superfluous NEXT1 miessage. The "WATCHDOG ALARM" is produced by CCP1
after CRASH1 has been consumed. Therefore the reasonable causal relation “first CP1's failure,
then its detection by CP27” is ensured by our TS.

There is a second case in the TS specification where specific measures had to be taken to
exclude unwanted sequences of transitions: It is necessary to ensure that the NEXT-request
for a new job sent to the PRODUCER and the "WATCHDOG ALARM" are transmitted on the same
flow. Otherwise the weakly-fair interlecaving semantics could allow the "WATCHDOG ALARM" to
“overtake” the NEXT-request i. e. a NEXT token and a "WATCHDOG ALARM" token could both be
placed on CCP2, and CCP2 could first chose the "WATCHDOG ALARM" token. As a consequence,
CP2 would disregard the NEXT signal, reproduce the last job already delivered by CP1, and —
just as in the case described above — produce a superfluous NEXT2 signal. Transmitting both
the "0K" and the "WATCHDOG ALARM" signals on flow NEXT1 ensures that CP2 will receive them
in the same order as it has been produced by CP1,1i. e. “first "0K", then "WATCHDOG ALARM"”.

These two cases show that for certain cases the degree of interleaving offered by the weakly-
fair interleaving semantics is too amnple, so that specific specification constructs have to be
inserted to reduce the set of possible execution sequences.

5.5 Nondeterminism

An important difference between the DCP-example’s Statecharts and Transformation Schema
solution is, that the former’s execution under the Go STEP regime is conpletely determin-
istic, while the latter allows nondeterministic executlions: In the Statecharts solution, both
automatons CCP1 and CCP2 are deterministic. Since they do not write on the same data
items (i. e. racing conditions do not occur), their parallel compesition is deterministic, too.
Nondeterminism with respect to the failure’s occurrence has to be “stimulated” by placing
the CRASH1i-event at random into the series of macro step inputs. In contrast to this, each -
macro step of the TS solution is nondeterministic, as soon as both the CRASH1 event plus an
A-input are placed on the DCP-interface. This is not only caused by the fact that CP1’s control
transformatjon CCP1 is nondeterminstic in the TS solution, but mainly by the properties of
the interleaving semantics: It cannot be predicted, at which micro step the [ailure event will
lead to the corresponding transitions. At the system’s interface this becomes visible by the
fact that it cannot be predicted whether the NEXT signal will be delivered via NEXT1 (i. c. CP1
was still able to produge thic NEXT-event before erashing) or via NEXT2.



This stronger degree of nondeterminism in Transformation Schemas is in fact not very as-
tonishing. For interleaving semantics, it is well known that parallel specifications can be
transformed into nondeterministic sequential specifications (see [AQ91, pp. 334]). Therefore
in TS, parallelism introduces nondeterminism.

Statecharts allows ecvent expressions as triggers of transitions. As a conszquence, nondeter-
ministic statecharts can be made deterministic by assigning priorities to events. In figure 8§
CRASH1 is the high-priority event forcing a transition into state DOWN, regerdless of any other
events. This corresponds to event expressions not CRASH1 and wr{A),...  as triggers for
the internal transitions between the UP substates. In W&M's definition of Transformation
Schemas, only single events are allowed to trigger transitions. Therefore nondeterministic
control transformations in general cannot be replaced by deterministic ones. This problem
has been addressed by some builders of CASE tools for structured methods by also allowing
event expressions as triggers. From our point of view, this is not an appropriate solution,
because interleaving semantics do not suggest simultaneous evaluation of events.

5.6 Lifeness properties — fairness

When analyzing the differences between specification languages intended for parallel systems,
it is interesting to ask whether certain liveness properties are automatically guaranteed by
specific types of specilications. State- & Activitycharts and Transformation Schema seem to
be rather similar with respect to the divergence of specifications: They both allow specifica-
tions with macro step executions that diverge due to statecharts resp. ccutrol specifications
that perform continuous internal communications without providing any output at the sys-
tem’s interface. In conirast to the divergence liveness property, we can observe important
differences State- & Activitycharts and Transformation Schema when looking at fairness
propertics. ’

Recall that an execution of any transition system is weakly fair with respect to a specific
transition 7, if it is not the case that 7 is continually enabled beyond some position in the
execution, but is taken only a finite number of times. The execution is strongly fair with
respect to 7, if it is not the case that 7 is enabled infinitely many times in the execution, but
is taken only a finite number of times (see [MP92, pp. 128]).

Fairness Observation 1 Slate- & Activitycharts allows specifications that do not have the
weak fairness property (and as a consequence also nol the strong fairness property).

For example a system described only by the nondeterministic automaton shown in figure 11
can lead to an unlair execution, if for cach macro step the environment provides both a and
b as input. ‘

With the same inputs the analogous Transformation Schema specification would even lead to -
a strongly fair execution with respect to both a/c and b/d: Suppose both a and b are placed
on the interface. If the first micro step choses transition a/c, then for the second micro step
a/c is no longer enabled, but b/d still is. Since b/d is now the only enabled transition. it
must be taken according to our semantics.

Because both the causal-chain semantics and the weakly-fair interleaving semantics do not
allow a macro step to end, as long as an enabled transition still exists, any permanently
enabled transition will be taken before the macro step ends. Since b/d is now the only
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Figure 11: Statechart allowing unfair executions.

enabled transition, it must be taken according to our semantics. Only a non-terminating
macro step, where other components communicate to produce “infinite internal chattering”
can prevent a permanently enabled transition from being finally taken. This leads to

Fairness Observation 2 When interpreted in the Causal-Chain or the Wenkly-Fair In-
terleaving Semantics, every transformation schema only allows ereculions that are at least
weakly fair with respect to all possible transilions or possess a non-terminating macro step.

One of the major differences between the Statecharts semasntics and the Transformation
Schema semantics can be expressed by analyzing the reasons for absence of strong fairness:
For Statecharts, an execution that is unfair with respect to a transition 7 can ounly occur
in a specification that contains 7 in a nondelerminstic antomaton (like in the example of
figure 11), where several transitions are enabled at the same time, but only one of them can
be taken. The parallel composition of deterministic statecharts 5,,...,5, will be strongly
fair with respect to all of its transitions, because {or each S;, at most one transition r; can be
enabled at the beginning of a micro step, so all enabled transitions are performed in parallel
during this step. Note however, that the parallel composition of determinstic statecharts
is not necessarily deterministic, because the racing conditions mentioned in section 4.1 are
resolved nondeterministically.

Fairness Observation 3 The parallel composilion of delerministic statccharts only allows
execulions, where cvery transition is taken as oflen as it is enabled. As a consequence, the

erecutions are strongly fair with respect to all their transitions.

In contrast to this, when examining our TS semantics, unfair behaviour can be caused both
by nondeterministic automatons and by parallel composition of (possibly deterministic) com-
ponents. As mentioned in the previous subsection, for interleaving semantics, parallelism
introduces nondeterminism and - just as in the Statecharts semantics - nondeterminism
gives rise to unfair behaviour. This will be illustrated in the following example.

Consider the TS shown in figure 12 and assume a sequence of inputs from the environment
that looks like

(a,b), a, (a,b), a, ...

Both control transformations €1, C2 are deterministic. llowever, an execution to the inputs
above could be as follows: In the first macro step, both transitions afdisable C2 and b/d
are cnabled in the first micro step. Assume, transition a/disable C2 is taken. In the second
micro step, the disable C2 evenl prevents b/d from being taken. The macro step ends
without having engaged into transition b/d. In the second macro step, the input a leads to
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enabling C2. The third macro step will be as the first and so on. As ¢ consequence, this
exccution is not strongly fair with respect to transition b/d.

SR
1” “\ bl 2 - \Q" * d
' e e C v
Byl oy emeeooofmable P W S .
T
et el disble C2 P AN
Cl: cz:

/enable C2

2/d

ars a/’
disable C2 enable C2

Figure 12: Parallel composition of determinstic control transformations allows executions
that are not strongly fair with respect to certain transitions.

6 Conclusion

In this article a comparison between the CASE specification languages Transformation Schema
and State- & Activitycharts has been presented, based on an example from the field of fauit-
tolerance. Having analysed the languages’ semantics, we can evaluate :his comparison as
follows:

1. Both Transformation Schema and State- & Activitycharts do not possess a semantics
that is “universally” applicable for most types of target systems. This has been moti-
vated by ihe sclection process neccessary to find a suitable interpretation for the Dual
Computer System specification. Instead different semantics had to be defined for both
languages, and it is an important task at the beginning of a project’s specification phase
to select the most appropriate interpretation model for the system to be developed.

2. Transformation Schema only allow one graphical presentation style for the top-down
specification of systems. Frowm practical experience we know, that rigorous top-down
presentation - while being appropriate for the inspection of completed specifications
—is not helpful when developing a new specification. llere a mixed approach using
both top-down and bottam-up techniques is: better.  Thercfore we prefer the State-
& Activitycharls presentation style, where the degree of top-down structuring can bhe
chosen by the developer himsell. We think that the vanety of State- & Activitycharts
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presentation techniques could also be used for Tranformation Schemas in an analogous
way without inducing another understanding of the TS meaning. 1L just depends on
tool builders to sit down and implement it.

. Transformation Schema and State- & Activitycharts use different communication pa-
radigms. The scope and persistency rules of data items in Transformation Schema
suggest communication concepts based on one-to-one or multi-cast channels for the
target system. In contrast to this, State- & Activitycharts suggest mechanisms based
on shared variables. Note that in most practical cases the underlying commaunication
concepts cannot simply be selected according to the developer’s persconal taste. Instead
they are often predefined by boundary conditions regarding the target environment and
should be taken into account during the selection process for the appropriate CASE
method.

. While TS strictly separates the manipulation of data and control items, State- & Aciv-
itycharts allow to specify operations on data directly with the state transition, without
introducing a corresponding activity. [rom our experience, the strict separation of
data processing and control enforced by TS rules leads to clearer specifications, there-
fore we do not regard this as a disadvantage. For Statecharts, the more flexible data
manipulation concept requires quite an amount of discipline {rom the developer.

. For specifications that do only require & moderate amount of control. TS specifications
reguire less effort to write than the corresponding State- & Activitycharts, because TS
allows to specify without control transformations. The data-driven dynamic behaviour
will then be defined by the micro step rules for data transformations plus the macro
step rule.

. The TS semantics introduced and the semantics of State- & Activitycharts incorpo-
rate different notions of parallelism, nondeterminism and fairness, that are suitable for
different types of target systems. As a consequence, syntaclically similar transforma-
tion schemas and statecharts differ strongly with respect to their dynamic behaviour.
Because of its restrictive use of micro step interleaving, the causal-chain semantics for
TS maps well on multi-tasking/single CPU systems. The full-interleaving semantics is
appropriate for distributed systems with a low degree of synchronisation, preferrably
implemented by means of message passing mechanisms. The State- & Activitycharts
semantics are especially well suited for multi processor systems with tight memory cou-
pling and rather strict mechanisms for the synchronisation of the processors’ input and
output.

. In the Dual Computer System example the Statecharts solution appears to be superior
to the Transformation Schema solution, because the simultancous processing of parallel
components is just appropriate for the specification of reactions to a failure event. In
this example, the TS solutions appears to posscss a lower level of abstraction, because
an additional event ("WATCHDOG ALARM") had to be introduced to guarantee proper
causal relationships. That is, the developer had to explicitely introduce “technical”
synchronization and scheduling constructs, becanse otherwise the weakly-fair interleav-
ing semantics would allow “unwanted” sequences of micro steps. ilowever, in loosely
coupled or even wide-area networks the concept of simultancous parallel processing
steps, as inherent to the State- & Activitvcharts semantics presented, may suggest



misleading simplifications, so that such systems could be better represented by the
interleaving semantics of Transformation Schema.

8. Though we have not studied real-time aspects in this article, it is interesting to note
that TS concepts for incorporating real-time as sketched in [Wa86] are not suitable for
complex applicalions. In contrast to this, the built-in real-time simulation features as
implemented in Statemate are at least a step in the right direction, and more universal
and theoretically sound techniques for real-time specifications with State- & Activity-
charts have been worked out in the formal methods community ([KP92]). The devel-
opment of TS extensions that incorporate real-time aspects will be a main objective of
our future activities in this field.

There are a number of conceptual disadvantages or flaws, that are inherent both in Trans-
formation Schema and State- & Activitycharts, but have not been discussed in this article,
because we focused on problems related to parallel systems. Some of these draw backs
can be solved in a similar way for TS and State- & Activitycharts; this is currently under
investigation at DST in cooperation with Eindhoven University of Technology and Christian—
Albrechts—Universitit zu Kiel.

¢ Both languages offer insufficient means for the precise definition of complex data struc-
tures and functions operating on these structures. This could be 2asily improved by
adopting the concepts of formal specification languages like Z ([SP92]) or VDM ([Jo86))
for the definition of data items and operations specified in data transformations resp.
activities. This approach has been investigated at DST ([Pel92]).

e Both languages do not provide construcis for data refinement. If a “concrete” specifica-
tion is tntended to be a refinement of an “abstract” one, the relation between concrete
and abstract data structures cannot be expressed. Again, this can be overcome by
importing the Z or VDM concepts for data refinement.

¢ Both languages do only provide insullicient support for re-use of specification parts.

¢ Both languages do not support object-oriented specification styles.

It is often said, that a specification language merely serves as a vehicle {or the developer to
express her or his concepts for the system to be built. From our experience, the impact of
using a specific language is much deeper, because both syntax and semai tics not only influ-
ence the developer’s specification style, but also his way of thinking abcut the system. As
a consequence, the use of different languages will lead to different system solutions. There-
forc the choice between CASE methods — as between Transformation Schema and State- &
Activitycharts - should always be based upon a close analysis of the methods’ underlying
semantics and their appropriateness for the target systemn.
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