

A comparison of Ward & Mellor's transformation schema with
state & activitycharts
Citation for published version (APA):
Peleska, J., Huizing, C., & Petersohn, C. (1994). A comparison of Ward & Mellor's transformation schema with
state & activitycharts. (Computing science notes; Vol. 9411). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/7ceae035-be92-4921-aca1-3f13f10e3038

Eindhoven Universily of Technology

Departmenl of Malhemalics and Com pUling Science

/\ Comparison of
Ward & Mellor's Transi()llnalion Schema

wilh
Siale- & Aclivilychal1s

by

J. Peleska, C. Huizing and C. Pelersohn

Computing Science NOle 94/1 I
Eindhoven, March 1994

94/11

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published e.lsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Scicncc
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: profdr.M.Relll

prof.dr.K.M. van Hee.

A Comparison of
Ward & Mellor's TRANSFORMATION SCHEMA

with
STATE- & ACTIVITYCHARTS

Jan Peleska I, Cornelis H uizing2 , Carsta Petersohn3

September 27, 1993

Abstract

A comparison between Strtlcl.ured Nlcthods, as represented by the Essential Model
of \Vard&Mcllor's Transformat.ion Schcmil..'>. and the Statemate specification language
consisting of St.atc- and Act.ivitychart.s, is presented. The comparison is based on the lan
guages' semant.ic properties. An example from the field of fault-tolerant systems serves
as a "benchmark prohlelll" 1.0 invest.igate tile practical applicability of bot.h Transfor
mation Sdlcillas and St.atelilalt: ill a context of lIleaningful "real-world" systems. \Vllile
the art.icle's cout.ellt.s is fOIlIlJI~d 011 [ofliial llIathema.tical COllccpts, its objective is also
to reach the software ~~lIgilleer:; aud CASE tool builders who not Ileccessarily are experts
in the field of FOTIliid f\lcthods. Therefore all ollr results arc prescnted in an informal
natur;d-Ianguagc st.yl(~ of reasolliug.

Keywords: Fault-Tolcrant. Sysl,ellls - State- & Activit.ycharts - Structured Analysis
and Design l\kl.llOds - Transi"ofillal.ioll Schema - Transition Systems

1 Introduction

In this paper we presellt ;l collll'anson oetween Structul'e(] Aletho(ls (5,11) and the State
fj Jlclivityclwl'ls specification langllage, a$ implemented in the Statemate tool (d. [Ha90],
[IlPPSS87], [IlGdlt88]). Ollt of today's existing SM dialects we focus on Ward&Mellor's
Tmllsjomlfltioll Schema ('1'8), as introdllced in [WM85J, [Wa86J.

COlIJmercially motivat.ed compa.risons of CASE t.ools often concentrate on the tool interface's
ease of usc! on thc Glpahilities to gcncratc code from specifications, on configuration manage
ment and other featllres likely to facilitate the industrial software production process. Such
comparisons can he ra.thcr mislca.ding, jf they fa.il to analyze the differences of the underlying
specificatioJI methods. They suggest - a.t least to the inexperienced user -, that a specific
specification prohlem can he properly solved wit.h any method, as long as the CASE tool looks

IDST DCllt.~c;he Syslelll-Tcdtllik GmhH, EtiisolistraLlc 3, 24115 Kid,
c-mail: jap@illformalik.ulIi-kid .((·lOU .(((~

2F.illJhovclI Universit.y of'l'cchllology,
e·lllail: kccshif!'iufo.win.lne.nl

3Cumputer Scienn: I)(~pl. of t.1lt' Chri"l-iall-i\lhrcchts ·University at Kid,
Pn:IJI~{~rstr. 1-9,2110.') Kid, Germany,
(;-111 ilil: cp@iuformatik.llui-kid.<I·1UO.dc

1

good. The experienced developer knows, tha.t the selection of a sllitable .sIH~ci(jc.ation method
- i. e. a formal language and an associated semantics - is crucial for every non-trivia.l software
project. Especially in the field of safety-critical systems it is mandatory for the specification
language to be sufficiently expressive to cover all the su btleties of the system to be developed
and to enable the developer to produce, correct abstractions of complex requirements without
grossly simplifying the problem. As a consequence, the comparison presented in this article
is based on TS and State- & Activitycharts semantics, with an empl""is on the language
features neccessary to model parallel systems.

The article is structured as follows: In section 2 we present an informal requirements specifI
cation from the field of fault-tolerance. The dual computer system described will serve as a
"benchmark" problem for the comparison of Transformation Schema and State- & Activity
charts. The example's signific.ance as a basis for comparison will be motiva.ted.

Section 3 describes the TS solution of the benchmark probl"m. To this elld, subsection :1.1
introduces the graphical TS language and informally sketches the semantics to be used forTS
interpretation. Though explicitely intended to support the development of complex command
and control systems, Ward&Mellor did not provide a formal semantics for their specification
language. However, their informal language descriptions give suHicicnt indications as to try
to reconstruct its intended meaning. But on closer inspection, Ward's original ideas about
S~I semantics (see [Wa8GJ) are only applicable to describe systems that "Ilow an extremely
moderate degree of parallcUsm. As a consequence, this original semantics is inappropriate to
model a solution for our fault-tolerant system. Our presenta.tion or TS semantics is therefore
based on research work described in [CAU9:lJ, [l't92J, where the mentioned flaws have [wen
overcome by defining a family of operational semantics in the style of 1'10 .kin [PIS:!] suitable
for a great variety of target systellls. Subsection 3.2 motivates the selection of it suitable
candidate from this collection to interpret the example's TS solution. Section 3 closes \vith

the presentation of the TS solution.

Also for Statemate'::; statc- and activitycharts, a. va.riety of sema.ntics have been suggested.
Section 4 is therefore structured in the sa.me way a,s section :1 a.nd IJrescnts the corresponding
St.a.te- & Acti\'itycilal't:::; solution for our benchma.rk problem.

Section 5 presents the comparison part, using the prcviollsly introduced exa.mple sp(·r.ificatiolls
to point out the main language differences. Some people regard W&M's method as already
outdated and succeeded by lIarel' s State- & Activityc.harts [l!a88J. This is only partially
so. As we argue in Section 6, on the basis of comparing the two methods, \V&M's method is
probably still the best there is when a lot of data-processing is required, in combination with
only mildly complicated control. In case of modelling really complex real-time embedded
systems, which do not involve such an amount of data-processing, Statemate is regarded
as superior [W089J. Moreover W&M's method is the most widely spre,; CASE method of
the SM family in industry, so it makes sense to try and improve it. While their different
abilities to express systelll control a,re a lIIere "technica.I" leatun~, we also !,ry to point out the
more sophisticated differences induced by the underlying semalltic models. Here superficially
similar State- & Activitycharts and TS Specifica.tions have difrerent meaning with respect
to the possibilities of nondeterministic system behaviour, parallel execut.ion of ('vents and
fairness properties. Our position is that the derision whPlher to chose a Si\l or Statecharts
description technique should Hot he a global one but always he lIIa.de h.Y analyzing which
semantics most closely fits for the problem to he solved.

The prescnt paper has been stimulated hy a project a.t DST to make strllct,lll'('d sp('cifirat.ioll

mdhods like [WlIlS5] automatically analysahle and suitahle for application in the field of
safety-critical systems.

Though the article's underlying concepts are of a formal mathematical nature, our intention
is to make this paper readable for a greater audience of CASE experts and CASE tool users,
not neccessarily working in the field of formal methods. We have therefore restricted ourselves
to natural-language presentation style. For a further exploration of the article's theoretical
foundations the reader is referred to [CAU93j.

2 Fault tolerant dual computer system - informal reqUIre
ments specification

In this section we informally describe a typical set of requirements from the field of fault
tolerance. We motivate, that this set can be used as a meaningful example for the comparison
of Transformation Schema to State- & Activitycharts.

The objective is to specify a fault-tolerant solution for a computation service P that can be
charactcri7,cd as follows:

• P inputs data provided by a. produce1" 011 channel A.

• For each input x on A, a colllPutation y = I(x) is performed by P and delivered vIa
channel B to a. consume,',

• vVe assume a ,<;Yllchroftow; cOlnnllwicalion between server and environment: The pro
ducer will oilly selld a. new joh after having received a NEXT-message from the server
computer to indicate that P ha.s finished the last computation.

Next, we descrihc the houndary conditions for the desired type of a fanlt-tolerant server
platform: The fault-tolera.llt systelll sha.1I he desiglled a.s a. dual computer system DCP ac
cording to the l1wslcl'-slave principle: DCP consists of two computers CPl and CP2. Each of
these components lIIay fail independently. As a Inuit hypothesis, we IIIay assume that each
computer acts as a loil-slop co"'pOllent, i. e. the failure event leads to the computer's total
deactivation witllOut any remaining sub-activities. In normal operation (both components
available), CPl acts as the "'(lstCI: a copy Pl of P runs 011 CP1, producing computations
after which a protocol handler of CPl requests a new job by means of a message NEXT1- CP2
operates in standby mode hy only storing jobs in its local memory without activation of a
P-capy. Each joh is kept hy CP2 at least until the NEXTl-mcssage indicates that it has been
successfully delivered to the consumer.

If CPl fails, this will a.lso he detected by CP2 whiclt then continues as the master component by
a.ctivating a. copy P2 of P and produciug lIIessages NEXT2 to request neW jobs. Though CPl 's
failure can occur while a joh is still being processed, it is requircd that this job must lIot bc
lost: CP2 shall use its still availahle copy of the illput and calculate the ccrresponding result.
It must be ta.ken into accollnt, that CP1's failure can OCCllr afler having deliv('rcd a result on
cha.lInd B a.nd before having produced the NEXT1-TIlcssage. In such a case it cannot be avoided
that CP2 also processes this joh, and the result is sent to the consumcr for a second time. To
this cnd, each input is equipped by the producer with an alternating bit, that is also attached

3

to the result transferred to t.he consumer. We a.ssullle that t.he ("I)IISIIIW'r has illlplellH'lllPd
an alternating-bit protocol to detect duplicated bits a.nd discard the corre"ponding result.s.

Before presenting the Transformation Schema and State- & Activitycliarl.s specifications. it
is appropriate to justify why we think that the above example is adequate for the comparison
of specification techniques:

• Both Transformation Schemas and State- & Activitycharts claim to be powerful means
for the specification of problems in the field of "eactive systems. OCP presents a typical
example of such a system.

• The graphical presentation style of both Transformation Schema and State- & Activi
tycharts is intended to facilitate a quick understanding of complex specifica.tions. We
feel that the DCP specificatioJl is sufficiently complica.ted, so that allY proposed solution
should be supported by graphical visualiza.tion. Ex[)(~riellces with formal specifications
have shown, that a pure textual presentation is rather hard to communicate to people
unfamiliar with the problem.

• Both specification languages claim to be helpful in the description of problems of a
complexity, that makes a natural-language specification unlikely t~ cover all aspects
\vith sufficient precision. DCP presents a protocol specification pro)Icm. where it has
to he ensured t.ha.t rerlaill saJdy- and liv('IH~ss-colldit.i{)lls Glil be gl:a.ralltecd ··in every
possible situation". In general - beeallse of its "fuzzy" s('lIIantics --, it is very hard to
examine natllral·langllage specifications for completeness of case analyses. Therefore
it is interesting to sec how mnch help our specification languages offcr with respect to
completeness checks.

• Problems from the field of fault-tolerance have been widely used to wmpare the power
of formal specification languages and vcrilication methods, since the lise of fa.ult-tolerant
systems in safety critical applications also suggests formal devcloplllcnt tcchniqucs to
produce trustworthy specification, design and code. Our example allows the compari
son of semi-forma'! .specification methods to mcthods of greater fo rill a.1 rigollr (sec for

example [PeWI]' where a CSP solution has been specified, designed a.nd verified fur
the above example). rvloreover, the development of fault-tolerant systems requires that
«'rtain design decisions must be incorpora.lt'd a.lready 011 sJH'cific;tliulI l('veL Th('s(~ dp
cision, are related to the collcept of hardware redundancy selectedllike chosing a dual
computer or triple-modular redundancy) and the design-depende"t falllt hypotheses
(like "each comp"ter behaves like a fail-stop component"). They IIlllst he shown in the
specification, to allow a complete capture of safety requirements. As a consequence,
specifications in the field of fault-tolerance do not allow a "pllre" top· down approach
from specificat.ion to design, and therefore represent a significant tOllchstone both to
the specification langua.ge and to the developer's skil1.

3 A Transformation Schema solution

In this section, a transforma.tion schema specification for the fault-tolerant dual computer
system DCP informall.\.' introduced above will he gi\'(,11 (SllhS('ftion :L:J). To make this article
sufficiently self-contained, we also present an inforlllal introduction of TS syntax and a. class

of semantics for their interpretation (subsection :Ll). "Vard's original selllantics is a member
of this da.ss; however, it is inappropriate for the DCP specification. This and the selection
of a class member with properties suitable for the DCP interpretation. will be discussed in
subsection :J.2.

3.1 Informal description of TS syntax and semantics

Transformation Schema use grapllical language elements to describe a system's flow of
data and control. Most of these elements can be seen in the diagram in Fgure 5.

Data Transformations are depicted as solid circles (e. g. RC2, P2) and represent specifi
cation parts where the processing of data is described.

Data Flows The data exchanged between the environment and the system and between
different data transformations inside the system travels on data flows, depicted as labelled
solid-line arrows (like ACP2). Data flows only carry typed information. New types can be
constructed from atomic types using constructors, such as cartesian products (denoted as
A + B) and union (denoted as [A I B). Consuming the data item travelling on a flow is a
destructive operation. Therefore t.he value -1 extends each flow's type to indicate that no data
is presently available. FIO\v!; of product or union type can divcrge to feed their components
into different transi"orma.tions. For example now R2 in ligurc 5 ~P'lts into A2J.. A2..B and
the control flow YrA2. If a value is placed ob R2, the corresponding components are placed
on A2...x and A2..R at the same time. Moreover, flows emerging from different sources can
conVErge to be fed into a single sink.E. g. BCP2 is composed of Y2 + A2..E. As soon as values
have been placed Oil both Y2 and A2..E, the corresponding composed value is defined for BCP2.

If two nows A, B converge into a. union flow C = [A I B], a C-valllc is defined, as 800n as a
value is placed on either A or B.

Stores To introduce data containers for non-dcstructive rea.d operations, the st01'e symbol
is used (solid-lille labelled "pou boxes, e. g. 52).

Control Transformations are depicted as dashed-line circles and represent specification
parts where the system's dynamic behaviour is controlled (e. g. CCP2).

Control Flows carry the control information exchanged between the environment and the
system and between different transformations inside the system. They are represented by
dashed-line arrows (e. g. NEXTl). In contrast to data flows, each control flow only has a
finite range of allowed values (including 1.). Each control flow must start or end in a control
transforma.tion. If it is generated by da.ta tra.nsforma.tions, it is callc(a data condition.
There arc specific control flows ha.ving data. transformations as sink, The) arc tlsed to trigger
(c. g. TRIGGER P2), to wab/e (c. g. ENABLE Pl iu figure ;1) or to ,Ii.wlble (c. g. DISABLE Pl

in figure 3) the da.ta transformation. A trigger leads to it single execution of the associated
data. transfol'lpatioll; after having produced its output it will wait for the next trigger event.
Triggef(~d data trallsformations do Hot input from nows, they only lise stores. Disabling a

5

data transformation will prevent it from producing any outputs unt.iI on:urrenc,e of t.he next
enable event.

Process Specifications are textual descriptions associated with each data transformation
to define the relation between input data and output data.

State~Transition Diagrams describe the transformation of control iteITIs arriving on in
put control flows into output control flows by means of Mealy-style automacons (e. g. figure 6).
Incoming events passed via input control flows can be processed, if the all tomaton 's actual
state defines a corresponding transition. In this case the transition will be performed. At the
same time, new actions arc generated by placing va.lues on output control flows. For example
in figure 6, ocurrcnce of event llrA2 in state ACTIVE-NO.J)ATA will lead to the automaton's
transition into state ACTIVE-DATA and produce the action TRIGGER P2.

Scope Rules Each process specification or state-transition diagra.m ca.n reference only flows
and/or stores connected as input to the corresponding transformat.ion and write only outo
flows and/or stores connected as outputs.

Top-Down Presentation of TS To reduce the complexity of Ia.rt;e SIH'cifiGl.tioIlS, a TS
can be presented in tOJ1-down fashion. For the DCP specificatioll, sHeh a top-(Iown present.ation
is given in figures 1 to 6. The top-level diagram (figure I) shows the complete system as a
black box (bubble DCP), together with its interface to the environment (flows between DCP

and the terminators PRODUCER, CONSUMER, FAILURES). The top-level bubble is refined by
a new TS, in our example given by figure 2. Each bubble on the new TS can either be
associated with a process specifica.tion or again be decomposed into ano:;her dia.gram , until
the associated transformations are sufficiently small and cohesive to be represented by a single
process speCification. However, the behaviour of it TS is completely defined by the flattened
TS associated with each top-down presentation, where a.ll the transforma.tion::;, stores and

flows are "glued" into a single diagram by connecting the correspondillg Hows.

TS Semantics of Dynamic Behaviour The behaviour of a TS is most appropriately
interpreted in the framework of transition systems as defined in [MJ>92j. The stule8[Juce of a
TS is defined by the cartesian product generated by the suh-statespaces of flows and stores,
by the states of data transformations (state values ENABLED/DISABLED) and the states of the
automatons associated with control transforma.tions. The initial condition of a TS requires
that all flows assume the "clear" state J.. and all state-transit.ion diaf.,!;raills assume their initial

state (specified by the tra.nsition arrow without sOl)rce state). The tnl1tsilio1lS of a. TS arc
defined by the data. a.nd control t.rallsformations. :\ TS o:(,(:lllioTl is <L seqll('IlCe

where each Sj is a state and each Tj is a transilion cnahlpd ill stale .':>j, ~lIch that (Sj,.'>i+l)

is a possible pair of pre-state ami after-state of Ti· ~"o lIlust he consistent with the initial
condition.

Ii

In the context of transformation schemas, each Si -..,. Ti - Si+l is called c: micro step. Infor
mally speaking, micro steps represent the system's internal processing ste~s, that are not. ob
servable by the environment. They are atomic and happen in "zero-time" (see [BB92]). Macro
steps define sequences of micro steps that always terminate with a step '''n-l -..,. Tn_l - Sn al
lowing in its after-state,';" the placement of new input data on the system '5 interface. Macro
steps are interpreted as the observa.ble interactions between system and environment.

Given the TS syntax as introduced above, micro step rules define the set of possible transitions
To with their pre-state/after-state relations. Macro step ndes restrict the space of possible
TS executions by imposing additional 4'glohal" conditions for a micro step to he executed.
These conditions depend on the complete sequence of micro steps already executed during the
macro step. Each set of micro step rules plus macro step rules defines a new type of transition
system, each operating on the TS statespace. Therefore these sets of micro step/macro step
rules define a family of semantics for Transformation Schemas. This approach has been
followed in [CAU9:l].

The family of semantics introduced in [CAU93] has the following membe 's:

Causal-Chain Selnantics This semantics most closely reflects \Val'd'~ original ideas de
scribed in [W"il6].

Each micro step is defined hy execution of either a complete data transformation or
a complete eontrol tra.nsforma.tion. A transition defined by a data tra.nsforma.tion is
enabled a.ccording to the micro step rnles, if its input flow or trigger has a value :fl.,
and if the 0\1\1'\1\ 1I0w (if cxbting) has val\lc L The latter condition means that the
output flow's conSllIller must have consumed any data item previously transmitted via
this flow. As a res\llt of the data transformation the input flow has value .1 and the
output flow and/or output stores have values defined by the corresponding process
specifica.tion's input/output rela.tion. If the data transformation ha.s been previously
disabled by a control flow, the transition results only in resetting the input flow to 1..
A transition defined by a coutro} transformation is enabled, if a value :f1. is placed on a
control flow, Moreover, the control transformation must be either in a disabled state or
the a!:>sociated state-transition diagram must be ill a state where this event stimulates
a transition. As a result the state transition is performed, and the associated output
events are placed 011 the output control flows. If the control tra.nsformation is disabled,
the input is discarded.

A macro step is always initiated by an input on the system's interface. It will then
be processed in causal chaills: In such a sequence of micro steps, the output of one
transformation causes the activation of the corresponding consumer transformation. If
more than olle input is pla.ced at the macro step's heginning or a transition enables
more than olle SIICc.essor, the next transition is chosen nondeterministic:ally. If the
causal ehain cannot he prolonged, because the last transformation has produced an
output to the cnviromnent or the eonsulIler transformation needs additional data to
operate, a new chain is activated starting with any of the transitions enabled according
to the micro step rules. The macro step terminates, if no more enabled tra.nsitions
are left. If any flow values have not been processed at the macro step's end, they are
reset to 1.. New inputs at the system's interface may only be placed at a macro step's
be~inlling.

7

Weakly-Fair Interleaving Semantics This semantics has the same micro step rules as the
causal-chain semantics. The macro step rule has the same initiation a.nd termina.tion
rules. but it drops the causal chain condition by allowing anyenahled transition to be
taken for each micro step. The semantics' name is motivated by the fact that nOIl

diverging specifications automatically possess a weak fairness property. This will he
discussed in section 5.

Full Interleaving Semantics This semantics has the same micro step rules as the two
above, but it drops the input rule by allowing new inputs from the environment to
be placed and processed at each micro step. Therefore macro steps are identical to
micro steps and there is no situation, where data resp. control signals placed on flows
is discarded.

CSP Semantics This semantics has been introduced in [Pe193J, by giving translation rules
of Transformation Schemas into CSP ([11085)). It introduces "shorter" micro steps by
separating each transformation's input and output phase into two transitions, where
other micro steps may interleave. The macro step rules arc the same as in the full
interleaving semantics.

3.2 Selection of an appropriate TS semantics

In this subsection we motivate, which of the TS semantics available is tlF~ most appropriate
to interpret a TS specification of the OCP-problem. Informally speaking, we are looking for
a semantics that allows to model all critical aspects of the system, but is 1I0t unneccessarily
complex by allo\o,:illg executions of the specification that an~ irreleva.llt Of (~ven impossible ill
the target system.

One of the cn;cial difficulties when developing fault· tolerant systems lies in the fact that
it is not possible to influence the point in time when a f;tilllre happens. In terms of our
example. this means that occurrence of CPt's failllre event CRASHt must a.lso he considered
for situations when a job is just being processcd by P1.

We first motivate, why the causal-ch~in semantics introduced above is inadequate. Using
transformation schemas, CRASHl will be modelled as an external event (cf. figure 7), since
it happens spontaneously and independently on OCP's internal state. Thcrdore invcstigating
the consequences of a CRASH1 occurrence means a.ppJying the execution ruJc:-i of TS sema.ntics
from a pre-state, where a token is placed on the control flow CRASH1 on OcP's interface. But

even if an input token is placed at the same time on data flow A, the cau<;a.l-chain semantics
offers no possibility to investigate the impact of CP1's failure while a job is ueing processed:
The semantics' execution rules specify, that in the situation described eith •. " the impact of the
A-input or that of the CRASH1 event is completely processed in its corresponding causal chain
before the other token is taken into account. This means, that only the situation "failure
occurs after the last job has been completely carri~d alit and before the next A·input arrives"
can be analyzed in the causal-chain semantics.

The full-interleaving semantics is not selected. heca.use it. requires tha.t the developer cx
plicitcly expresses all fairness properties necded in the specification. \Ve will sce in the TS
solution presented below, that a certain fairness property is a. "natural" fequirement for thc
OCP specification. Therefore it would he an a<h·antagc to have this propcrty automatically
conta.ined in the specification. without making it explicitcly visible.

8

Though the CSP~hased sl'mantics introduced in [Pt'I!Xl] w01lld he' il.ll appropriate ca.ndidate 1.0

model the DCP syst.em, it introduces an lInlH~ccessary degrf'e of cOlllplexit.~· for t.his applica.tion.
First, fairness properties have to he cxplicitcly express('ci, just as in t.he ftlll~intcrleaving

semantics. Second, the higher degree of interleaving ofrered is not required for the DCP
problem. For a data transformation P the CSP semantics allows to model situations like
"CRASfl1 appear8 after f' has iT/put x and before it could produce output y." It will become
apparent that for our example this situation can be "approximated" by the event sequence
"CRASfl1 occurs before f' inputs x".

This leaves us with the weakly· fair interleaving semantics as a well suited candidate for a
TS specification of the DCP. The solution for DCP and the weakly-fair interleaving semantics'
appropriateness will be discussed in the next subsection.

3.3 Dual Computer System - TS solution

The TS solution for DCP is presented in figures 1 to 6. Note that our specification of CPl
and CP2 is asymmetric, as shown in figures ;~ and 5, because we only wish to specify DCP's
behaviour in the situation where CPl fails, while it acts as master. A symmet.ric specification
could also cover the cases where repaired components are re~integratcd into the system.
However, this would make our exa.mple unnecessarily complicated without adding new insight
for the compa.rison between TS a.nd Statech"rts.

Description of interfaces The interface of DCP in the TS model is shown in figure 1. New
jobs for the service l' implemented in DCP arc input on data flow A, the results are delivered
on data flow B. Control flow NEXTl is defined as NEXTl = [!lOKIi I "WATCHDOG ALARMII]. The
producer is notified via signal NEXTl = "OK" (or NEXT2, if CP2 acts as master) that DCP is
ready to (lccept a new job. (The fIleaning of "WATCHDOG ALARM" will be explained further
below.) The occurrence of CP1's faililre (we do 1I0t consider the crash of CP2) is modelled by
means of the control flow CRASH1.

The diagram in figure 2 shows the interfaces between CPl and CP2 and the outside world:
Each input on A is broad casted on ACPl and ACP2 to CPl and CP2, respectively. The new
names ACP1, ACP2 have only been introduced to distinguish CP1's and CP2's input flows.
Formally, A is defined as A = ACPl + ACP2, and both ACPl and ACP2 carry the same value.

Output B has structure B = [BCPl I BCP2] and passes values from either BCPl or BCP2 to the
environment. NEXTl = "OKI! is both sent to the environment and also to CP2 to indicate that
the last job has been successfully terminated. CRASHl is consumed by CP1; after its occurrence
CPl stops processing A-inputs. As a reaction to CRASH1, the signal NEXTl = "WATCHDOG
ALARM" is transmitted. This can be interpreted as a watchdog mechanism that controls CP1,
detects oeCllfre-nee of the failure CRASH! and passes the alarm messa.ge on flow NEXT14. ,\s a
reaction to this signal, CP2 will take over as the master component. (The environment will
simply discard this signal.) After occurrence of CRASHl and NEXTl = "WATCHDOG ALARM", CP2

iTo motivate that it is rca.sonablc to speciry an alarm signal that still can he gcnerated after CPt has
cra.'ihed, think of an indcpclld(:nt hardware device like a watchdog ohserving CPt's local bus. If CPt fails.
this will not afrect the watchdog, so it <:all detect that 110 messa.l!;es pass CPt's bus a:lymore aud signal the
alarm mcssage to CP2. On our specificatioll's level of abstraction, it makes sense lIot to show the watchdog
explicitcly, hut simply demand il dcsi~1I t.h;lt is ahle to si)!,ual CPt's f,titurc t.o CP2.

Nf..XTl

--
,-- ---

A
PRODUCER DCP CONSt..'}lf..R

---NEXT2

: CRASHI

Figure 1: Dual Computer System DCr - 1'S specilication of the interface.

will start to produce outputs on BCP2 and requcst ncw jobs via NEXT2. Thc alarm mcssage
"WATCHDOG ALARM II is transmitted for reasons of proper sequcncing on the same flow as the
request "OK" for ncw inputs. This will he further motivated in section S.

Behaviour of CP 1 Figure 3 shows the internal structure of CPl. Its behaviour is controlled
by control transformation CCPl ("Control CP1", figure 4). At system startup, CPl assumes
state UP, and data transformation Pl is enabled. Additionally a NEXTl ; "OK" message is
sent to the environment to indicate that DCP is ready for dat.a processing.

An input on ACPl is split into the components ALX carrying the data to be processed and
ALB carrying the bit that alternates with each job. Data. transformation Pl conslImes ALX
and computes the result Yl :; f(ALX). This result is combined with signal wrBl ("written
Bl") on output flow Yll.

The Yl-component is combined with the alternating bit ALB, so that BCPl ; Yl + ALB
carries both the result calculated by Pl and the unchanged bit received with the calculation's
corresponding input. The signal wrBl is passed to CCPl to indicate that the job has been
delivered. By definition of our semantics, the data transfer on BCPl and the placing of the
wrBl signal happen in the same micro step that includes the output. production of Pl on Yll.
On reception of the wrBl signal, CCPl outputs the NEXTl ;; ··OK" message. The state UP is
kept until occurrence of event CRASHl. Then CCPl performs the transition illto the final state
DOWN, at the same time producing signal NEXTl ;; ··WATCHDOG ALARW· a.nd disabling P1. so
that CPl is completely deactivated.

The weakly-fair interleaving semalltics adeqIJatPly mod pis t.he situat.ion when a IH'W input
A and the failure CRASHl occur "at the same tillIe", i. c. ill the same m;HTO step. as it is
observable by the outside world. If at the beginning of a macro stC'p tokens are placed hoth
on A and CRASH1. the impact of the failure eVC'lIt can intC'rleavc in three 1'\;ICl'S:

10

A

A • ACPl + ACP2

B", [BCP2!BCP7.)

CRASHl

ACPl

ACP;?

NEXTl '" r ·OK· ! ·WATCHDOG ALARM"]

, , BCPl

~
: NEXTl , , 8

! NEXTl -------->

: NEXTl ,

BCP2

Figure 2: Dual Computer System ncr - TS specification of the interfaces of computers CPl
and CP2.

Ae?l

ENABLE

PI

CHASHI

AI B

PI

- --- - --. - -- ---- ---

'. , ,
~\

."

Y1 BCPl

:wrBl

",

CCPl
~ NEXTl r---------- ______ >

Figure 3: Dual Computcr Systcm DCI' - TS specification of computer CP1.

II

j IENABLE PI; N.XTl-"OK"

wrBl/NEXTl="OK"

CRASHl!
D I SABLE PI;

NEXT1="WATCllDOG ALARM"

Figure 4: Dual Computer System DCI> - Control transformation CCI'I of computer CPl.

1. before Pl consumes the ALX-input

2. after Pl has placed the output, but before the NEXTl is produced

3. after NEXTl has been produced

The "most complicated" second case, making the introduction of a.n alternating bit protocol
necessary, corresponds to a 1'5 execution, where event CRASH1 is already .>iaccd OIl CCPl but
has not yet been conslimed, the result has been delivered Oil Bep1, so that wrBl is ;)lso placed
on CCP1, and the next micro step starts by processing the CRASH1 token.

The fairness property that every token that can he permanently processed during one macro
step will be processed cluring this step, ensures that CPt will always react to the pl;l"ccmcnt

of the CRASHl token during the actual macro step. If this condition would be dropped, CPi
could "ignore" the occurrcnce of the failure a.nd {:ontinue processing Hew jobs. This would
certainly not be an appropriate model for a failure event, that typically has just the unpleasent
property that its impact cannot bp postponed.

Note that we also have to make use of the condition that unused tokens arc discarded at the
end of each macro step: In state DOWN, a new input on ACPl is split into ALX and ALB. The
ALX-token is thrown away, because Pi is disabled, but the ALB-token remains unconsumed
until the macro step's end. Now our semantics for diverging flows (in our case ACP1, ALX
and ALB) demands that all outgoing branches must be cleared, before a new token can be
placed on the flow. Therefore ACPl would be blocked and as a conseqtH'llce also prevent
new messages from being placed on the input flow A, if the unuscd ALB-token would not be
discarded at the macro step's end.

Behaviour of CP2 Figure.1 shows tlH~ illternal structure of CP2. lu; hehaviour is con
trolled by control transformation CCP2, shown in figure (). At systC'1ll start.up, CP2 ClsSUlllPS

state PASSIVE-NO-DATA. A receive proeess RC2- rOIlSIIIll(,S new jobs arrivillg on ACP2. Using
output flow R2 = A2--X + A2...B, it then places the joh's data component A2--X in store S2 and

12

the alternating bit on flow A2J3, at the same time signalling the job's arrival to CCP2 via
wrA2, CCP2 then assumes state PASSIVE-DATA, Occurrence of the signal NEXT1="OK" in(li
cates that the job has been successfully completed by CP1. Therefore C(;P2 again assumes
state PASSIVE-NO-DATA. The remaining token on A2J3 is discarded at th" end of the macro
step.

ACP2 R2 A2

, ,

" " ,

m:XTl --------------------,

X

, wrA2

" , ,

,

-"', ,

, ,

" , ,

A2 B

S2

CCP2 , ,
/-

BCP2

Y2

Y21

A2 X

"

"

-' TRIGGER P2

wrB2 ,--------.-----------------------

.. NEXT2 ----------_.----------.

Figure 5: Dua.! COIIlj>lIter Sy~tcm DC}> - TS specification of cOlllput.er CP2.

If the failure of CPt is indicated via. NEXT1::: II WATCHDOG ALARM", two cases must be considered:

l. CP2 i8 in stllie PASSIVE-NO-DATA: In this state it is ensured that no job was being pro

cessed when CRASH1 occurred. Therefore CP2 will simply assume slate ACTIVE-NO-DATA.

At the next arrival of a job on ACP2, the corresponding signal wrA2 will cause CCP2 to

trigger P2 and perform the transition into state ACTIVE-DATA. PlaceInent ofwrA2 is per
formed in the same micro step where the new input data is placed in store S2. Therefore
P2 always fillds the actual input data in 52, when the trigger lead:j to P2's activation

in the subseqnent micro step. P2 reads input data A2....x from the .;tore and produces
the output Y2l = Y2 + wrB2, where Y2 = f(A2J:) carries the calculated result that is

combined with the bit A2J3 on BCP2 = Y2 + A2J3. and wrB2 indicates that the output
BCP2 has heeu delivered, so tha.t CCP2 [an produce tile required NEXT2 signal and return
iuto state ACTIVE-NO-DATA.

2. CP2 is in sialc PASSIVE-DATA: In this situation, CP2 has to reproduce the job stored in
52, because it is ullcertain, if CPt could deliver the result before the failure happened.
CCP2 therefore directly triggers P2 and performs the transition into state ACTIVE-DATA.
Afterwards it exactly opcrates as dcscribpd in the first casco

PASSIVE-
NO-DATA

NEXTl-"WATCHDOG AlARM"

wr A2 NEXTl-"OK" wrA2/
TRIGGER

PASSIVE-
DATA

NEXTl-"WATCHDOG ALARM"/

TRIGGER P2

ACTIVE-
NO-DATA

P2

ACTIVE-
DATA

wr
NE

82/
XT2

Figure 6: Dual Computer System DCI' - Control transformation CCP2 of computer CP2.

4 A State- & Activitycharts solution

In this section. we present a. StaLc- & Activitych"rts sppcificat.ioll of DCP. As ill the previolls
section, a short introduction ill to the Stale- & Activityt'ilarts specifictioll la.nguage is given

in subsection '1.1. For a morc detailed description, the reader is referred 1.0 [Ha.nO], [iL89].

4.1 Informal description of State- & Activitycharts syntax and semantics

In general, a Statc- & Activitycharts specification consists of two p<Lrts. The first part,
called activitycha1"l, describes the conceptual structure of the system, showillg the flow of
information and control between the components. The second part, consisting of one or lIlorc

statecharts, specifics the actual behaviour of these components, i.e., how the information flow
is processed.

Activitycharts In figure 7, we see the activitychart of the Dual Computer. It consists of
one root activity DCP, which is connected by the environment activities PRODUCER, CONSUMER,

and FAILURES. DCP consists of two suhadivitics, CP1 and CP2. In W'lwral, this nestill~ of

activities can he applied to any (Iepth. The heha.viour of <l.n activity cal] IH! specified \villi
a statechart, as shown for CPt a.nd CP2 which a.re cont.r<)lIed h,Y two s1,alecharts CCPl and
CCP2 in figures ~ and 9. Activities that aTe 1I0t fUI't.iH·r rdined by sub-activities alld/or

statecharts represent processes that perform transformatioll of da.ta without tontrollillg ;lIlY
other components. In our example, P1 and P2 arc such transformation prOCl'sses (we left the
actual transforma.tion unspccified, bccause its {h'finitioll is not J'(·lcv;tnt ill ollr ('ontl'xt). All
activities Illay be scif-tCl'lIIillatill~ or be tcrminatt'd hy a sl.4l.1{'cha.rt (spp hplow) via. sppcial
siol'-cvcnls. Furthermore, thc exccution of an activity may he tpmporarily slIslH'nded and
lalpr be resumpd by sen{ling it specific ('vcnts,

1·\

NEXTI ,--------------

r _________ ,

,

, , ,
i'ROOUCER ~

, ,
' _____ ~_---...J

DCP

CPl CP2
NEXTl --------------------<

~CCPl @CCP2

Yl Xl Y2 X2

NEXT2
r---------------------

:CHAsm ,
~---- ... ----, ,

FA.ILUHES

, _________ ..1

Figure 7: Dual Computer System DCI' - Activitychart.

15

B

.. ---------, ,

CONSUMER
, , , ,

,---- ______ 1

CCPl

UP
/NEXTI

NO DATA wr(A)/X1,~A X; Bl,~A B; st! (Pl) DATA

INEXTl READY wr (Yl) I

B_X:=Yl; B B,~Bl -

~ CRASH 1

DOWN

Figure 8: Dllal Computer System DCI' - Staterhart CCI'I of COlllp"ter CPI.

16

CRASH! and wr(A)/X2--A X- 82--8 X- st' (P2) -. - -

CCP2

(
PASSIVE not CRASH! and wr (A) /

X2:=A X; B2: =/\ B

V ~
NO DATA

./
DATA 1 -

~
o---J not CRASH!

and NEXT!
CRASH! and
not wr (A)

CRASH! and NEXT! CRASH1 and not

NEXT!

NO DATA wr(A)/X2:=A X; B2:=A 8; st! (P2) DATA -

- If

/\~X'T2 READY wr(Y2)/

ACTIVE B~X:-Y2; 8 8:-82 -

Figure 9: Dual Computer System DCI' - Statechart CCP2 of computer CP2.

17

Statecharts The Statechart formalism is derivf'd from the finite state diagram. States are
denoted like rounded cornered boxes and connected by arrows called transitions.

'rhe label of a transition has two parts, separated by the symbol /: all cnablin9 part., or
trigger, and an action part.

The trigger part specifies under which conditions the transition cOl.n be t.aken. To this end,
the trigger is defined by means of an event expression plus a boolean expression ranging over
variables and states. Events are the basic means to mediate control, they can be interpreted
as atomic signals that are only visible "for one moment of time" (this will be explained
in more detail below). In our DCP example, the events are are CRASH 1 , NEXTi, NEXT2, to
be interpreted as signals exchanged between the environment and the system, and vr(A) ,
vr (Yi) , ... ("written A "), to be interpreted as signals internally generated by DCP, as soon
as new data is written on A, Yi, Event expressions are defined by boolean expressions
ranging over events. In figure 9 for example, the event expression CRASHi and not "r(A) is
interpreted as "the corresponding transition may be taken, if event CRASHi is signalled, and
at the same time no data is written on A". If an additional expression over variables and
states is associated with the trigger, the corresponding transition is enabled. as soon as both
expressions evaluate to TRUE. For example, a transition with the trigger

a and not b[x=5 or not in(DATA)]

can be taken the moment that the event a occurs and b docs not and at the same time the
value of variable x equals 5 or the system is not in the state DATA. When a transition has an
empty trigger, such as in the transition from READY to NO.1lATA, it can be taken immediately
and unconditionally.

\Vhen a transition is taken, its action part specifies a list of a.tomic a.ctions generated by the
transition. These actions may consist of a generation of Hew evcnts that can be ~ensed by
other tansitions' triggers and the environment. Furthermore, they can define assignments
to varibles, and specific actions can be defined to control (i. c. start, stop, suspend etc.)
activities. In figure 8 for example, the action st! (P2) is interpreted as an acti\'ation of
activity P1, as soon as the corresponding transition is taken.

States Unlike ordinary Finite State Diagrams, states arc boxes and may contain subcharts,
i.e., specifications of state machines that are to be executed when the system is in the sur·
rounding state. When the surrounding state is entered, the subchart is started in the initial
state, designated by a bullet-tailed arrow and when it is exited, the execution inside is aborted.
For CCPi, this means that UP is started at the beginning and consequently NO.1lATA is en·
teredo Depending on the occurrence of the events vr(A) and "r(Y1), the system will cycle
through the three substates of UP, until the event CRASH1 orcllrs. This will 1Il0ve the systr'lII
immediately to the stale DOWN, irrespective of \vhich sta.te in the cyde it occllpi('s. Notice,
however, that transit.ions a.re cOllsidered a1.ollli(:, so all action is always completed a.nd I. I. l'
occupied state js always defined.

Variables Data t.hat should persist over time ca.n be storNi into so-railed data-item . .:;, which
arc hasically program variables (e. g. Xl, 81 in ti).!;ure H). Thp.\, fan he intq.;('rs. reals. hoole<lns
(called conditions), or strin~s, and compositions of tll('se. slirh as records and lists. Data.
items can be changed by the action parts of t ransitiollS l1sin).!; ordinary assignments. The

IS

lifetime of a data-item is limited by the existence of the activity to which it belongs. ff they
should live independent of activities, they should be explicitly introduced in a so-called data
store. I

State- & Activitycharts Semantics of Dynamic Behaviour The dynamic behaviour
of a State· & Activitycharts specification is completely controlled by its statecharts. A variety
of semantics has been defined over the last five years (see [HG89J, [JIG92], [KP92J, [iL89]).
We give a short summary of these definitions.

As introduced for Transformation Schemas, we can also define micro steps and macro steps
for the Statecharts semantics introduced in [iL89] and by H uizing and Gerth [IlG89J. A micro
step is executed in three phases:

1. All input events are evaluated in order to decide which components are enabled to
perform a transition.

2. All enabbd parallel components perform their transitions in parallel; there is no in·
terleaving. If two transitions write in parallel on the same data item, this conflict is
resolved nondeterministically ([iL89, p. 2·r;O]), i. e. it is unpredictable whose write op·
eration will be effective at the micro step's end. However, the developer is encouraged
to write only specifica.tions where such racing conditions cannot occur.

:1. The actions triggered by the transitions performed are collected and made available for
the next micro step. This means, that a component cannot sense events generated by
any other component during the same micro step.

(iLR9] descrihes the semant.ics actua.lIy implemented in the Statemate tool's simulation com
ponent:

"Go Repeat" Sinlulation In this regime, events live only for the duration of the micro
step directly following their generation. A macro step (called "slIpcr step" in [iL89])
consists of a maximal sequence of micro steps: The output of the first micro step is
evaluatec. as the input set of the second micro step and so on, until the last micro step's
output does not enahle any additional transition. New inputs at the system's interface
can only be gi\'en at the beginning of a macro step and they are only visible in the first
micro step. Data inputs live for the duration of a complete macro step, and reading
them is non-destructive.

"go step" Simulation The lifespan of events is defined as in the Go REPEAT semantics.
Ilut in this regime, a macro step coincides with a micro step. Therefore new data
and events can always be input on the system's interface as soon as a micro step has
terminated.

In [IIG89] five Statecharts sernanties (A-scnuintics, ... , E-semantics) are introduced. The
A-semantics corresponds to the co STEP semantic.s. The other four semantics differ from the
GO STEP /GO REPEAT models in the way they handle the observability of events during each
macro step. Specifically, each of the [IIG8DJ-sclI1a.ntics assigns a lifetime of a. complete macro
step to input events placed on the system's interface.

19

The semantics introduced by Kesten and Pnueli in [KP92] stron!(ly differs from those sketched
above: Here the notion of micro- and macro steps is dropped, instead the possible transitions
are classified as untimed and timed transitions. Untimed transitions consume and manipulate
data and events. In contrast to the semantics above, their execution does not affect the
lifetime of events. Furthermore, parallel untimcd transitions arc executed in an interleaved
mode. Timed transitions synchronously advance the clock and terminate the lifetime of
existing events. Consecutive nntimed transitions are interpreted to happen "in the same
time interval" defined by the surrounding timed transitions.

4.2 Selection of an appropriate Statecharts semantics

In analogy to our observations in section refselectTS leadin!(to a selection of the weakly· fair
interleaving semantics to interpret the 1'5 specification, we will now chose an appropriate
Statecharts semantics for the DCP problem.

The Go REPEAT semantics and the [IIG89]·semantics n to E arc all inadequate due to the
same reason: A failure event placed on the system's interface will always enforce the transition
of CCP2 from state PASSIVE-DATA into state ACTIVE-DATA. The interleaving of the processing
of an input A and the occurrence of the failure CRASHl - i. e. a transition from PASSIVE-DATA
into ACTIVE - could not be simulated.

In contrast to this, the GO STEP semantics allows placement of a failure event at each critical
processing step. This is a consequence of the step definitions allowing new inputs after each
micro step. Specifically, CRASHl can be placed nfter CCP2 has reached PASSIVE-DATA and
before it returns into initial state PASSIVE-NO.DATA.

The [KP92]·semantics would also be an interesting candidate for the DCP problem, hecause it
allows to model and investigate more complicated situations involving explicit time intervals
given for the duration of computations and for the lifcspan of evcnts. How(~v(~r, this scmantics
is at present unavailable in the Statcmate tool. Furthermore, we explicitely chos(~ an IIlltillled
approach to model the DCP problem. Therefore we will interpret ollr State· .v Activitycharts
solution by means of the GO STEP semantics.

4.3 Dual Computer System - State- & Activitycharts solFtion

Master CCPl When the Dual Computer System is started, its root activity DCP is au·
tomatically started. Since it does not contain a control part, its suhactivities CPl and CP2
are started also. This means that the statecharts CCPl and CCP2 are started in their initial
states. The activities P1 and P2 remain inactivc. CCP1 starts in t.he slate UP and substate
NO..DATA. Whcn a value is written Oil the incoming varia.ble (data-item) A, this gClleratcs .L11

event vr(A) ("written A") and CCPl goes to the state DATA, performing two a.ssignillents aHd

sending a start signal (st! (P») to Pl. The va.ria.ble A is ill fact a. r('cord consisting of a data.
component A....l and an alternating bit A....B. These two components arc stored in loca.l varia.hles
Xl, Bl as a result of the transition from NO.DATA to DATA.

As a third result of t.his transition, Pi is st.arted. Its hehaviour is lIot specirif'd formfllly here,
it may be implemented in somc other programming language or Iwrhaps ill hardware. It will
read the input vaille writtcn on Xl and use this to compute a t:ertain fUlIction f(Xl), return
the result in Vi and t.erminate.

20

As soon as CCPi sees that Pi writes its result, it will move from DATA to READY and write the
result on the output B. From READY it will move to NO...DATA and generate a synchronisation
event NEXTl to the environment activity PRODUCER. This notices the producer process that

it can provide a new value on A, which will start the cycle all over again. Notice that in
contrast to the TS specification above the NEXTi event is single-valued. This difference will
be explained in section 5.

This will continue until the event CRASH1 occurs. This immediately stops the execution of
CCPi and CCP2 should take over as smoothly as possible.

Slave CCP2 As long as no CRASHi occurs, CCP2 will stay in the state PASSIVE, following a
simple version of the cycle of CCPi, in which the input value on A is stored but not processed.
Notice that the transitions from NO...DATA to DATA in CCPl and CCP2 are taken simpltaneously.

When suddenly the event CRASHl occurs, CCP2 goes from PASSIVE to ACTIVE, ideally to the
same state as CCPl occupied when it crashed. Note that the transitions from DATA to READY

arc driven by events internal to CCP1. lIence, when event "rCA) has occurred but NEXTi has
not, CCP2 has no mea.ns to know, and should not have indeed, whether CCPl was in DATA or
in READY at the Illoment of the (:r,,,h. So the protocol decides to stay on the safe side and

go to DATA, possibly duplicating the output on B. This is the reason that an alternating bit
is added to the dat.a. In this case, the CONSUMER activity will see two consecutive values with

the same bit and discard the secoll<i.

There is a subtlety here in the case that the events CRASHl and wreA) occur at exactly the
same moment.]n order for CCP2 not to miss one of these events, the '''cross'' transition from
NO...DATA in PASSIVE to DATA in ACTIVE is added.

In analogy the ca.be where CRASH1 a.nd NEXT1 become visible to CCP2 at the same time must be
handled: If CCPi performs the transition frolll READY to NO...DATA generatil!g event NEXTl, this
becomes visible to CCP2 in the next micro step. In the GO STEP semantit::s described above,

also CRASHl may be placed for this next step, so while CCPi goes to state DOWN, CCP2 has to
cope both with CRASHi and NEXT!. If CCP2 ignores CRASHi, it will never reach state ACTIVE.
If it ignores NEXTl' it will reproduce the last A-input (which does not do any harm), while
the PRODUCER might send a neW job as a reaction to NEXT1. As a consequence, a wreA)-event
could occur while CCP2 was ill state ACTIVE with substate DATA or READY and therefore be

lost (which definitely does a lot of harm). Therefore the transition from substate DATA in

PASSIVE to subst"te NO...DATA in ACTIVE is introduced.

When CCP2 has ent.ered ACTIVE~ it will stay there, performing the same cycles as CCPl did

hefore. In the full protocol, CCPi will have the possibility to be repaired and turning to UP
again, now adopting the passive role and waiting for CCP2 to receive a CRASH2 event. This
would make the two diagrams completely symmetric hut also more complicated, so we left it

out to concentrate Oil one represent.ative half of the protocol.

5 Comparison between Transformation Schemas and State- &
Activitycharts

III this section we cOlllpa.re Transformation Schcmas and Statc- & Activitycharts and illustrate
the major diffci'cnces hy means of the dual computer system example DCP introduced above.

21

As a basis for this comparison. we concentra.te on the wea.kly-fair interlp;,ving semant.ics for
Transformation Schema and on the GO STEP/GO REPEAT semant.ics for 5t.ate<"l\"rts.

5.1 Presentation of specifications

Though the ev;Juation of State- & Activitycharts' and Transformation Schema's graphical
presentation style is not the main objective of this article, it may be appropriate to point
out, which differences are the most im'portant ones from our point of view when llsing the
specification methods in "real-world projects".

State- & Activitycharts offers two concepts to present the modularity of a specification:
Activity charts can be modularized by drawing new boxes into the top-level activity (as
shown in figure 7); in analogy the modularization of statecharts can be shown by drawing
higher-level boxes around subordinate states on the same sheet. The second concept allows
top-down presentation of activities and statecharts, where the structure of a subactivity or a
sub statechart is shown on a separate diagram, while they appear as bla('k boxes on higher
level sheets (as shown for the statecharts CCP1 and CCP2).

For Transformation Schemas top-down presentation by means of sepa--ate diagrams asso
ciated with higher-level black boxes is the only way of showiug the structUl e of a specification.

5.2 Scope and persistency of data objects

In State- & Activitycharts, the data item entering an activity on a flow is in the scope
of every subordinate activity or statechart, and it can be read arbitrary llIany times without
changing its contents. In principle, data itel11s can be processed both by activities and state
charts. Additional data items can be defined inside an activity or a statechart (like Xl, 81,
Y1 in statecrart CCP1). These items also have the defining chart and all suuordinate charts
as scope; hut in contrast to incoming data flows, they live as long a.s the definin~ activity.
The third category of data items are stores which preserve their font.Pllts indeJl(\I\(lently of
any activity's lifespan.

A consequence of the non-destructive read concept defined for Sta.techart~; data items is that
activities processing data must always be controlled by statechart.s. beG) use the data items
themselves do not provide a trigger that indicates to the activity when t() start executing.

Using Transformation Schemas, only two types of data items are a·Ia.iI"ule: flows and
stores. In contrast to State- & Activitycharts. every potential COIISUf.wr of a data flow
must be made explicit by feeding a branch of the corresponding input flow into the data
transformation. Ullllsed tokens on flows call be used until the cnd of the macro step; uut the
usage is destructive. Therefore the only type of jl('rsistent dir.ta container for TS is the store,
and the data contents of stores rema.ins well dC'fiJlcd over the S<'<]"(,IICC of lIIacro st.eps.

The destructive read operation on flows allows to define TS that are exeellt.ed in the dala

triggered mode: In absence of control transformations the dynamic behaviour of the TS is
cOlnpletely controlled by the data flow, as defined in the micro step rules for data transfor
mations.

Moreover, TS strictly separate information tra\'(\lIill~ 011 data flows and inforIliatioll 011 control
flO\vs: It is impossible to process both data and n>Iltroi items inside t.he ScWH' transrormatioll.

22

If control decisions depend on certa.in data values, these have to be evaluatr-d by means of data.
transformations and fed into the corresponding control transformation as data conditions.

5.3 Scope and persistency of control objects

While the scope of control objects (i. e. events) in State- & Activitycharts is defined in
the same way as for data objects, events in the GO STEP/GO REPEAT semantics only live for
the duration of the micro step directly following the step where the events were created. As
a consequence, processing of events cannot be "postponed" to later micro steps. This implies
the necessity to evaluate event expressions for transition triggers instead of atomic events
only.

For Transformation Schemas, scope and persistency of control flows is defined exactly as
for data flows, so events live until they are consumed by the consumer control transformation
or - if they stay unconsumed - until the end of the macro step.

The persistency rules for control objects are motivated by the difference" of the underlying
semantics: For State- & Activitycharts, consuming an event cannot be destructive, because
just as in the case of data flows the event can be consumed by more than one transition. On
the other hand, keeping events alive until the end of a macro step would lead to undesirable
behaviour of very simple specifications, when interpreted in any seITlantics allowing several
micro steps per macro step. For example, the trivial flip-flop switch shown in figure 10 would
lead to a never-terminating macro step.

{!/aff

o--~ON OFF

elan

Figure 10: In any semantics allowing several micro steps per macro step this flip-flop switch
operation only terlllinates, if events just live for the micro step directly following their gen
eration.

For Transformation Schemas, events mllst not be discarded after one micro step, because
the interleaving semantics only allows oue transition per micro step. As a consequence, the
read must be destructive, hecause otherwise the analogous situation as dcscribed in figure 10
would arise for the corresponding control transformation.

5.4 Parallelism

The co STEP Ico IU:I'EA'l' semantics as well as the [I1G89] semantics of State- & Activi
tycharts arc ba.sed on the concept. of simultaneous processing of every input or event that is
ellahled ill a micro step. Therefore in our DCP·example, feedillg the failure event CRASHl into
DCP has the effect that both CPl alld CP2 perform their reactioll in the same micro step, alld
this is exa.ctly what we wish to express: Occurrence of CRASH! ha.s the dfect of a high-priority
interrupt that leads to immediate reactions on computer CP2.

On the other hand, simultaneity introduces additional cOI"nplcxity in handling the inputs of
a statcchart, as for exa.mple shown in CCP2: For the transition from state PASSIVE, NO-.DATA

to state ACTIVE the in~lt signals CRASHl and "r(A) have to be simllll,;.neously taken into
account, because every event (like wr(A)) must be consumed in the micro ~tep following their
creation; afterwards they are lost.

In contrast to State- & Activitycharts' behaviour, the interleaving semantics of Transfor
mation Schemas does not allow to abstract from the signal "WATCHDOG ALARM" and simply
feed CRASHl into CP2, too, as it is specified by the Statecharts solution: Input of CRASHl into
CPl and CP2 might lead to a sequence of micro steps, where the failure event is processed
by CP2 before it is processed by CP1. As a consequence, CP2 could produce the output of
a job before the same output is re-produced by CP1. This would not do any harm to the
consumer, because he will detect the duplicated result by means of the alternating bit. But
this situation could also lead to a duplicated NEXT-message (first NEXT2, then NEXnl, and
this has to be regarded as a specification flaw, because the producer might send a new job
in reaction to the superfluous NEXTl message. The "WATCHDOG ALARM" is produced by CCPl
after CRASH1 has been consumed. Therefore the reasonable causal relation 'Jirst CPt's failm'e,
then its detection by CP2" is ensured by our TS.

There is a second case in the TS specification where specific measnfes had to be taken to
exclude unwanted sequences of transitions: It is necessary to ensure thvt the NEXT-request
for a ne~ job sent to the PRODUCER and the "WATCHDOG ALARM" are transmitted on the same
flow. Otherwise the weakly-fair interleaving semantics could allow the "WATCHDOG ALARM" to
"overtake" the NEXT-request i. e. a NEXT token and it "WATCHDOG ALARM" token could both be
placed on CCP2, and CCP2 could first chose the "WATCHDOG ALARM" token. As a consequence,
CP2 would disregard the NEXT signal, reproduce the last job already delivered by CP1, and -
just as in the case described above - produce a superfluous NEXT2 signal. Transmitting both
the "OKI! and the "WATCHDOG ALARM" signa.ls on flow NEXTl cnsures that CP2 will receive them
in the same order as it has been produced by CPl, i. e. "first "OK", then "WATCHDOG ALARM"".

These two cases show that for certain cases the degree of interleaving offered hy the wea.kly
fair interleaving semantics is too ample, so tha.t specific specification constructs have to he
inserted to reduce the set of possible execut.ion sequcnces.

5.5 Nondeterminism

An important difference between the DCP-examplc's Statecharts and Trallsformation Schema
solution is, that the former's execution under the GO STF,I' regime is co,npletely determin·
istic, while the latter allows nondeterministic executions: In the Statecharts solution, both
automatons CCPl and CCP2 arc deterministic. Since they do lIot write Ull the same data
items (i. e. racing conditions do not occur), their pa.rallel cOlllpo:-;ition is detcrmillistic, too.
Nondetcrminism with respect to the failure's occurrcnce has to he "silllulated" by placing
the CRASH1·event at random into the series of macro step inputs. In contrast to this, each
macro step of the TS solution is nondeterministic, as soon as both the CRASH1 event plus an
A·input are placed on the DCP-interface. This is not only caused by the fact that CPl 's control
transformation CCPl is nondeterminstic in the T5 solution, but mainly by the properties of
the interleaving semantics: It camiot be predicted. at which micro step t.he failure event will
lead to the corresponding transitions. At the system's interface this bcwllIes visihle by the
fact that it cannot be predicted whether the NEXT signal will be delivered via NEXn (i. e. CPl
was still able to prodllqc the NEXT-PH'llt lH'forp crashing) or via NEXT2.

21

This stronger degree of nondeterminism in Transformation Schcmas is ill fact not very as
tonishing. For interleaving semantics, it is well known that parallel specifications ca,n be
transformed into nondeterministic sequential specifications (see [A091, PI'. 33·1]). Therefore
in TS, parallelism introduces nondetcrminism.

Statccharts allows cvcnt cxpressions as triggers of transitions. As a cOlls~quence, nondeter
ministic statccharts call he made deterministic by assigning priorities to events. In figure 8
CRASH! is the high· priority event forcing a transition into state DOWN, regr.rdless of any other
events. This corresponds to event expressions not CRASHl and wr(A) > ••• as triggers for
the internal transitions between the UP substates. In W&M's definition of Transformation
Schemas, only single events are allowed to trigger transitions. Therefore nondeterministic
control transformations in general cannot be replaced by deterministic ones. This problem
has been addressed by some builders of CASE tools for structured methods by also allowing
event exprcssions as triggers. From our point of view, this is not an appropriate solution,
because interleaving semantics do not suggest simultaneous evaluation of events.

5.6 Lifeness properties - fairness

When analyzing the differences hetween specification languages intended for parallel systems,

it is interesting to ask whether certain liveness properties are automatically guaranteed by
specific types of specifications. St.ate· & Activitycharts and Transformati·)n Schema seem to
be rather similar with respect to the divergence of specifications: They b,)th allow specifica·
tions with macro step executions that diverge due to statc.charts resp. central specif\cat\ons
tha.t perform continllolls internal communications without providing any output at the sys
tem's interface. III c.olltrast to the divergence livcness property, we call observe importa.nt
difrercnces State- s...: Activitycharts and Transformation Schema when looking a.t jai1'1zcss
properties.

Recall that an execution of any tl'a,nsition system is weakly fair with respect to a specific
transition T, if it is not the case that T is continually enabled beyond some position in the
execution. but is taken only a finite number of times. The execution is ,')irongiy fair with
respect to T, if it is 1I0t the caSe that T is enabled infinitely many times in the execution, but

is taken only a finite number of times (see [MP92, pp. 128]).

Fairness Observation 1 State· fj Activityciwrts allows specij/cations that do not have the
weak fairness Pl'0PC1·ty (and as a C011."equcnce also not the St7'OTlg jairncb·s property).

For example a system described only by the nondeterministic automaton shown in figure 11
can lead to an unrair execution, if for each macro step the environment rrovides both a and
b a.s input.

\Vith the same inputs the ana.logous Transformation Schema specification would even lead to
a strongly [air execution with respect to both ale and bid: Suppose hoth a and b arc placed
on the interface. Ir the first micro step choses transition alc, then for the second micro step

ale is no longer enabled, but bid st.ill is. Since bid is now the only ena.bled transition. it
must be taken according to our semantics.

lkc<lIlSe both the ca.usal-chain semantics and the weakly-fair interlea.ving semantics do 1I0t
allmv a macro step to end, as long as an cnabl{~d tra.nsition still exists, any pf'rmanelltiy
ena.bled trallsition will he taken before the macro step ends. Since bId is now the olily

ale bid

Figure 11: Statechart allowing unfair executions.

enabled transition, it must be taken according to our semantics. Only a non-terminating
macro step, where other components communicate to produce "infinite internal chattering"
can prevent a permanently enabled transition from being finally taken. This leads to

Fairness Observation 2 When interpreted in the Causal-Chain or the Weakly-Fair In
terleaving Semantics, every trons/ormation schema only allows execution,') that are at least
weakly fair with respect to all possible transitions or]JO!;se,';s (1 non-terminating macro step.

One of the major differences between the Statecharts semantics and the Transformation
Schema semantics can be expressed by analy;dng the reasons for absence of strong fairness:
For Statecharts, an execution that is unfair with respect to a tra.nsition T can only occur
in a specification tha.t contaill8 T in a. 1l0lllidc1'11li1l.'dic automaton (like ill the example of
figure 11), where several transitions are enabled at the same time, but only one of them can
be taken. The parallel composition of deterministic statecharts 8" ... , Sn will be strongly
fair with respect to all of its transitions, because for each Si, at most one transition Tj can be
enabled at the beginning of a micro step, so all enabled transitions are performed in parallel
during this step. Note however, that the parallel composition of deterrninstic statecharts
is not necessarily deterministic, because the racing conditions mentioned in section 4.1 arc
resolved nondeterministically.

Fairness Observation 3 The parallel composition of deterministic ,t(lkeharts only alloUls
executions, whe7'e every transition is taken as often as it is enabled. A . .., u consequence, lhe

executions are strongly fair with respect to all their tmnsitions.

III contrast to this, when examining ollr TS semantics, unfair behaviour can be caused both
by nondeterministic automatons and by parallel composition of (possibly deterministic) com
ponents. As mentioned in the previous subsection, for interleaving semantics, parallelism
introduces nondeterminism and ~ just as in the Statccharts semantics - nondetcrminism
gives rise to unfair bphavionr. This will be illustrated in the following example.

Consider the TS shown in figure 12 and assume a sequence of inputs from the environment
that looks like

(a;b), a, (a,b), a,

Both control transformations Cl. C2 are deterministic. l(owever, an execution to t.he inputs
above could be as follows: In the first macro step, both transitions a/disable C2 and bId

are enabled in the first micro step. Assume, transition a/disable C2 is taken. In the second
micro step, the disable C2 event prevents bId fro Ill. being taken. The macro step ends
without havillg engaged into transition bId. In the second macro step, thc input a leads to

26

enabling C2. The third macro step will be as the first and so on. As" consequence, this
execution is not strongly fair with respect to transition bId.

a ,
---------- Cl

af

, ,

disable C2

b

........ ,~
\ enable c2 I

,I- -- -~,
,- '

, disble C2 _or" ..

af

enable C2

, d
c2]---------. , ,

Figure 12: Para.lIel compositIOn of determinstic control transformations allows executions
that are not strongl,Y fa.ir with respect to certain transitions.

6 Conclusion

In this article a comparison between the CASE specification languages Transformation Schema
and State- & Activitycharts has been presented, based on an example from the field of fault
tolerance. Having analysed the lallguages' semantics, we can evaluate ,his comparison as
follows:

1. Doth Transformation Schema and State- & Activitycharts do not possess a semantics
that is "univcrsalli' applicable for most types of target systems. This has been moti
vated by :.he selection process neccessary to find a suitable interpretation for the Dual
Computer System specification. Instead different semantics had to be defined for both
languages, and it is an important task at the beginning of a project's specification phase
to select the most appropriate interpretation model for the system to be developed.

2. Transformation Schema only allow one gra.phical presentation style for the top-down
specification of systcms. Frolll pra.ctical expcrience we know, that rigorous top-down
presentatioll ,. while being appropriate for the inspection of completed specifications
- is 1101. hclpr,Ji wilt'll dev('ioping a new specification. Here a. mixed approach using

both top-dow II a.lld hottolll-IIP t.('fillliqups is~. better. Therefore W(~ prefer the Sl,ate
K·, i\(",tivit,vril;lrts pr{'st'lIt.atioll style, wilpw the d('grpe or l.op-doWIi structurillg c;l.II he

dlOS(,1I hy tlw dpve\olH'r hilllspif. \Vp thillk tha.t the variety of Statt~- So.: Activil.ycltarts

27

presentation techniques could also be used for Tranformatioll Schemas in an analogous
way without inducing another understanding of the TS meaning. It just depends on
tool builders to sit down and implement it.

3. Transformation Schema and State- & Activitycharts use different communication pa
radigms. The scope and persistency rules of data. items in Transformation Schema
suggest communication concepts based on one-to-one or multi-cast channels for the
target system. In contrast to this, State- & Activitycharts suggest mechanisms based
on shared. variables. Note that in most practical cases the underlying communication
concepts cannot simply be selected according to the developer's personal taste. Instead
they are often predefined by boundary conditions regarding the target environment and
should be taken into account during the selection process for the appropriate CASE
method.

4. While TS strictly separates the manipulation of data and control items, State- & Adv
itycharts allow to specify operations on data directly with the state transition, without
introducing a corresponding activity. From our experience, the strict separation of
data processing and control enforced by TS rules leads to clearer specifications, there
fore we do not regard this as a disadvantage. For Statecharts, the more flexible data
manipulation concept requires quite an amount of discipline from the developer.

5. For specifications that do only require a moderate amount of control. TS specifications
require less effort to write than the corresponding State- & Activitycharts, because TS
allows to specify without coutrol transformations. The data·driven dynamic behaviour
will then be defined by the micro step rules for data transformations plus the macro
step rule.

6. The TS semantics introduced and the semantics of Statc- &. Activilycharls incorpo
rate different notions of parallelism, nondeterminism and fairness, that are suitable for
different types of target systems. As a consequence, syntactically similar transforma
tion schemas and statecharts differ strongly with respect to their dynamic behaviour.
Because 0f its restrictive use of micro step interleaving, the causal-chain semantics for

TS maps well on multi-tasking/single CPU systems. The full-interleaving semantics is
appropriate for distributed systems with a low degree of synchronisation, prcferrably
implemented by means of message passing mechanisms. The State- &. Activitycharts
semantics are especially well suited for multi processor systems with tight memory cou
pling and rather strict mechanisms for the synchronisation of the processors' input and
output.

7. In the Dual Computer System example the Statecharts solution appears to be superior
to the Transformation Schema solution, because the simultaneous processing of parallel
components is just appropriate for the specification of reactions to a failure event. In
this example, the TS solutions appears to possess a lower lev('l of abst.raction, because
an additional event ("WATCHDOG ALARM") had to be introduced to guarantee proper
causal relationships. That is, the develop('r had to ('xplicite\y inl roduce "t('chnical"
synchronization and schedulin~ constructs, because ot.herwise the w(~akly-fair interleav
ing semantics would allow "ullwantt'd" sequencps of micro sh'ps. However. in 100s(>ly
coupled or even wide-area networks the COIIC<'pt of silllHltalH'ous para.llel proccssinK
steps, as inherent to the State- SoL ,\divitycharts sC'lllantics present{'d, rna · suggest

misleading simplifications, so that such systems could be better represented by the
interleaving semantics of Transformation Schema.

8. Though we have not studied real-time aspects in this article, it is interesting to note
that TS concepts for incorporating real-time as sketched in [Wa86] are not suitable for
complex applications. In contrast to this, the built-in real-time simulation features as
implemented in Stalemate are at least a step in the right direction, and more universal
and theoretically sound techniques for real-time specifications with State- & Activity
charts have been worked out in the formal methods community ([KP92]). The devel
opment of TS extensions that incorporate real-time aspects will be a main objective of
our future activities in this field.

There are a number of conceptual disadvantages or flaws, that are inherent both in Trans
formation Schema and State- & Activitycharts, but have not been discussed in this article,
because we focused on problems ;elated to parallel systems. Some of these draw backs
can be solved in a similar way for TS and State- & Activitycharts; this is currently under
investigation at DST in cooperation with Eindhoven University of Technology and Christian
Albrechts-Universitiit zu Kid.

• Both languages offer insufficient means for the precise definition of complex data struc
tures and functions operating on these structures. This could be .~asily improved by
adopting the concepts of formal specification languages like Z ([SP92]) or VDM ([J086])
for the definition of data items and operations specified in data transformations resp.
activities. This approach has been investigated at DST ([PeI92]).

• Doth Ia.ngua.ges do not provide constructs for data refinement. If a "concrete" specifica
tion is intended to be it rdill(~lHcni of an "ab::.tract" one, the relatIon between concrete
and a.bstract data. structures cannot be expressed. Again, this can be overcome by
importillg the Z or VDM concepts for data refinement.

• Both la.nguages do only provide i1l5ufficient support [or re-use of specification parts.

• noth languages do not support object-oriented specification styles.

It is often said, tllat a specification language merely serves as a vehicle hr the developer to
express hcr or his concepts for the system to be built. From our experi,."ce, the impact of
using a specific lallguage is much deeper, because both syntax and serna) .tics not only influ
en!:e the developer's specification style, but also his way of thinking abeut the system. As
a consequence, the nse of different languages will lead to different systera solutions. There
fore the choice between CASE methods - as between Transformation Schema and State- &
Activitycharts - should always be based upon a close analysis of the methods' underlying
semantics and their appropriateness for the target system.

Acknowledgement We would like to thank Wiltem-l'aul de Roever for stimulating our
work on this article and for many helpful discussions.

29

References

[A09I] K.R.Apt, E.-R.Olderog. Verijiction of Sequential and Concurrent I'rorJnHn,~. Springer. New York
(1991).

[8892] A. Benveniste and G. Berry. The Synchronous Approach to Reactille (HId Real. Time Sy,'!tems, in IEEE
Proceedings "Another Look at Real-Time Programming", 1992.

[CAU93] C. Petersohn, C. Huizing, J. Peleska, W-P. de Roever. Formal Semantics for Ward fj Mel
lor's TRANSFORMATION SCHEMA, and their Comparison with STATEClfARTS. Christian-Albrechts
University at Kiel, Technical Report (1993).

{Ha8S] D. Harel. On visual formalisms. Communications of the ACM. 31:514-530, 1988.

[HagO] D. Harel, H. Lachover, A. Naamad, A. Poueli, M. Politi, R. Sherman, A. Shtull-Trauring, and M.
Trakhtenbrot. Stalemate: A working environment Jor the development oj complex rc"ctive systems. IEEE
Transactions on Software Engineering, 16(4):403-414, April 1990.

[HG89] C. Huizing a.nd R. Gerth. On the semantics of reactive ,~ystem.i. Technica.l report. Eindhoven University
of Technology, 1991.

[HGdR88] C. Huizing, R. Gerth, and W.-P. de Roever. Modelling .5tatecharh behaviour in a Jully abstract
way. In Proc. 13th CAAP, LNCS 299, pages 271-294, 1988.

{H08S] C,A.R. Hoare. Communicating .~equenlial processes. Prentice-Hall lilterliational, Englewood Clifrs
(1985).

[Ii PPSS87] D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. O'J the jormol ,~e"umlic .• oj Statechods.
In Proceedings Symposium on Logic in Computer Science, pages 5·1-64, 1987.

[IIG92j C. Huizing and R.T. Gerth. Sem(lntics of Reactive Systems in Abstract Time, in "Rml-Time: TI,eory
in Practice", proceedings of a REX workshop, June 1991, Mook, edited hy .l.W. de Bakker, W.-P. de
Roever, G. Rozenberg, LNCS 600, Springer Verlag, Berlin, Heidelberg, 1992.

[KP92] Y. Kesten, A. Pnueii. Timed and hybrid statecharts and th{~ir textual representation. In J. Vytopil
(ed.) Formal Tcchniqtles in Real-Time (Iud Fault-Tolerant Systems. Springer (ID92), pp. 591-619.

[iL89] i-Logix Inc. Stalernte Analyzer. version 3.0, i-Logix Inc., Burlington (lDDO).

[Jo86] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall internOltional series ill com
puter science (1986).

[MP92] Z. Manna, A. Pnucii. The Temporal Logic of Rcactiv~ (Jwl Coucurn:ul Syslf:m.~. Springer pUn).

[PeI91] J. Peleska. Design and Verification of Fault Tolerant Systems With esp. IJiftribuled C'ompulill!J 5
(1991),95-106.

[Pe192J J. Peleska. Formal Sojtware Engineering, Z and Structured Methods - provable co,·rectnc.~s for sa/ely
critical systems. DST Deutsche System-Technik, Kiei, Tcchnical Report (1992).

[Pel93] J. Peleska. CSP, Formal Software Engincering and the Development of Faul:.-Tolerant Systems. In
Vytopil, J. (ed.): Formal Techniques in RClJI_ Time (Juri Fnull- Toleraut Sy.~tcm.i. Kluwer Academic Publishers
(1993).

[PI83] G. Plotkin. An operational semantics jor CSP. In Proceedi,,!}s oj the IFI? ConJer'ence on fhe Fornwl

Description oj Progr(l(lIming Concepl$ II, North Holland (1983) pp. 199-225.

[Pt92] C. Petersohn. Modellierung reakliver Systeme mil Tnm:Jforfflolioruschcuw tmd ('in Vel'9leich mit
Activity- und Stalechal'ls, Master's thesis, report, Christian-Albrechts-Uuivcrsitiit Zli Kid, 1~92.

[SP92] M.J. Spivey. The Z Notation. Prentice Hall (1992).

[\Va86) P.T. Ward. The Trans/ormation Schema: An Ertensiotl 0/ the Dnt(J Flow Diflflrmn to Ileprc.icnl
Control and Timing. IEEE TSE, Vol. SE-12, No.2, pp. 198-210, Febr. 1986.

[WM85] P.T. Ward and S.J. Mellor. Str'uctured Dwdopmcnl for Rt:al- Time Sy:~tems. (3 vols), Yourdon Press
Computing Series, Prent.ice-Hall, Englewood Cliffs, 1985.

[Wo89} D.P. Wood a.nd W.C. Wood. COFIIl'nmtil!c RV(Jluotions oj S,Jecificnliou Ahtlwds for Ilml- Time Sy .• tcms.
draft, September 1989.

:\0

Computing Scienl:e Notes

III this series appeared:

l)1/OI O. Alsteill

91/02 R.P. Nederpeil
H.CM. de Swart

91/03 J.P. Katoell
L.A.M. Sciloenmakcrs

91/04 E. v.d. Sluis
A.F. v.d. Stappell

91/05 O. de Reus

91/06 K.M. vall lice

91/07 E.Poll

91/0X H. Schepers

91/09 W.M.P.v.d.Aalst

91110 R.CBackhouse
PJ. de Bruill
P. Hoogcndijk
G. Malcolm
E. VOCml;lIlS

J. v.d. Woude

91/11 R.C Backl,,)use
PJ. de Bruin
G.Malcolm
E. Voennans
J. vall der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconriguration in Oisllibuted Hard Real-Time
Systems, p. 14.

Implication. A sUlvey or the dirferent logical analyses
"iL .. ,then ... ", p. 26.

Parallel Programs l'or the Recognition or P-invariant
Se)!ments, p. 16.

Perronllance Analysis or VLSI Programs, p. 31.

An Implementation Model ror GOOD, p. IX.

SI'ECIFICATIEMETHODEN, een over/icht, p. 20.

CPO-models 1(11' second order lambda calculus with
recursive types and subtyping, p. 49.

TCJ1l1illology and Paradigms for Fault Tolerance, p. 25.

Illterval Timcd Petri NelS and their analysis, p.53.

POI.YNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm I(H the travelling
salesman pmhlem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypcnlledia Package. Why and how it was
buill. p. 63.

Eldorado: Architecture or a Functional Database
Mana)!elllent System, p. 19.

All example of proving attribute grammars correct:
the representation or arithmetical expressions by DAGs,
p. ~5.

91/17 ATM. Ael1s
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R. V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhocyc

91/24 ATM. Ael1s
D. de Reus

91/25 P. Zhou
J. Haoman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikclder
R. van Geldrop

91/30 J. C. M. Baeten
F.W. Vaandragcr

91/31 H. len Eikclder

91/32 P. Slruik

91/33 W. v.d. Aalsl

91/34 J. Coenen

Transf(mning Functional Datahase Schemes to Relational
Represenlations. p. 21.

Translimnalional Query Solving. p. 35.

Some categorical propel1ies for a model for second order
I.nnbda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Dala Rei Iication Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets. p. 16.

Fonnal semantics for IlRM with ex",nples. p. 25.

A compositional proof system for real-time systems hased
on explicit clock temporal logic: soundness and complete
ness. p. 52.

The GOOD based hypertext rekrence model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof syslem for dynamic proces
creation. p. 24.

Correctness or Acceptor Schemes for Regular Languages,
p. 31.

An Algehra for Process Creation, p, 2().

Some algorithms 10 decide lhe equivalence of recursive
types. p. 26.

Techniques ror designing cfticicnt parallel programs, p.
14.

The modelling and analysis or queueing systems with
()NM·bSpect. p. 23.

Specifying r~lllil tolcnllll programs in dcontic logic,
p. 15.

() I /35 F.S. de Boer
J. W. Klop
C. Palamidcssi

92/0 I J. CDC nell
J. Zwiers
W.-P. de Roever

92/02 J. Coenell
J. Hoomall

92/03 J.CM. Baelen
J.A. Bergslra

92/04 J.P.H.W.v.d.Eijndc

92/05 J.P.H.W.v.d.Eijllde

92/06 J.CM. Baelell
.1. A. Bergsl ra

92/07 R.P. Nedeqlell

92/0X R.P. Nedeq)eli
F. Kamared(jine

92/09 R.C Backhouse

92/10 P.M.P. Raillhags

92/11 R.C Backhouse
J.S.CP.v.d. Woude

92/12 F. Kamarcd(line

92/13 F. Kamarcddinc

92/14 J.C.M. Baelen

92/15 F. Kamareddine

92/16 R.R. Seljce

92117 W.M.P. van der AalSi

92/1 X R.Nederpell
F. Kamarcddinc

92/19 J.C.M.Baelen
J.A.Bergslra
S.A.Smolka

92/20 F.Kamarcddinc

Asynchronous COllllllUllicatioll in process algehra, p. 20.

A nole on composilional rerinemeni, p. 27.

A compositional semantics for raul! lOlerant real-time
syslems, p. 1 X.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative tixpoinl functions on a graph, p. 25.

Discrete lime process algebra, p.4S.

The linc-slruclure oi" lambda calculus, p. 110.

On slepwise explicil substilution. p. 30.

Calculaling Ihc Warshall/Floyd path algorithm, p. 14.

COlllposilion and decomposilion in a CPN model. p. 55.

Demonic operators and Illonotypc factors. p. 29.

SCi Illcory and nOlllinalisation. Part I, p.26.

Sci Ihcory and nominalisalion, Part II, p.22.

The 10",1 order assumption, p. 10.

A systcm al thc cross-roads 01' I'unclional and logic
pn)gralllll1 i ng, p.56.

Integrit), checking ill deductive databases; an exposition,
1' . .12.

Inlelval limed coloured Petri nets and their analysis, p.
20.

A ulli lied approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomalil.ing Prohabilistic Processes:
ACI' wilh Gencralive Probabililies, p. 36.

Arc Type:.; for Natural Language'! P. 32.

92/2 I F.Kamareddine

92/22 R. Nederpclt
F.Kamareddine

92/23 F.Kamarcddine
E.KJcin

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.SIUI
P.A.C.Vcrkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoell

93/03 T. Verhocll

93/04 E.HL Aarts
J.H.M. Korsl
PJ. Zwiclcring

93/05 J.C.M. Baelen
C. Verhoel"

93/06 J.P. Vellkamp

93/07 P.O. Moerland

93/08 1. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/1 I K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

NOll v.rcll-roUlldcdll~:-;s and type freeness can unify the
illierpreialion 01" I"unclional applicalion, p. 16.

A uscl"ul lambda nOlalion, p. 17.

Nominalizalion, Prediealion and Type COnlainment, p. 40.

Bonum-up Ahslrael Illierpreialion 01" Logic Programs,
p. 33.

A Programming Logic I"or FOl, p. 15.

A modelling method using MOVIE and SimCon/ExSpeet,
p. 15.

A taxonomy or keyword pallcrn matching algorithms.
p. 50.

Deriving the Aho-Corasick algorithms: a Case study into
tile synergy or programming methods. p. 36.

A eonlinuous version 01" the Prisoner's Dilemma, p. 17

Quicksort I"or linked lists, p. 8.

Delerminislie and randomized local search, p. 78.

A congruence theorem for structured operational
semanlics wilh predicales, p. 18.

On Ihe unavoidabililY 01" melaSiable behaviour, p. 29

Exercises in Mullirrogramming, p. 97

A Formal DetenniniSlic Scheduling Model I"or Hard Real
Time Eseculions in DEDOS, p. 32.

SystClllS I:nginccring: a Fonllal Approach
Pan I: Syslem Coneepls. p. n.

Systems Engineering:: a Fonnal Approach
Pan II: Frameworks, p. 44.

Systems Engineering: a Fonnal Approach
Part III: Modeling Methods, p. !OI.

Syslems Engineering: ".Fonn,,1 Approach
Pan IV: Analysis Melhods, p. 63.

Systems 1:llgillccring: a FOllllai Approach
ParI V: Specilkalioll Language. p. Xl).

9VI-'l 1.C.M. B"clcn
.l.A. Bcrgstra

93/15 1.C.M. B"clcn
1.A. BergSlr"
R.N. Bol

93/16 II. Schepers
1. lIoom"n

93/17 D. Alslein
P. van der Siok

93/1 X C. Verhoef

93/19 G-l. Houben

93/20 F.S. de Boer

93/21 M. Codisil
D. Dams
G. File
M. B ru ynoogile

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll "nd P"ul" Severi

93/25 H. Schepers "nd R. Cienl1

93/26 W.M.P. v"n dcc ;\"Isl

93127 T. Kloks "nd D. Kralsci1

93/2X F. Kamarcddinc and
R. Nederpell

93/29 R. Posl and P. Dc Bra

93110 1. Dcogull
T. Kloks
D. KralScl1
H. Muller

93/3 I W. Kiirvcr

93112 H. len Eikelder ami
H. van Geldrop

011 Sl'qul'llliai C\llllpositioll. ACli(Hl Prcl1xcs and
Process Prcrix. p. ~ I .

/\ Real-Time Process Logic, p. 31.

;\ Tr"ee-Ilased Composilional Proof Theory lor
Faull Toler""1 Distrihuled SYSiems, p. 27

Hard Real-Time Reliable Mullicasl in Ihe DEDOS system,
p. 1\1

A congruence theorem for structured operational
semanlies with predicales and negalive premises, p. 22.

Tile Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrenl Constraint Program
ming. p. 15.

Freeness Analysis for Logic Programs - And Correct
ness'!, p. ~4.

A Typechecker 1(1J' Bijeelive Pure Type Systems, p. 28.

Relalional Algebra and Equational Proofs, p. 23.

Pure Type Systems wilh Definitions, p. 38.

A Composilional Proof Theory fi1r Fault Tolerant Real
Time Dislrihuled Syslems, p. 31.

Multi-dimensional Petri neLS. p. 25.

Finding all minimal separalors of a graph, p. 11.

A Semanlics for a line A-calculus with de Bruijn indices,
p. -'I').

GOI.D, a Graph Orienied Language lilr Databases, p. 42.

011 Vertex Ranking for Pcnnulalion and Other Graphs.
p. I I.

Derivalioll of delay IIlsenSltlve and speed independent
CMOS circuits. using direcled commands and
production rule selS, p. 40.

On the Correctness of some Algorithms to generate Finile
Aulom:lla for Regular Expressions, p. 17.

93/33 L. Loyens and .I. Moonen

93/34 J. C M. Baelen and
J.A. Bergslra

93/35 W. Ferrer and
P. Severi

93/36 J.CM. Baelen ami
J.A. Bergstra

93/37 J. Brunckreef
J-P. Kaloen
R. Koymans
S. Mauw

93/38 C Verhocf

(LIAS, a scqucllli;1I lang'uagc for parallel matrix
l . .'ompuiatiulis. p. 20.

Real Time Process Algchra with Inrinitcsimais, p.39,

Abslrael Rcduclion and Topology, p. 28.

Non Inlerleaving Proccss Algcbra, p. 17.

Design and Analysis of
Dynamic Lcader Eleclion Protocols
in Broadcasl Networks, p. 73.

A general COllsClVtltivc extension theorem in process
algebra, p. 17.

93/39 W.P.M. Nuijlen .loh Shop ScllCtluling hy Conslraint Salislilclion, p. 22.

93/40

93/41

93/42

93/43

93/44

93/45

93/46

93/47

93/48

E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hec

P. D. V. van dcr Siok
M.M.M.P..!. Claessell
D. Alslein

A. Bijlsma

P.M.P. Ramhags

B.W. Walson

B.W. Walson

E.J. Luil
J.M.M. Manin

T. Kloks
D. Kralscil
J. Spinrad

W. v.d. Aalsl
P. De Bra
G.J. Houhen
Y. Komalzky

R. Gcrtil

A Hierarchical Memhership Protocol for Synchronous
Dislribuled Syslems. 1'. 4.1.

Tcmporal operalors viewcd as predicate transformers,
p. II.

Automatic Vcrifiealion of Regular Prolocols in PIT Nets,
p. 23.

A taxolllomy or linilc automata construction algorithms.
p. X7.

/\ taxonomy of finite automata minimization algorithms,
p. 23.

A precisc clock syncllf(lIlizalion protocol,p.

Treewidlh and Palwidlil of Cocomparahility graphs of
l30unllcll Dimcnsion, p. 14.

Browsing Semantics in the "Tower" Model. p. 19.

Verifying. Sequentially Consislclll Memory using Interface
Refinemenl, p. 20.

94/01 P. America
M. van der Kalllllll'll
R.I'. Nederpeli
O.S. van Roosmakll
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Ncdcrpelt

94/03 L. B. Hartman
K.M. van Hee

94/04 l.C.M. Baeten
l.A. Bergstra

94/05 P. Zhou
1. Hooman

94/06 T. Basten
T. Kunl.
l. Black
M. Corlin
D. Taylor

94/07 K.R. Apt
R. Bol

94/0X O.S. van Roosmaicn

94/09 1.C.M. Baeten
l.A. Bergstra

94/1 0 T. verllOell

Tile ohject-oriented paradigm, p. 2X.

Canonical typing and n·conversion, p. 51.

Application or Marcov Decision Processe to Search
Problems, p. 21.

Grapil Isomorpilism Models ror Non Interleaving Process
Algehra, p. I H.

Formal Specilication and Compositional Verification or
an Atomic Broadcast Protocol, p. 22.

Time and the Order or Abstract Events in Distributed
Comrutations, p. 29.

Logic Prograll1III ing. and Negation: A Survey, p. 62.

A II ierarchieal Diagrammatic Representation or Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

	Abstract
	1. Introduction
	2. Fault tolerant dual computer system - informal requirements specification
	3. A Transformation Schema solution
	3.1 Informal description of TS syntax and semantics
	3.2 Selection of an appropraite TS semantics
	3.3 Dual Computer System - TS solution
	4. A State- & Activitycharts solution
	4.1 Informal decription of State- & Activitycharts syntax and semantics
	4.2 Selection of an appropriate Statecharts semantics
	4.3 Dual Computer System - State- & Activitycharts solution
	5. Comparison between Transformation Schemas and State- & Activitycharts
	5.1 Presentation of specifications
	5.2 Scope and persistency of data objects
	5.3 Scope and persistency of control objects
	5.4 Parallelism
	5.5 Nondeterminism
	5.6 Lifeness properties - fairness
	6. Conclusion
	References

