5,391 research outputs found

    Classification method to define synchronization capability limits of line-start permanent-magnet motor using mesh-based magnetic equivalent circuit computation results

    Get PDF
    Line start permanent magnet synchronous motors (LS-PMSM) are energy-efficient synchronous motors that can start asynchronously due to a squirrel cage in the rotor. The drawback, however, with this motor type is the chance of failure to synchronize after start-up. To identify the problem, and the stable operation limits, the synchronization at various parameter combinations is investigated. For accurate knowledge of the operation limits to assure synchronization with the utility grid, an accurate classification of parameter combinations is needed. As for this, many simulations have to be executed, a rapid evaluation method is indispensable. To simulate the dynamic behavior in the time domain, several modeling methods exist. In this paper, a discussion is held with respect to different modeling methods. In order to include spatial factors and magnetic nonlinearities, on the one hand, and to restrict the computation time on the other hand, a magnetic equivalent circuit (MEC) modeling method is developed. In order to accelerate numerical convergence, a mesh-based analysis method is applied. The novelty in this paper is the implementation of support vector machine (SVM) to classify the results of simulations at various parameter combinations into successful or unsuccessful synchronization, in order to define the synchronization capability limits. It is explained how these techniques can benefit the simulation time and the evaluation process. The results of the MEC modeling correspond to those obtained with finite element analysis (FEA), despite the reduced computation time. In addition, simulation results obtained with MEC modeling are experimentally validated

    Automated Netlist Generation for 3D Electrothermal and Electromagnetic Field Problems

    Full text link
    We present a method for the automatic generation of netlists describing general three-dimensional electrothermal and electromagnetic field problems. Using a pair of structured orthogonal grids as spatial discretisation, a one-to-one correspondence between grid objects and circuit elements is obtained by employing the finite integration technique. The resulting circuit can then be solved with any standard available circuit simulator, alleviating the need for the implementation of a custom time integrator. Additionally, the approach straightforwardly allows for field-circuit coupling simulations by appropriately stamping the circuit description of lumped devices. As the computational domain in wave propagation problems must be finite, stamps representing absorbing boundary conditions are developed as well. Representative numerical examples are used to validate the approach. The results obtained by circuit simulation on the generated netlists are compared with appropriate reference solutions.Comment: This is a pre-print of an article published in the Journal of Computational Electronics. The final authenticated version is available online at: https://dx.doi.org/10.1007/s10825-019-01368-6. All numerical results can be reproduced by the Matlab code openly available at https://github.com/tc88/ANTHE

    Index to NASA Tech Briefs, January - June 1967

    Get PDF
    Technological innovations for January-June 1967, abstracts and subject inde

    Design and analysis of a novel electric machine and drive

    Get PDF
    In many areas of engineering, the improvements in material properties have enabled designers to create sophisticated and previously unrealizable geometries feasible. A new low cost integrated electric machine is designed, analyzed and characterized in this dissertation. The material properties and their effect on motor performance are discussed and examined, the motor design equations are developed and analyzed. The performance test results are compared to analytical expressions previously derived and verified by simulation. Due to the nature by which the machine develops torque, the machine requires an inverter with position feedback which is discussed in detail, additional motor geometries are also presented. In addition, an overview of Maxwell\u27s equations and their applicability to the electromagnetic, magnetostatic and magnetodynamic problem is presented. Finally, a new method of solving the eddy current problem using the control-volume method is explained and numerical results are presented

    FPGA BASED IMPLEMENTATION OF A POSITION ESTIMATOR FOR CONTROLLING A SWITCHED RELUCTANCE MOTOR

    Get PDF
    Rotor Position information is essential in the operation of the Switched Reluctance Motor (SRM) for properly controlling its phase currents. This thesis uses Field Programmable Gate Array (FPGA) technology to implement a method to estimate the SRMs rotor position using the inverse inductance value of the SRMs phases. The estimated rotor position is given as input to the Commutator circuit, also implemented in the FPGA, to determine when torque-producing currents should be input in the SRM phase windings. The Estimator and Commutator design is coded using Verilog HDL and is simulated using Xilinx tools. This circuit is implemented on a Xilinx Virtex XCV800 FPGA system. The experimentally generated output is validated by comparing it with simulation results from a Simulink model of the Estimator. The performance of the FPGA based SRM rotor position estimator in terms of calculation time is compared to a digital signal processor (DSP) implementation of the same position estimator algorithm. It is found that the FPGA rotor position Estimator with a 5MHz clock can update its rotor position estimate every 7s compared to an update time of 50s for a TMS320C6701-150 DSP implementation using a commercial DSP board. This is a greater than 7 to one reduction in the update time

    Topics in Analysis and Design of Primary Parallel Isolated Boost Converter

    Get PDF

    Nonlinear Distortion Mechanisms and Efficiency of Balanced-Armature Loudspeakers

    Get PDF
    corecore