
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2004

FPGA BASED IMPLEMENTATION OF A POSITION ESTIMATOR FPGA BASED IMPLEMENTATION OF A POSITION ESTIMATOR

FOR CONTROLLING A SWITCHED RELUCTANCE MOTOR FOR CONTROLLING A SWITCHED RELUCTANCE MOTOR

Srilaxmi Pampana
University of Kentucky, spamp2@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Pampana, Srilaxmi, "FPGA BASED IMPLEMENTATION OF A POSITION ESTIMATOR FOR CONTROLLING A
SWITCHED RELUCTANCE MOTOR" (2004). University of Kentucky Master's Theses. 254.
https://uknowledge.uky.edu/gradschool_theses/254

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

FPGA BASED IMPLEMENTATION OF A POSITION ESTIMATOR
FOR CONTROLLING A SWITCHED RELUCTANCE MOTOR

Rotor Position information is essential in the operation of the Switched Reluctance Motor
(SRM) for properly controlling its phase currents. This thesis uses Field Programmable
Gate Array (FPGA) technology to implement a method to estimate the SRM’s rotor
position using the inverse inductance value of the SRM’s phases. The estimated rotor
position is given as input to the Commutator circuit, also implemented in the FPGA, to
determine when torque-producing currents should be input in the SRM phase windings.
The Estimator and Commutator design is coded using Verilog HDL and is simulated
using Xilinx tools. This circuit is implemented on a Xilinx Virtex XCV800 FPGA
system. The experimentally generated output is validated by comparing it with simulation
results from a Simulink model of the Estimator. The performance of the FPGA based
SRM rotor position estimator in terms of calculation time is compared to a digital signal
processor (DSP) implementation of the same position estimator algorithm. It is found that
the FPGA rotor position Estimator with a 5MHz clock can update its rotor position
estimate every 7µs compared to an update time of 50µs for a TMS320C6701-150 DSP
implementation using a commercial DSP board. This is a greater than 7 to one reduction
in the update time.

KEYWORDS: Position Estimator, SRM, FPGA, Commutator, Verilog, Simulink, Xilinx.

 Srilaxmi Pampana

 October 26, 2004

Copyright © Srilaxmi Pampana 2004.

FPGA BASED IMPLEMENTATION OF A POSITION
ESTIMATOR FOR CONTROLLING A SWITCHED

RELUCTANCE MOTOR

By

Srilaxmi Pampana

 Dr. Arthur V. Radun
 (Director of Thesis)

 Dr. Yu Ming Zhang
 (Director of Graduate Studies)

 October 26, 2004

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with permission of the author,
and with the usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
of each user.

Name Date

__

__

__

__

__

__

__

__

__

__

THESIS

Srilaxmi Pampana

The Graduate School

University of Kentucky

2004

FPGA BASED IMPLEMENTATION OF A POSITION
ESTIMATOR FOR CONTROLLING A SWITCHED

RELUCTANCE MOTOR

THESIS

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering at
the University of Kentucky

By

Srilaxmi Pampana

Lexington, Kentucky

Director: Dr. Arthur Radun, Associate Professor

Electrical Engineering, Lexington, Kentucky

2004

MASTER’S THESIS RELEASE

I authorize the University of Kentucky
Libraries to reproduce this thesis in

whole or in part for purposes of research

Signed: _____________________________________

Date: _______________________________________

iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and heartfelt gratitude to Dr. Arthur V Radun

for his guidance and support throughout this thesis. I am very thankful for his constant

encouragement and help in providing suggestions and insights towards my thesis.

 I would also like to thank Dr. J. Robert Heath and Dr. William Dieter for serving on my

thesis committee and providing me with invaluable comments and suggestions for

improving this thesis.

I would like to express my deepest gratitude and thanks to my parents and my brother for

their support and encouragement, they provided throughout my life and in finishing my

Masters. I would also like to thank all my friends for all their help and encouragement.

iv

 TABLE OF CONTENTS

Acknowledgements.. iii
List of Tables ... vi
List of figures... ….vii

CHAPTER 1: INTRODUCTION

1.1 Introduction to Switched Reluctance Motor ... 1
1.2 Basic Structure and Principle of SRM Operation ... 2
1.3 Contribution of the Thesis .. 3
1.4 Outline of the Thesis... 6

CHAPTER 2: DESIGN ANALYSIS OF ROTOR POSITION ESTIMATOR

 2.1 Variation of inductance with rotor position .. 8

2.2 Theory behind the Rotor Position Estimator used in this thesis 12
2.3 Rotor Position State Estimator Equations... 16

CHAPTER 3: SIMULINK MODEL OF THE CIRCUIT TO BE DESIGNED

3.1 Introduction to Simulink model .. 23
3.2 Commutator Block.. 25
3.3 Rotor Position Estimator... 31

CHAPTER 4: IMPLEMENTATION OF THE ROTOR POSITION ESTIMATOR ON
AN FPGA

4.1 Block Diagram of the system.. 38
4.2 Angle wrapping... 40
4.3 Selection of the Programmable device ... 43
4.4 Field Programmable Gate Arrays ... 44
4.5 Type of FPGA... 47

 4.6 Xilinx Virtex XCV800.. 49
4.7 Digital Design Flow.. 51
4.8 Core Generator.. 59
4.9 Simulation Results .. 67

CHAPTER 5: Implementation of the Estimator on an FPGA

5.1 Comparison of Simulink and Verilog Design Results.. 72
5.2 Testing the FPGA Circuit ... 80
5.3 Testing the system... 82
5.4 FPGA implementation results... 85
5.5 Conclusion .. 92

v

APPENDICES

 Appendix A: Verilog code for Position Estimator and Commutator………………...93

References………………………………………………………………………………105

Vita……………………………………………………………………………………...107

vi

LIST OF TABLES

Table 3.1 Truth Table for the Commutator………………………………………………27

Table 4.1 The Input and Output signals of the circuit represented in the HDL code……42

Table 4.2 Comparison of Resources available in Virtex and Spartan………………...…48

Table 4.3 Constants used in the block galpha of the HDL code…………………………58

Table 5.1 Commutator block output for the four phases……………………………...…88

vii

LIST OF FIGURES

Figure 1.1, Cross-section diagram of an 8/6, four-phase SRM…………………………..2

Figure 1.2, The Block diagram of the entire SRM based motor system…………………5

Figure 1.3, Block Diagram of Rotor Position Estimator and Commutator………………6

Figure 2.1, Aligned Position……………………………………………………………...9

Figure 2.2, Unaligned position…………………………………………………………...9

Figure 2.3, Plot of the SRMs’ phase flux versus current for different rotor positions

 showing the effect of iron saturation………………………………………...10

Figure 2.4, Plot of the SRM’s phase inductance versus rotor position for different

 currents………………………………………………………………………11

Figure 2.5, Plot of the phase inductance at the aligned position versus current for an

 SRM…………………………………………………………………………12

Figure 2.6, Current Profile across an inductor…………………………………………..12

Figure 2.7, Ideal phase inductance profile versus rotor position………………………..14

Figure 2.8, The computed error for an experimental 4 phase SRM for α – θ = +/-1º,

 +/-5º, and +/-10º and rotor positions from 0º to 90º…………………………15

Figure 2.9, Block diagram representation of the state estimator………………………..19

Figure 2.10, Block Diagram of the SRM control system……………………………….20

Figure 2.11, Block diagram of the FPGA that is the subject of this thesis……………...21

Figure 2.12, Block diagram of Commutator…………………………………………….21

Figure 3.1, Block Diagram of Rotor Position Estimator and Commutator……………..23

Figure 3.2, Phase current showing the torque producing and sense phase currents…….24

Figure 3.3, Plot of measured (from simulation) g1(�) and the select signal isense for

 phase one…………………………………………………………………….25

Figure 3.4, Commutator output for forward and reverse directions under normal

 conditions……………………………………………………………………26

Figure 3.5, Commutator output for forward rotation when the turn on angle is advanced

 beyond the allowed range…………………………………………………...27

Figure 3.6, Simulink model of the commutator block…………………...........................29

viii

Figure 3.7, Simulink model of the commutator block for one phase……………………30

Figure 3.8, Simulink model of the rotor position estimator……………………………..31

Figure 3.9, Simulink model of the block galpha to calculate g(α)………………………32.

Figure 3.10, The rotor position angle profile……………………………………………34

Figure 3.11, The inverse inductance value profile………………………………………34

Figure 3.12, Error calculated for the actual and estimated inverse inductance profile….36

Figure 3.13, Estimated rotor speed for the SRM in radian/second (for a constant speed of

 2000rpm)……………………………………………………………………37

Figure 3.14, Estimated rotor position for the SRM……………………………………...37

Figure 4.1, Block diagram of the Position Estimator and Commutator…………………38

Figure 4.2, Flux linked by phase A as a function of the rotor position………………….40

Figure 4.3, Block diagram of an FPGA………………………………………………….45

Figure 4.4, Block diagram of a Virtex IOB……………………………………………...46

Figure 4.5, Virtex architecture overview………………………………………………...50

Figure 4.6, Digital Design Flow…………………………………………………………52

Figure 4.7, Block diagram of the block sensetheta………………………………………56

Figure 4.8, Block diagram of the block galpha………………………………………….56

Figure 4.9, Schematic diagram of the multiplier core…………………………………...60

Figure 4.10, Schematic diagram of the core divider……………………………………..62

Figure 4.11, Block diagram of the block errorlow……………………………………….63

Figure 4.12, Block diagram of the Integrator circuit…………………………………….64

Figure 4.13, Block diagram for shifting and wrapping the angles……………………….65

Figure 4.14, Block diagram of commutator circuit for one phase ………………………66

Figure 4.15, ModelSim simulation result for calculating g(α) for a given α…………….68

Figure 4.16, ModelSim simulation result for calculating error………………………….69

Figure 4.17, Simulation result of the rotor position estimator…………………………..70

Figure 4.18, Simulation result showing the final output when α becomes equal to θ and

ix

 speed becomes zero…………………………………………………………71

Figure 5.1, Simulated estimated rotor position transient obtained from the Simulink

 model for θ=18°……………………………………………………………..73

Figure 5.2, Simulated estimated rotor position transient obtained from the post synthesis

 Verilog model for θ=18°. …………………………………………………...74

Figure 5.3, Simulated result of the calculated error for the Simulink model for θ=18°…75

Figure 5.4, Simulated error transient obtained from the post synthesis Verilog model for

 θ=18°………………………………………………………………………...76

Figure 5.5, Simulated estimated rotor position transient obtained from the Simulink

 model for θ=13°……………………………………………………………...77

Figure 5.6, Simulated estimated rotor position transient obtained from the post synthesis

 Verilog model for θ=13°……………………………………………………..78

Figure 5.7, Simulated error transient obtained from the Simulink model for θ=13°…….79

Figure 5.8, Simulated error transient obtained from the post synthesis Verilog model for

 θ=13°…………………………………………………………………………79

Figure 5.9, Block diagram of the SRM control system……………………………….…83

Figure 5.10, Experimental setup for testing the design……………………………….…84

Figure 5.11, Experimental FPGA output for the block galpha…………………………..86

Figure 5.12, Experimental FPGA output for the block errorlow……………………...…87

Figure 5.13, Experimentally measured FPGA output for an actual rotor position equal to

 θ=13º………………………………………………………………………..89

Figure 5.14, Experimentally measured FPGA result for the error for θ=13°……………90

Figure 5.15, Waveform showing the FPGA output for the block sensetheta…………....91

1

CHAPTER 1

INTRODUCTION

1.1 Introduction to Switched Reluctance Motor

The switched reluctance motor (SRM) is a doubly salient and singly excited machine

with an unequal number of rotor and stator poles to avoid magnetic locking between the

stator and rotor poles. The main advantages of Switched Reluctance motors are their

simple construction due to the absence of magnets, rotor conductors, and brushes and

high system efficiency over a wide speed range. However, the need for a direct rotor

position sensor to commutate the current from phase to phase synchronously with rotor

position has excluded the motor from many cost-sensitive applications.

For successful and reliable operation of the SRM, it is essential to know the rotor position

accurately. For high performance SRM drives used in aircrafts, ships, and servo systems

accurate rotor position is required to avoid initial starting hesitation. An encoder,

resolver, or Hall sensor attached to the shaft is normally used to supply the rotor position,

but the use of these sensors increases costs, decreases system reliability, and also

increases the overall physical envelope of the motor drive and the number of motor wires.

A variety of algorithms for sensorless control have been developed, most of which

involve evaluation of the variation of magnetic circuit parameters that are dependent on

the rotor position. These sensorless schemes use only terminal measurements and do not

require additional hardware while maintaining reliable SRM operation over the entire

speed and torque range with high resolution and accuracy.

In this thesis, a sensorless technique that has been developed to determine the SRM’s

rotor position is implemented using a field programmable gate array (FPGA) and the

performance of the FPGA implementation is compared to a signal processor

implementation.

2

1.2 Basic Structure and Principle of SRM Operation

A Switched Reluctance (SR) motor is a rotating electric machine where both the stator

and rotor have salient poles, with windings only on the stator. Windings of diametrically

opposite stator poles are connected in series or parallel to form one phase of the machine.

The cross-section diagram of a 4-phase, 8/6 (# of stator poles/# of rotor poles) SRM is

shown in figure 1.1.

The basic principle of a SRM operation is that when a stator phase is excited, the rotor of

the SRM always rotates to the nearest position of minimum reluctance (aligned position),

which corresponds to the minimum stored energy in the system.

When a stator pole pair is not aligned with a rotor pole pair, coils of the stator pole pair

are excited by a sequence of current pulses applied to the phase and a magnetic flux path

is created through the excited stator poles, air gap and the nearest rotor poles. Due to the

tendency for the reluctance of the flux path to minimize, the rotor poles are attracted to

the stator poles, producing torque. Then, when the stator pole pair becomes nearly

aligned with the rotor pole pair, the excitation to the active coils is removed so that torque

is not produced in the reverse direction; instead, coils of an adjacent stator pole pair are

excited so that another rotor pole pair is attracted to the new stator pole pair since they

are not aligned. By selectively exciting the stator pole pairs to attract rotor pole pairs,

A

B

C

D

A

D

C

B

rotor

Figure 1.1 Cross-section diagram of an 8/6, four-phase SRM

3

synchronous continuous motion and continuous torque are produced. The current pulses

need to be applied to the respective phase at the correct rotor position relative to the

excited phase. Therefore, it is evident that the rotor position plays a critical role in

determining which phase of the motor must be energized in order to produce the desired

torque in the desired direction.

1.3 Contribution of the Thesis

The rotor position information in SRM drives is essential in determining the switching

instants for proper control of speed, torque and torque pulsations. A shaft position

transducer is usually employed to determine the rotor position. In inexpensive systems

the rotor position sensor is comprised of a magnetized ring with Hall Effect sensors, or

opto-interrupters with a slotted disk that produce discrete signals with no information

between the pulses. In more expensive systems, a large number of pulses per revolution

can be obtained from a resolver or optical encoder. Alternatively, a large number of

pulses can be obtained by phase locking a high frequency oscillation to the pulses of

discrete position sensors. Systems with such high resolution can work well down to zero

speed. However, these sensors add complexity and cost to the system. Moreover,

electromagnetic interference and temperature effects tend to reduce the reliability of the

system. In order to avoid these difficulties some form of indirect position-sensing scheme

is desirable. Several indirect position-sensing methods have been patented and published

for sensorless control of SRM drives. The various indirect position-sensing techniques

presented in the literature have their own advantages and disadvantages. Furthermore, the

developed methods are application specific, depending on factors like, motor

characteristics, converter topology, control strategy etc. The design considerations

directly affect the type of indirect position scheme to be adopted for the drive.

The expected benefits of the indirect methods are: elimination of the electrical sensor

connections, reduced SRM size, no maintenance, insusceptible to environmental factors

and increased reliability. In addition, the expected features of desirable indirect methods

4

include: operating at zero speed and higher speed the same as conventional direct

position sensors.

 All of these indirect sensing methods use the instantaneous phase inductance variation

information in some way to detect the rotor position at low speeds. This is possible with

SRMs since the flux-angle-current characteristics vary significantly between the aligned

and unaligned positions of the doubly salient stator and rotor poles.

In this thesis, a new method which estimates the rotor position by comparing the

measured and estimated conductance values and calculating an error, which is input to a

state estimator, is implemented using a FPGA. The estimated rotor position angle is used

to control the electronic commutator, which controls when current is allowed in the

machine’s phases. The commutator is included in the FPGA with the state estimator and

error calculation hardware. The rotor position estimator model is created and simulated in

the Matlab/Simulink environment. The design is coded using the Verilog hardware

design language and synthesized using Xilinx tools and simulated using Modelsim

Simulator. The Simulated results obtained from both Simulink and Modelsim are

compared. The design is then implemented on an FPGA chip and tested.

 The block diagram of the entire motor drive system is as shown in figure 1.2.

5

Current
regulator current

SRM

Power
Converter

Rotor
Position

Estimator

Torque DC Power

Phase
Voltages

Commutator

SRM
Control

Torque or
Speed

Command
Current Command

On/Off
Angles

FPGA
Analog
Signal

Conditioning

Figure 1.2: The Block diagram of the entire SRM based motor system

The Power Converter typically uses Silicon MOSFETs to control the voltage to the

motor. The turning on and turning off of the MOSFETs is controlled by a current

regulator circuit that forces the SRMs phase currents to be equal to the current command.

The current command to the current regulator is the desired current in an SRM phase.

The current command depends on the desired average torque. The rotor position

estimator gives the rotor position which is given as input to the commutator, which

controls the current pulses, that is determines which phase has to be excited to get the

desired torque.

This thesis deals with the design of the blocks titled Rotor Position Estimator and

Commutator in the FPGA block, in figure 1.2. The inputs and outputs of the FPGA are

summarized in figure 1.3. The inputs to the estimator are used to compute the rotor

position. The instantaneous position information is used as an input to the commutator to

derive the instant of switching of the currents.

6

1.4 Outline of the Thesis
This thesis is organized as follows:

Chapter 1 gives a general introduction of switched reluctance motors: its basic structure

and principle of operation. Then the motivation of this thesis, which is the

implementation of the rotor position estimator on a Field Programmable Gate Array

(FPGA) is given.

Chapter 2 discusses the basic SRM model and the background issues related to the rotor

position estimator and SRM control.

Chapter 3 gives the basic SRM drive system model created in Simulink and Matlab and

important simulation results for the implementation of the rotor position estimator.

Chapter 4 introduces to the design of the rotor position estimator using the Verilog

Hardware design language and its synthesis and simulation results using Xilinx tools and

Modelsim Simulator. It also introduces to the Field Programmable Gate Array (FPGA).

Sensorless
Rotor

Position
Estimator

and
Commutator

 com

 thetah

 wmh

qcoma in

 vpower

gtheta in

isense

startin

Figure 1.3 Block Diagram of Rotor Position Estimator and Commutator

7

Chapter 5 gives the comparison of the simulation results obtained using both Simulink

and Modelsim. It also gives the implementation of the rotor position estimator on the

FPGA. Experimental results from a programmed FPGA are presented to verify the

correct operation of the rotor position estimator. The performance of the FPGA based

SRM rotor position estimator in terms of calculation time is compared to a signal

processor implementation of the same position estimator algorithm.

8

CHAPTER 2

DESIGN ANALYSIS OF ROTOR POSITION ESTIMATOR

2.1 Variation of inductance with rotor position

An efficient operation of the Switched Reluctance Motor (SRM) can be achieved only by

proper determination of the rotor position. Rotor position measurement or estimation is

an integral part of SRM control because of the nature of reluctance torque production.

The excitation of the SRM phases needs to be properly synchronized with the rotor

position for effective control of speed, torque and torque pulsation.

All SRM’s possess a unique relationship between phase inductance, phase current, and

rotor position, which makes prediction of rotor position possible. Since the rate of change

of phase current is dictated by the incremental inductance of the phase circuit, and the

incremental inductance is in turn a function of rotor position and phase current, rotor

position can be deduced from knowledge of phase current and its rate of change.

At low speeds, to estimate the rotor position of the SRM, the variation of the phase

inductance with rotor position can be used. But because the SRM operates with

substantial iron saturation at torque producing currents, the phase inductance is a function

of both rotor position and phase current.

The SRM motion is produced because of the variable reluctance in the air gap between

the rotor and the stator. When a stator winding is energized, producing a single magnetic

field, reluctance torque is produced by the tendency of the rotor to move to its minimum

reluctance position. When a rotor pole is aligned with a stator pole, as shown in figure

2.1, there is no torque because field lines are orthogonal to the surfaces (considering a

small gap). In this aligned position, the unsaturated inductance is a maximum since the

reluctance is minimum. If one displaces the rotor from the aligned position, there will be

torque production that will tend to rotate the rotor back to the aligned position.

9

If current is injected in the phase when the rotor is rotated to the unaligned position, as

shown in figure 2.2, there will not be torque production (or very little). If one displaces

the rotor from the unaligned position, then a torque is produced that tends to displace the

rotor to the nearest aligned position.

Rotor
pole

Rotor
pole

Unaligned position

 Figure 2.2 Unaligned Position

When rotor poles are aligned with the stator poles of a relevant phase the flux linkage, for

a given phase current, is maximized. The flux linkage is a maximum when the

unsaturated inductance is a maximum. However at this aligned position the relationship

between flux linkage and phase current is extremely nonlinear in a well-designed

machine, because the poles are magnetically saturated at the rated phase current.

rotor

Stator

Aligned position

Figure 2.1 Aligned Position

10

The flux linked by a phase versus phase current for different rotor positions is plotted in

figure 2.3. The slope of the flux curves at a fixed rotor position is the incremental phase

inductance.

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
.08

0

λ11 j θ ji,

400 Iji

Figure 2.3 Plot of the SRM’s phase flux versus current for different rotor

positions showing the effect of iron saturation.

Because this slope changes with current so does the phase inductance as shown in figure

2.4 where the phase inductance is plotted versus rotor position for different currents.

11

Figure 2.4 Plot of the SRM’s phase inductance versus rotor position for

different currents.

At low currents, the phase inductance has an essentially triangular shape versus rotor

position while at high currents the phase inductance is far from triangular. This makes

using the current in the torque-producing phase for rotor position estimation very

complex. Thus, the normal practice is to stimulate the non-torque-producing phases that

normally have zero current in them for some instantaneous rotor positions, with small

sensing currents, that do not saturate these phases and produce little torque, to do the

position estimation. Figure 2.5 shows the aligned incremental phase inductance versus

current for an experimental SRM. For iron saturation to be ignored in this machine the

sensing phase current must be less than about 2.0A. It has its maximum inductance when

it is in an aligned position and minimum inductance when unaligned. When the voltage is

applied to the stator phase the current in that phase increases and the SRM creates torque

in the direction of increasing inductance.

30 20 10 0 10 20 30 0

2

4

6

8

10
8.35

0.029

Lphplt ji j θ ,
1 10 3 −

⋅

30 30 − θd jθ

12

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10
8.416

0.034

LphvsI ji

1 10 3−
⋅

400 Iji
Figure 2.5 Plot of the phase inductance at the aligned

 position versus current for an SRM.

2.2 Theory behind the Rotor Position Estimator used in this thesis

When voltage is applied across the stator winding of the SRM as shown in the figure 2.6,

Vph

IL(t)

 t1 t/2 t

Figure 2.6 Current Profile across an inductor

13

the current in the inductor obeys the following equations

()
dt

di)t(L)t(V ph
phph θ= , () τ

τθ
τ

+= ∫ d
)(L
)(V)t(i)t(i

t

t
ph

ph
1phph

1

 (2.1)

Vph(t) is a constant from t1 to t with a value equal to the DC voltage, VDC. It will be

assumed that iph(t1) = 0 since t1 coincides with a zero phase current. It will also be

assumed that the modulation frequency Fmod is high enough that the inductance does not

vary over the time period of one modulation cycle. In this case

() () () tV)t(gd)(V)t(gd)(V
)t(L

1)t(i DC1
t

1t

ph1
t

1t

ph
1ph

ph ⋅⋅θ≈ττθ≡ττ
θ

= ∫∫ (2.2)

where g(θ) has been defined as the inverse of the phase inductance. Equation 2 gives the

current during the increasing current part of the waveform in figure 2.6 and is a positive

ramp as expected. The peak phase current (at t = t1 + DmodTmod) is modulated by the

inverse phase inductance function gph(θ) which does not depend on the details of the

phase current or voltage during one modulation cycle. Similarly the phase current ramps

down during the decreasing current part of the waveform generating a triangle of current

whose peak depends on gph(θ). Taking the average of the phase current over one

modulation cycle gives

() () () ∫ ∫∫ ∫
++

==
mod1

1

mod1

1

mod

T

1mod
1

T

1

1
mod

T1 dt)(
T

1)(dt)()(
T

1)(t
t

t

t

t

phph

t

t

t

t

phph dVtgdVtgiph ττθττθθ

()
4

)()()(t mod
T1 mod

TVgiiph DC
phsense θθθ =≡ (2.3)

Thus the average of the phase current over one modulation cycle is proportional to the

inverse phase inductance function gph(θ).

The gph(θ) functions (one for each phase) can be used to estimate the SRM’s rotor

position since they are known ahead of time from the machine’s characteristics and they

can be measured by exciting the phases of the SRM as described above. For simplicity in

14

what follows, it will be assumed that the known machine inductance profile has a

constant value equal to the unaligned inductance for rotor positions where the rotor and

stator poles do not overlap and it varies linearly from the unaligned inductance value to

the aligned inductance value when the poles overlap as shown in figure 2.7.

0 10 20 30 40 50 60 70 80 90
0

0.001

0.002

0.003

0.004

0.005
4.81 10

3−
×

6.575 10
4−

×

Lphg θpltnplt()

900 θpltdnplt

Figure 2.7 Ideal phase inductance profile versus rotor position.

An error between the estimated and measured angle cannot be computed directly since

the rotor position is not measured. However a suitable error can be defined using the

gph(θ) functions which can be measured using the average in equation 2.3. Let θ be the

actual rotor position and α be the estimated rotor position, then the error for data from

phases one and two is

())()()()(, 21121 αθαθαθ ggggerror −= (2.4)

Note that when θ = α, the error is zero. The total error is just the sum of the errors for

each phase pair. The error for a four phase SRM is

15

() () ()+−+−=)()()()()()()()(, 32232112 αθαθαθαθαθ ggggggggerrortot

() ())()()()()()()()(14414334 αθαθαθαθ gggggggg −+− (2.5)

The total error is also zero when θ = α. The total error depends on both θ and α and thus

on both θ and α – θ. It can be verified that this error has one sign for α – θ positive and

the opposite sign when α – θ is negative for any θ. This is shown in figure 2.8 for an

experimental 4 phase SRM for α – θ = +/-1º, +/-5º, and +/-10º and rotor positions from 0º

to 90º.

0 10 20 30 40 50 60 70 80 90
4

2

0

2

43.468

3.468−

error 1− nplt,()

error 5− nplt,()

error 10− nplt,()

error 1 nplt,()

error 5 nplt,()

error 10 nplt,()

900 θpltdnplt
Figure 2.8 The computed error for an experimental 4 phase SRM for α – θ = +/-1º,

 +/-5º, and +/-10º and rotor positions from 0º to 90º.

Thus, this error can be used in a state estimator to estimate the rotor position. The gain of

the estimator depends on rotor position but because the sign of the error does not vary

with rotor position, it will be possible to design a stable state estimator.

16

2.3 Rotor Position State Estimator Equations

Consider the physical system of a motor. The state equations for the physical system are

of the form

Xp = A xp + B up (2.6)

Yp = C xp (2.7)

Where the subscript p indicates the variables are for the physical system. The motor’s

acceleration is given by

 loade
m TT

dt
Jdw

−= (2.8)

 where, J= Moment of Inertia

 onaccelerati
dt

dwm
=

 Te= electrical Torque

 Tload = mechanical Torque

When the motor runs at steady speed, the acceleration is zero because the load and

electrical torques balance. Therefore

dt

dwm =0 (2.9)

The rate of change of rotor position is the rotor speed, wm given by

m
dt
d ωθ

= (2.10)

where θ is the angular position of the rotor of the motor.

The equation (2.6) can be deduced from equations (2.9) and (2.10)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
mmdt

d
ω
θ

ω
θ

00
10

 (2.11)

17

Since time rate of change of the rotor position is nothing but ωm (the rate of change of

position is speed), the first row of the matrix is [0 1] and since the acceleration is zero,

the rotor speed ωm is zero, hence the second row of matrix is [0 0].

The state equations for the state estimator in the linear case are

Xe = A xe + B ue + H (Ye – Yp) (2.11)

Ye = C xe (2.12)

Since the model system used to estimate the unmeasurable state is not exactly the same as

the real physical system, an error between what is measured and the estimator’s

prediction of what is measured (Y) is input to the model estimator equations. In equation

2.11 this error input is given by H (Ye – Yp), where H is a constant gain matrix to be

determined by the designer such that the error between the estimated state and the actual

state values decays to zero (thus H (Ye – Yp) decays to zero) and thus the estimated state

is the correct value. The gain matrix H is adjusted to see how fast and with what

dynamics the state error decays to zero

The error is the difference between the actual and the estimated values and can be

computed by

d Error / dt = d (Xp - Xe) / dt

 = A Xp + B Up - A Xe + B Ue + H (Ye – Yp)

 = A (Xp- Xe) – H(C Xe - C Xp)

 = (A+HC) (Xp- Xe)

 = (A+HC) ε (2.13)

ε= ε0 e (A+HC) t

18

For the error to decay to zero the real parts of the eigen values of the matrix (A+HC) must

be negative. The matrix H is chosen so that the error decays with the desired dynamics.

For the SRM rotor position estimator the state vector and state vector error vectors are

⎥
⎦

⎤
⎢
⎣

⎡
=

m
X

ω
θ

 (2.14)

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
αωω

αθ
ε

m
 (2.15)

where α is the estimated rotor position angle and ωα is the estimated speed of the rotor.

Differentiating equation (2.14),

⎥
⎦

⎤
⎢
⎣

⎡
=

mdt
d

dt
dX

ω
θ

=)(
1
0

00
10

load
m

TTe −⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
ω
θ

 --- (from equation (2.8))

But because of equation (2.9), (Te- Tload) is equal to zero.

The equation for the state estimator is defined as

() ()(+−+−⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)()()()()()()()(

00
10

32232112
2

1
αθαθαθαθ

ω
α

ω
α

αα
gggggggg

H
H

dt
d

())))()()()(()()()()(14414334 αθαθαθαθ gggggggg −+−

 =),(
00
10

2

1
αθ

ω
α

α
toterror

H
H

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 (2.16)

),(.1 αθωα
α toterrorH

dt
d

+= (2.17)

19

where errortot(θ,α) was defined previously in equation 2.5. To compute the stability of the

state error e the nonlinear error function must be linearized.

() θθθθ εεθ
θ

εθαθθαθ ⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

≈=−= 0,),(),(),(),(tottottottot error
e

errorerrorerror (2.18)

The partial derivative in equation 2.18 can be estimated from the results in figure 2.8.

With the linearization of the error function the error dynamics are governed by

()

()
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡

ω

θ

θθ
θ

θθ
θ

ω

θ

ε
ε

εθ
ε

εθ
ε

ε
ε

0,(

1,(

0,1

0,1

tot

tot

errorH

errorH

dt
d (2.19)

The equations (2.16) and (2.17) can be represented by the block diagram shown in figure

2.9.

H1

H2 ∫

∫
ωα

Low Pass
Filter

Compute
errortot(θ,α)

gi(θ)iφ

Compute
gi(α) gi(α)

α

Figure2.9. Block diagram representation of the state estimator

This system is used to estimate the values of rotor position and rotor speed. In this thesis,

this system is coded using the Verilog hardware design language and then is implemented

20

on an FPGA chip. The programmed FPGA chip would be suitable for use as part of the

SRM motor control.

The block diagram of the control system of the Switched Reluctance Motor is as shown

in figure 2.10.

H1

H2 ∫

∫

ωα
Low Pass

Filter
Compute
error(θ,α)

gi(θ)
iφ

Compute
gi(α)

gi(α)

α
Comutator

Current
Regulator

FPGA

Microprocessor
Torque / Speed Command

Phase
on/off
angles

Current
Command

On
/off

Figure 2.10 Block Diagram of the SRM control system

The block diagram of the block FPGA, which is actually the basis of this thesis, is as

shown in the figure 2.11.

21

H1

H2 ∫

∫

ωα
Compute
error(θ,α) gi(θ)

Compute
gi(α)

gi(α)

α
Comutator

FPGA

Phase on/off angles

Figure 2.11 Block diagram of the FPGA that is the subject of this thesis

The estimated value of rotor position, α is given as input to the commutator circuit.

The basic block diagram of the commutator is as shown in the figure 2.12.

The commutator gets the estimated rotor position angle as input, which it compares with

the desired angle range and determines which of the four phases is to be excited and then

accordingly turns on the phase that is to be excited. Thus, the current is given as input to

that phase, which will in turn produce the desired torque. The commutator compares the

instantaneous estimated rotor position α with the values (θsm, θlrg) which are given as

input through ‘θcomin’ and commutates the current in the corresponding phase. The

Commutator

α

θcomin

startin

com

Figure2.12 Block diagram of Commutator

22

commutator insures that the currents in the stator circuits are switched on and off in

accordance with the rotor position. The torque can be controlled to give a resultant which

is positive (i.e. motor action) or is negative (i.e. generator action) simply by switching the

current in the coil on and off at appropriate instants.

A model of the circuitry in the FPGA and which is the subject of this thesis has been

created in Simulink prior to this thesis research and was available to facilitate this

research. This model will be discussed in detail in Chapter 3.

23

CHAPTER 3

SIMULINK MODEL OF THE CIRCUIT TO BE DESIGNED

3.1 Introduction to Simulink model

The simulation of a system is important in view of its design and experimental

realization. Simulation using Matlab/Simulink allows a high flexible modeling

environment to model power electronic systems containing electrical machinery,

electronic controls, and power circuits. This thesis implements part of the control design

for a power electronics controller for a SRM. During this thesis a complete

Matlab/Simulink model of this power electronics system was available. It included a

model of the part of the control being implemented here. All Simulink simulations are

documented by their block diagrams, their corresponding special Matlab functions and

their input parameters. A strong aspect of the SRM simulation using Simulink is the use

of conventional blocks allowing easier understanding of the program’s structure.

Figure 3.1 shows the block diagram of the Rotor Position Estimator and Commutator

with all the inputs and outputs.

Rotor
Position

Estimator

 θh

 ωmh

gthetain

vpower

isense

qcoma in

startin

θphin

Figure 3.1 Block Diagram of Rotor Position Estimator and Commutator

Commutator

com

24

Consider the block diagram of the Sensorless Rotor position estimator. The input gthetain

represents the inverse inductance value of the actual rotor position g(θ). The input

vpower is the voltage applied to the motor. The input isense is the select signal given as

input to the estimator to choose between g(θ) and g(α). Recall that the error is defined as

() () ()+−+−=)()()()()()()()(, 32232112 αθαθαθαθαθ ggggggggerrortot

() ())()()()()()()()(14414334 αθαθαθαθ gggggggg −+−

If the measured g(θ) from a particular phase is not available because the rotor is in a

position where that phase is producing torque (as seen in figure 3.2), the calculated g(α)

for that phase is used instead. The signal isense is high when the rotor is in a position

where the given phase is not producing torque and thus is being energized with sense

pulses to produce g(θ)and is low when the rotor is in a position where the given phase is

producing torque as shown in figure 3.3. When the select signal isense is high, g(θ) is

selected and thus used in the error calculation used to estimate the rotor position. When

isense is low, g(α) for the given phase is selected because the g(θ) for that phase is not

available, and thus error is computed without the g(θ) information from the given phase.

The error is computed using only the g(θ)s from the other phases.

Sense Current

Torque Producing Current

Fig. 3.2 Phase current showing the torque producing and sense phase currents

25

Figure 3.3 Plot of measured (from simulation) g1(θ) and the select signal isense for

phase one.

The output ωmh represents the speed of the motor. The output θh represents the estimated

rotor position, α. This rotor position angle, α is the input to the commutator as θphin. The

rotor position angle is shifted to produce 3 additional angles. These shifted angles are

input to the same commutator hardware to produce the commutator output for the other 3

phases.

3.2 Commutator Block

Now, consider the commutator block. The input startin is the select signal given to the

commutator, which tells the commutator whether the user wants the SRM to operate

normally and produce torque or to go into startup mode. If the startin select signal is high,

the control and position estimator go into start up mode. In this mode the control

continuously applies sense pulses to all four phases of the SRM so that the SRM’s rotor

position can be estimated without a net torque being produced and without the rotor

rotating. When the user wants the SRM to produce torque, the input startin is made low

taking the control and position estimator out of the startup mode. Now the control

commutates the SRM so that it produces the commanded torque.

The input qcomin is a concatenation of the angles θsm, θlrg and a one bit signal θlrg>θsm,

given as a single digital word.

26

The angle θsm is the smaller of θsm and θlrg. If the motor is rotating in the forward

direction θsm is the turn-on angle and θlrg is the turn off angle and the reverse is true if the

motor is rotating in the reverse direction. These angles are the rotor’s position defined

relative to a given stator. This rotor position is near the rotor’s unaligned position with

respect to the stator pole.

The commutator checks if the estimated rotor position angle α falls in between θsm and

θlrg. If the estimated rotor position is between these two angles the commutator outputs a

one, otherwise it outputs a zero as shown in figure 3.4. This is done for all the four phases

of the stator and accordingly each phase of the stator is commutated enabling the SRM to

produce torque.

The signal θlrg>θsm is high when θlrg is greater than θsm, i.e. the normal case and low

when θlrg is smaller than θsm, i.e. when the angles are outside the range of –30º to +30º

and they must be wrapped to stay within this range as illustrated in figure 3.5 for forward

rotor rotation.

-30º +30º

1

Commutator
output

Forward direction
θsm θlrg

θsm = θon

θlrg = θoff

θlrg > θoff = 1

-30º +30º

1

Commutator
output

Reverse direction
θsm θlrg

θsm = θoff

θlrg = θon

θlrg > θoff = 1

Figure 3.4 Commutator output for forward and reverse directions under normal

conditions.

27

-30º +30º

1

Commutator
output

Forward direction
θsm θlrg

θsm = θon

θlrg = θoff

θlrg > θoff = 0

Conceptual

-30º +30º

1

Commutator
output

Forward direction
θsm θlrg

θsm = θon

θlrg = θoff

θlrg > θoff = 0

Actual

Figure 3.5 Commutator output for forward rotation when the turn on angle is

advanced beyond the allowed range.

The output com is the four-bit output from the commutator corresponding to the four

phases, each bit being high or low according to whether that phase is to produce torque or

not.

The commutation for all possible combinations of α with respect to θsm, θlrg and θlrg>θsm

is discussed below.

θph> θsm θph<θlrg θlrg>θsm com

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Table 3.1 Truth Table for the Commutator

28

As seen from the table 1.1, the commutator turns on for only three cases.

1) When the estimated rotor position θph falls in between θsm and θlrg, i.e., θph is greater

than θsm and smaller than θlrg and θlrg is greater than θsm.

2) When qph is larger than both θsm and θlrg and θlrg is smaller than θsm.

3) When qph is smaller than both θsm and θlrg and θlrg is smaller than θsm.

This truth table is obtained from figures 3.4 and 3.5.

A Simulink model developed for the commutator block and available for this thesis

showing all the four phases is as shown in figure 3.6. Note that in the Simulink model the

letter q is used for θ and no subscripts are used. The figure shows the block named four

wrapped angles in which the shifting of the rotor position angle by 45˚ takes place for

each phase, and then wrapping also takes place such that the rotor position angle for each

phase lies in between -30˚ and +30˚. The blocks named commutator1, commutator2 etc.

represents the commutator for each phase.

29

4
Com4

3
Com3

2
Com2

1
Com1

Demux

iph in
reg1

in_1

qa

qb
qc

qd

four wraped
angles

qsm

qlrg

qlrg>qsm

qph

start in

com on

commutator4

qsm

qlrg

qlrg>qsm

qph

start in

com on

commutator3

qsm

qlrg

qlrg>qsm

qph

start in

com on

commutator2

qsm

qlrg

qlrg>qsm

qph

start in

com on

commutator1

com4

To Workspace5

com3

To Workspace4

com2

To Workspace3

com1

To Workspace2

qad

To Workspace1

-K-

Gain1

3
qphin

2
startin

1
qcomin

Figure 3.6 Simulink model of the commutator block.

30

Figure 3.7 shows the Simulink model of the block commutator1, which is a sub-block of

the commutator model. As seen in the figure, the angle θsm (qsm), the angle θlrg (qlrg), the

signal corresponding to θlrg>θsm (qlrg>qsm), the startin signal and the estimated rotor

position angle are the inputs. The model checks if the rotor angle is greater than θsm and

also if it is less than θlrg and accordingly gives the 3-bit input to the look-up table which

contains the corresponding truth-table shown in table 3.1. The model also checks the

status of the startin signal. The output of the AND gate is the output of the commutator

for that phase. If it is one, the phase is energized to produce torque and if it is zero, the

phase is energized with sense pulses.

1

com on

<=

q less
qlrg

>=

q greater
qsm

Within angle
range2

qtesta

To Workspace4

qlessa

To Workspace3

qgreatera

To Workspace2

comam

To Workspace1

Mux

Mux2

NOT

Logical
Operator2

AND

Logical
Operator1

5

start
in

4

qph

3

qlrg>qsm

2

qlrg

1

qsm

Figure 3.7 Simulink model of the commutator block for one phase

31

3.3 Rotor Position Estimator

Now consider the block diagram of the Sensorless rotor position estimator in figure 3.1

shown in figure 3.8. The signals g(θ) (gthetain), VDC (vpower) and isense (isense) are

inputs to the error computing block. Based on these inputs and also the shifted and

wrapped estimated rotor position α (alpha), the error is calculated.

Figure 3.8 Simulink model of the rotor position estimator.

As discussed in chapter 2, the error is calculated using the measured inverse inductance

values g(θ) and the computed inverse inductance values g(α) using equation 2.5. To

compute the error, the values of g(α) for all four phases must be computed.

32

Figure 3.9 shows the Simulink model for calculating g(α) for each SRM phase.

1

g(alpha)
Switch

<=

Relational
Operator

Mux

Mux

f(u)

Fcn1

f(u)

Fcn

-C-

Constant

|u|

Abs

2
vpower

1
alpha

Figure 3.9 Simulink model of the block galpha to calculate g(α)

While calculating g(α), the absolute value of α is used since the function is an even

function of α. The inverse inductance function g(α) is a function of α and should be equal

to the measured g(θ) function obtained by demodulating (low pass filtering) the sense

pulse currents. The sense pulse currents are triangular in shape with a peak value

determined by the SRM’s phase inductance. Thus g(α) is calculated by using the

following equation.

)alpha*midealLaideal(*F*100
)D(*vpower)g(

mod2

2mod

−
=α (3.1)

where, vpower is the input power.

Dmod is the modulation duty cycle in % = 40

Fmod is the modulation frequency =1000Hz

Laideal is the inductance value in the aligned position= 0.0084

33

mideal= (Laideal-Lpideal)/thetaTm

Lpideal is the phase inductance at a rotor position of +/- 24º

thetaTm is the torque producing angle range, and 100 is to convert the % duty cycle to its

decimal value.

In the Simulink model, equation 3.1 is computed by the block labeled Fcn, if alpha

<thetaTm (α<24˚), otherwise equation 3.2 computed by Fcn1 is used.

)thetaTmalpha(*mpidealLpideal(*F*100
)D(*vpower)g(

mod2

2mod

−−
=α (3.2)

mpideal= (Lpideal-Luideal)/ (thetaum-thetaTm);

thetaum is the unaligned rotor position angle in radians

It is known that the maximum inductance occurs at the position of minimum reluctance

when the rotor pole aligns with the stator poles, and the minimum inductance occurs

when the rotor and stator poles are completely unaligned. Therefore the inverse

inductance g(α) is maximum when the rotor and stator align with each other and is

minimum when unaligned.

Figure 3.10 shows the alpha profile varying between -30˚ to +30˚ and figure 3.11 shows

the corresponding g(α) profile obtained by simulating the block galpha.

34

Figure 3.10 The rotor position angle profile.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

50

100

150

200

250

300

350

time

ga
lp

ha
1

Figure 3.11 The inverse inductance value profile.

0 0.005 0.01 0.015 0.02 0.025 0.03
-30

-20

-10

0

10

20

30

time

al
ph

a1
 in

 d
eg

re
es

35

 Therefore, as seen in these figures, when a rotor pole is in complete alignment with a

stator pole i.e., α is 0˚, the inductance is at its maximum, and therefore the inverse of

inductance, g(α) is minimum. As α increases from 0˚ to 30˚, inductance decreases thus

increasing the value of g(α) to the maximum value and as α decreases from 30˚ to -30˚,

g(α) also decreases to the minimum value.

Now, consider the Simulink model of the block for computing the error. Four of the

galpha blocks shown in figure 3.9, one for each phase, are instantiated in the error block.

The values of α for each phase are the input to each of these blocks and they compute

outputs g(α) for all four phases. The definition of the error requires all four values of the

computed g(α)s and all four values of the measured g(θ)s, one for each phase. If a phase

is producing torque there is no measured g(θ) from that phase. In this case g(α) is

substituted for g(θ). Depending on the input signal isense, a switch is used to select if

g(α) should be substituted for g(θ). Four switches are used, one for each of the four

phases. Then the values of g(α) and g(θ) of all the four phases are connected through

multiplier blocks and then are added or subtracted accordingly to calculate the error. The

simulation result from the error block for values of α and θ varying as shown in figure

3.10 is given in figure 3.12. As seen in the result, the average error goes to zero as the

estimated value of the rotor position (α) becomes equal to the actual value of the rotor

position (θ). The average value is zero though there are fluctuations.

36

0 0.005 0.01 0.015 0.02 0.025 0.03
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

time

er
or

rlo
w

Figure 3.12 The error calculated for the actual and estimated inverse inductance

profile.

Now consider the Simulink model of the rotor position estimator shown in figure 3.8. The

sub-block galpha and the error block are instantiated in this main block.

The error calculated by the error block is used as the input to a state estimator to estimate

the rotor position. This is done using the equations in chapter 2. The gains in the state

estimator are chosen such that the state estimator is stable and its output converges to the

correct values rapidly. The error multiplied with a gain factor is given as an input to an

integrator whose output is the angular speed of the motor. Figure 3.13 shows the

predicted estimated SRM speed using the Simulink model when the actual speed is

constant and there is an initial error is the estimated rotor position. From the figure, we

observe that the speed reaches its required constant value as the error between the actual

and estimated rotor position tends to zero. Figure 3.14 shows the estimated rotor position

for the SRM. The estimated angle has been wrapped such that it falls in between -30˚ and

+30˚.

37

0 0.005 0.01 0.015 0.02 0.025 0.03
208

210

212

214

216

218

220

222

224

226

228

time

w
m

h

Figure 3.13 Estimated rotor speed for the SRM in radian/second (for a constant

speed of 2000rpm).

0 0.005 0.01 0.015 0.02 0.025 0.03
-30

-20

-10

0

10

20

30

time

th
et

ah
 in

 d
eg

re
es

Figure 3.14 Estimated rotor position for the SRM

The next chapter describes the design and implementation of the commutator and

position estimator design described in this chapter using an FPGA.

38

CHAPTER 4

IMPLEMENTATION OF THE ROTOR POSITION
ESTIMATOR ON AN FPGA

4.1 Block Diagram of the system

The block diagram of the rotor position estimator and commutator system summarizing

the inputs and outputs is as shown in the figure 4.1.

The number of bits required to represent the inputs and outputs are selected to obtain the

required accuracy. The width of the inputs and outputs must be determined in order to

implement the position estimator and commutator. Each of the inputs and the outputs and

their bit representation are discussed in this section.

The input ‘qcomain’ is a concatenation of the angles θsm, θlrg and the signal θlrg>θsm,

which are given as a single input. As discussed earlier θsm and θlrg establish the range of

rotor positions within which an SRM phase is to produce torque. Since there are six rotor

poles, the angle between the rotor poles is 60º. Thus the values for θsm and θlrg can be

anywhere between -30º to +30º. So, a 6-bit number can be used to represent these angles

to within approximately 1º since 63126 =− . However, the allowable error is 0.5º, so that

it is necessary to choose a 7-bit number to represent the angle. One more bit is required to

Position
Estimator

and

Commutator

qcomain

vpower

gthetain

isense

startin

com

α

wmh

17

6

9

4

1

4

8

10

Figure 4.1: Block diagram of the Position Estimator and Commutator

39

represent the sign. Thus, an 8-bit word is used to represent each of θsm and θlrg. Since

θlrg>θsm is a select signal as described in chapter 3, it is a 1-bit number. Thus, a 17-bit

number is required to represent ‘qcomain’.

The value of the DC input voltage ‘vpower’, which is the voltage applied to the motor, is

typically 42 volts for the SRM drive system under consideration. The number of bits

chosen to represent the value of the voltage is 6 bits since

63126 =− .

Thus assuming the input voltage is always less than 63V, the voltage can be represented

to within 1V. The actual rotor position angle is unknown and what is measured is g(θ)

(gtheta). This signal is measured from the demodulated (low pas filtered) current sense

pulses. The analog version of this signal will be scaled to be between 0 and 12V. This

analog signal will be converted to digital form before being input to the FPGA. The input

‘gthetain’ represents the four different g(θ) signals, one for each of the four phases. As

seen in the Simulink block diagram in Fig. 4.1, ‘gthetain is represented by a dark line

indicating that it is a bus, consisting of input from all the four phases. The measured g(θ)s

will be used to compute an error with the calculated g(α)s. To insure the accuracy of this

error calculation which includes multiple multiplies and adds, the number of bits used to

represent g(θ) in digital form is 9 bits, one bit more than used for the angles.

The input ‘isense’ is the select signal given as input to the estimator to choose between

using g(θ) and g(α) in the error calculation depending on whether the given phase is

producing torque. There is one ‘isense’ select line for each of the four phases. Thus

‘isense’ is a 4-bit number, with each bit coming from one of the four phases.

The input ‘startin’ is the select signal given to the commutator and is used to turn the

commutator on or off. Thus, it is a 1-bit number.

The output ‘wmh’ is the estimated angular speed of the motor. For the SRM this position

estimator is being designed for the machine inductance and the smallest current values

that can be measured while still measuring the largest current values that are required

limits the maximum speed the position estimator can operate at 2,500rpm which gives the

maximum value of speed to be 262 radian/second. Therefore, the number of bits required

40

to represent wmh is 10 bits including the sign bit which is required because the speed is

negative if the SRM is turning backwards.

Consider the number of bits to represent the estimated rotor position, α. The rotor

position can vary from 0 to 360˚. Since there are 6 rotor poles, the angle between each of

the poles is 60º. Now considering the position of the rotor pole with respect to the stator

pole was defined to vary from -30º to +30º, the number of bits chosen for representing the

rotor position should be able to represent 60 values including the sign. Choosing the

allowable error for the estimated rotor position to be 0.5º, a 7-bit number is chosen. Since

a sign bit is also required, a total of 8 bits is required to represent the estimated rotor

position.

4.2 Angle wrapping

The fundamental principle of operation of a SRM is the variation in flux linkage with the

change in the angular position of the rotor. When a rotor pole pair aligns with the stator

pole pair, the flux linked by that stator phase is at a maximum. When the rotor pole pair

moves away from the stator pole pair, it becomes unaligned with the stator phase, then

the flux linked by the stator phase is at a minimum. Thus, the stator flux goes from

maximum to its minimum as each of the six rotor poles pass through the stator poles.

The flux profile versus rotor position is as shown in figure 4.2. Since the SRM for which

the position estimator is being implemented has four phases and its rotor has six poles,

the flux will repeat six times in 360º so the angular period is 360º /6 = 60º.

Figure 4.2: Flux linked by phase A as a function of the rotor position

-60 -30 0 30 60
 unaligned aligned unaligned

 θ
Rotor Position

λ

41

As seen in the flux profile, the flux changes from unaligned to aligned position when the

rotor position changes from -30º to 0º and then goes back to unaligned position from 0º to

30º. Since it repeats after every 60˚, it is sufficient to consider only the angles from -30º

to +30˚ of rotor rotation.

Since there are four stator phases, angle between them is 360˚/4 = 90˚. Hence, the angle

between each of the eight stator poles is 45º. Therefore, once the rotor position for one

phase has been determined, by shifting the rotor position by multiples of 45˚, the rotor

position for all the other phases is determined relative to their own stator poles.

The rotor position has the periodicity of the phase flux so that it will repeat every 60º just

as the phase flux does. Thus, the rotor position only needs to be estimated for the interval

from -30º to +30˚. Thus when the rotor position reaches 30˚ it goes back to -30˚. This is

known as wrapping the angle at 30˚. Assume that θ represents the actual angle and α

represents the wrapped angle confined between -30º and +30˚ Then if θ = 45º, then α= θ-

60˚=-15˚.Similarly, if θ = 150º, then α= θ-120˚=30˚ and so on.

The type of the input and output signals and the number of bits assigned for each of them

is summarized in the table 4.1.

42

Table 4. 1: The Input and Output signals of the circuit represented in the HDL code

I/O signal

Type

I/O, the signal

represents

of bits used

to represent

the signal

qcomain

input

Turn-on and turn-

off angles input to

all four phases of

commutator

17

vpower Input
Voltage to the

motor
6

gthetain Input
g(θ) input from all

four phases
9*4=36

isense Input
sense select signal

to estimator
1*4=4

startin Input

Start signal to all

four phases of

commutator

1

com Output

Output from all

four phases of

commutator

1*4=4

α Output
Estimated rotor

position
8

wmh Output Rotor speed 10

43

4.3 Selection of the programmable device

The different programmable devices that can be used to implement the position estimator

are

1. Microcontroller

2. Digital Signal Processor (DSP)

3. Field Programmable Gate Array(FPGA)

While microprocessors have been the dominant devices in use for general-purpose

computing for the last decade, there is still a large gap between the computational

efficiency of microprocessors and custom silicon. Reconfigurable devices, such as

FPGAs, have come closer to closing that gap, offering a 10 times benefit in

computational density over microprocessors, and often offering another potential 10

times improvement in yielded functional density on low granularity operations. On highly

regular computations, reconfigurable architectures have a clear superiority to traditional

processor architectures. On tasks with high functional diversity, microprocessors use

silicon more efficiently than reconfigurable devices. Microprocessors are not specifically

designed to do calculations in real time.

FPGAs have proven extremely efficient for certain processing tasks. The key to their

cost/performance advantage is that conventional processors are often limited by

instruction bandwidth and execution restrictions or by an insufficient number or type of

functional units. FPGAs exploit more program parallelism. By dedicating significantly

less instruction memory per active computing element, they achieve a 10 times

improvement in functional density over microprocessors. At the same time this lower

memory ratio allows reconfigurable devices to deploy active capacity at a finer grained

level, allowing them to realize a higher yield of their raw capacity, sometimes as much as

10 times than conventional processors.

44

Based on all the factors, the FPGA is expected to be able to perform the position

estimation function with a shorter sampling/update time. The position estimator and

commutator functions described above have already been implemented by engineers at

Mechatronic Systems using a TMS320C6701-150 DSP based commercial DSP board.

This implementation resulted in a sampling and position estimate update time that just

met the SRM drive-system requirements. Simulink simulations showed that an analog

(zero sampling and up date time) implementation of the position estimator resulted in

smaller errors compared to the DSP implementation. Thus, the system performance will

be improved if the sample and position estimate update time is reduced from what was

achieved with the DSP. Thus, the research presented here was undertaken to verify that a

FPGA based implementation of the position estimator and commutator would result in a

design with a reduced sample and update time compared to the DSP implementation and

to quantify the improvement.

4.4 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a microchip made with millions of

programmable logic gates. FPGAs are readily programmable and can be programmed and

reprogrammed repeatedly. They must be programmed by users to connect the chip’s

resources in the appropriate manner to implement the desired functionality.

A FPGA contains a regular, extendable, flexible and programmable architecture of logic

blocks surrounded by input/output blocks on the perimeter. These functional blocks are

linked together by a hierarchy of highly versatile programmable interconnects.

The basic block diagram of an FPGA is as shown in the figure 4.3.

.

45

Figure 4.3 Block diagram of an FPGA

The basic components of an FPGA are:

 1. CLBs (Configurable Logic Blocks)

2. IOBs (Input/Output Blocks)

3. Switch matrix (resources for interconnection)

An FPGA consists of thousands of CLBs. Each CLB consists of a small number of inputs

and outputs, a look-up table (LUT), flip-flops and a few basic gates. Multiplexers are

used to configure the interconnections between CLB components and the inputs and

outputs of the CLB. LUTs are used to implement combinational logic by implementing

the truth tables corresponding to the logic circuit. The flip-flops are used as sequential

components and can be configured to operate on either edge of the clock or as latches.

Thus, a CLB can be configured to implement the combinational and sequential

46

components that have been assigned to it. Loading these configuration bits for each CLB

within the FPGA is referred to as the process of programming the FPGA.

The perimeter of configurable Input/Output Blocks (IOBs) provides a programmable

interface between the internal logic array and the external device package pins. Each IOB

contains a few logic gates and flip-flops. The input and output signals can directly pass to

the pin or can be stored in a flip-flop as shown in figure 4.4.

Figure 4.4 Block diagram of a Virtex IOB

Programmable-interconnection resources within the FPGA provide routing paths to

connect inputs and outputs of the IOBs and CLBs into logic networks.

The interconnection wires in the FPGA are organized as horizontal and vertical routing

channels between rows and columns of logic blocks. At the intersection of the horizontal

and vertical wires are switches, which collectively form a switch matrix.

47

The FPGA user logic functions and interconnections are determined by the configuration

program data stored in internal static memory cells.

The factors affecting the selection of the programming device are:

1. Number of available IOBs

2. Total number of system gates.

Number of IOBs

The Input/Output Block (IOB) provides a programmable, bidirectional interface between

I/O pin and the FPGA’s internal logic.

Since the total number of bits required to represent all of the inputs and outputs is 81and

each of the bits is assigned to a separate I/O port, the number of independent I/O ports

required is 81. This method of transmitting data, where each bit of information is

assigned to an individual port is called parallel data transmission.

Number of system gates

There are many intermediate signals generated, like the signal to represent the error

calculated between g(θ) and g(α), the signals given as input and taken as output from the

two integrators. There are many calculations including multiplications and divisions to be

done, which require many logic gates.

4.5 Type of FPGA

Based on the availability of the required number of IOBs and the number of system gates

and multipliers, either of the following devices can be used.

1. Virtex XCV800

2. Spartan XC3S1000

48

The datasheets for each of these devices are found in the Xilinx website, the link to which

is given in the reference 5 and 6.

The number of available resources in each of the FPGA chips, as given in the data sheets

is summarized in the table 4.2.

Device

Virtex XCV800

Spartan XC3S1000

System gates

888,439

1M

Total CLBs

4704

1920

Maximum user I/O

240

391

Dedicated multipliers

N/A

24

Table 4.2 Comparison of Resources available in Virtex and Spartan

The design is implemented on both these devices to determine which would be a better

choice. The implementation results are as shown below.

Implementation results using Virtex XCV800

Release 6.1.03i Par G.26

Copyright (c) 1995-2003 Xilinx, Inc. All rights reserved.

Selected Device: v800hq240-4

 Number of Slices: 7844 out of 9408 83%

 Number of Slice Flip Flops: 10787 out of 18816 57%

 Number of 4 input LUTs: 7178 out of 18816 38%

 Number of bonded IOBs: 129 out of 170 75%

49

 Number of GCLKs: 1 out of 4 25%

Implementation results using Spartan XC3S1000

Selected Device: 3s1000ft256-4

 Number of Slices: 7705 out of 7680 100% (*)

 Number of Slice Flip Flops: 10769 out of 15360 70%

 Number of 4 input LUTs: 7103 out of 15360 46%

 Number of bonded IOBs: 92 out of 173 53%

 Number of MULT18X18s: 28 out of 24 116% (*)

 Number of GCLKs: 3 out of 8 37%

WARNING:Xst:1336 - (*) More than 100% of Device resources are used

As one can observe the number of slices (logic blocks) used by the Spartan chip is more

than what is available and hence the design wouldn’t fit onto the Spartan XC3S1000. The

number of multipliers available in the Spartan chip is also less than required. Though

using the Core generator would reduce the number of multipliers required it would

increase the number of logic gates required. Thus, the Spartan XC3S1000 is not a feasible

choice. As seen in the implementation result of the Virtex chip, the design will fit onto it

while not having excessive resources unused. Hence, the Xilinx Virtex XCV800 is

chosen to implement the circuit and test it.

4.6 Xilinx Virtex XCV800

The general characteristics of a FPGA have been discussed in the previous section. The

main characteristics of the chosen FPGA, the Xilinx Virtex XCV800 are discussed here.

The Virtex user-programmable FPGA, shown in Figure 4.5, comprises two major

configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs).

CLBs interconnect through a general routing matrix (GRM). The GRM comprises an

50

array of routing switches located at the intersections of horizontal and vertical routing

channels. Each CLB nests into a VersaBlock that also provides local routing resources to

connect the CLB to the GRM. The VersaRing I/O interface provides additional routing

resources around the periphery of the device. This routing improves I/O routability and

facilitates pin locking.

Figure 4.5Virtex architecture overview

The Virtex architecture also includes dedicated block memories, Clock DLLs for clock-

distribution delay compensation and clock domain control and 3-State buffers (BUFTs)

associated with each CLB that drive dedicated segmentable horizontal routing resources.

51

4.7 Digital Design Flow

The design flow is the sequence of events that begin with some abstract specification of a

design and ends with a configured FPGA. This design procedure consists of five steps:

Design entry, Simulation, Synthesis, Implementation, Device download and program file

formatting. The design flow described here is in reference to the Xilinx ISE (Integrated

Synthesis Environment) 6.1i CAD tool and is as illustrated in the figure. However, most

of the activities will have a counterpart in any vendors’ design flow.

52

MODERN CAD-TOOL BASED DIGITAL SYSTEM DESIGN FLOW

 NO

YES

Synthesize Design to AND, OR and NOT
Gate Level (EDFI Netlist form)

Post Synthesis Functional HDL Simulation
of Digital System

Correct
Simulation

Output?

Digital System design at Gate, Register
Transfer, or behavioral level

Design capture using a Schematic editor or
Hardware Description Language (HDL-

commonly Verilog or VHDL)

Pre-Synthesis functional HDL Simulation of
Digital system

A B

Figure 4.6 Digital Design Flow

53

 NO

 YES

 NO

YES

 NO

 YES

Implement Design to Target Technology

Hardware Testing of Digital Final
Experimental System

Post Implementation Functional and
Performance (Timing) HDL Simulation of

Digital System

Implement Digital system to Final Target
technology

Correct
Simulation

Output?

Correct
Simulation

Output?

Correctly
Tested?

STOP

 B
A

Figure 4.6 Digital Design Flow (cont.)

54

The initial description of any design may be in the form of state diagrams or Boolean

expressions, but these are refined through various stages to into an FPGA

implementation. These various stages are discussed below.

Design Entry: The design entry describes the functionality of the design. It could be

done by schematic capture or a state transition diagram or by constructing an HDL based

model using Verilog HDL or VHDL. An HDL model is constructed by writing HDL

code using a text editor. Modern simulators and synthesis tools provide syntax-directed

editors and facilities for insertion of language templates to facilitate easier coding. This

step produces the HDL source for a model that is analyzed to an internal form while it is

checked for conformance to the syntax and semantics of the HDL. [10]

Behavioral Simulation: The HDL model is simulated at the Register Transfer level

(RTL) to establish functional correctness. This is the step that involves simulating the

functionality of a device to determine that it is working as per the specification and that it

will produce correct results. This type of simulation is very important to get as many bugs

out of the HDL code as possible. After the design entry is done, a functional simulation is

done. If there is an error the 'design entry' step is re-visited and necessary changes are

made leading to a successful simulation.

Synthesis: It is the process where the RTL design is optimally translated to the gate level

design which can be mapped to the logic blocks in the FPGA meeting the timing and area

constraints as desired by the user. In this step, the HDL code is converted into a device

netlist format.

 Implementation: Design implementation is the process of mapping, placing, routing and

generating a BIT file for the design.

Mapping: Once the gate-level netlist is designed, the next step is mapping the design onto

an FPGA. The design is mapped to the primitives such as function generators, flip-flops

or latches that are used in the target chip.

55

Place and Route: The mapped design is placed by assigning the primitives to

configurable logic blocks (CLBs). After placing, the primitives are connected by routing

the connections through the switch matrix. Once the design is placed and routed, accurate

information about timing delays between parts of the circuit can be obtained. After place

and route, the design is simulated for design verification since post place and route

simulation is more accurate than the functional simulation.

Bit generation: A bitstream is generated from the physical place and route information.

 Programming: The configuration bits or bitstream is loaded into the target FPGA. The

chip has now been configured to implement the design.

In this thesis, the EDA tool used for the design is the Xilinx ISE (Integrated Synthesis

Environment) 6.1i and the HDL selected was Verilog HDL.

The HDL code for the required design is written using the Verilog Hardware design

language.

Each of the codes for the blocks galpha, error, and integrators instantiated into the main

design circuit are discussed here separately in detail.

The functional block diagram of sensetheta is as shown in the figure 4.7. The codes of the

blocks denoted by error, intH1, intH2, wrap are instantiated into the main code. Each of

the blocks is discussed in detail here.

56

The block diagram to calculate the value of g(α), when a value of α is given as input is

shown in the figure 4.8.

The function g(α) is calculated by using the equations 4.1 and 4.2.

galpha

 α

 vpower

 clk

g(α)

error

intH2
H2

H1

Integrator
block 1

intH1

Integrator
block 2

error

wrap

gtheta

vpower

 isense

alpha

wmh

α

Figure 4.7 Block diagram of the block sensetheta

Figure 4.8 Block diagram of the block galpha

57

)*(**100
)(*)g(

mod
2

2
mod

alphamidealLaidealF
Dvpower
−

=α if alpha<thetaTm (4.1)

)thetaTmalpha(*mpidealLpideal(*F*100
)D(*vpower)g(

mod2

2mod

−−
=α if alpha>thetaTm (4.2)

The function output g(α),and its input α are the variables in the equation. The remaining

parameters vpower, Dmod, Fmod, Laideal, mideal, Lpideal, mpideal seen in the equation are

constants. In order to reduce the logic required to represent these constants, they are

represented by binary numbers instead of integers that use more logic blocks. Some of

these constants are real numbers, so multiplication factors are used, so that they are

represented in binary form. The table 4.4 shows the actual values of the constants, the

number of bits used to represent them in binary form and their binary representation.

Constant

denoted by

Actual value

of bits

required

Binary representation

Vpower 42 6 6’b101010

Dmod 40 6 6’b101000

Fmod 1000 10 10’b0111111000

Laideal 0.0084*16384= 137

8 8'b10001001

mideal 0.0183*16384=300 9 9'b100101100

Lpideal 0.0075*16384=12 4 4’b1100

mpideal 0.0021*16384=34 6 6'b100010

58

thetaTm 0.4189*180/3.14=24 5 6'b011000

As seen in table 4.4, the value of Laideal is a real number (0.0084), which cannot be

represented in binary form easily. Thus it is multiplied by the factor 16384 which gives

the new number 137., It is the decimal number that is then represented in binary form as

shown in table 4.4. The same is done for the constants denoting mideal, Lpideal and

mpideal.

As seen in the equations 4.1 and 4.2, there are several arithmetic operations like addition,

subtraction, multiplication division and conditional operations that must be handled by

the Verilog HDL and the EDA tool. Performing all of the operations except division is

easily handled by Verilog HDL and the EDA tool. The Xilinx tool can handle division by

two and higher powers of two like 21, 22, 23, etc., but cannot perform division by numbers

other than multiples of two. A special algorithm is required to perform that operation.

Various methods are available to overcome this problem.

1. Algorithmic method: Several algorithms are available which can perform division

by iterative subtraction techniques. But this method is too tedious and complex.

2. Using Core Generator: The core generator available in the Xilinx tool can be used

to generate a core to perform division. The same core can be used to generate

different instances as long as the parameters are of the same width. This is a very

effective method when many divisions have to be performed, though it takes

several clock cycles to complete one division. A pipelined division core can be

used to improve efficiency.

3. Using multiplication factors: In this method, the divisor is multiplied by a factor

so that it is converted into powers of 2. Dividing by this power of 2 can be

performed easily. This is approach is illustrated in the following example.

Table 4.4 Constants used in the block galpha of the HDL code

59

In the block integrator representing intH1, the input has to be multiplied by 3.5µs,

but since it cannot be represented in binary form, it is multiplied by a factor such

that it can be represented in binary format and also equals that value. Thus it is

multiplied by a factor equal to 30/1024*1024*8 which is equal to 3.5µs and also

the divisor part which is 1024*1024*8 are all powers of 2 and thus the division

can be carried on without any trouble. However this method cannot be used where

the input changes periodically since different factors will have to be used for

different inputs.

In this thesis, both the method using a core generator and the method using multiplication

factors are used.

A pipelined divider core has been generated for the block galpha where g(α) is calculated

from α. Here the dividend and divisor are of fixed width for different values of input and

thus the core divider is used to obtain the outputs. Another instance of the same pipelined

divider core has also been used for other functions besides the g(θ) function with

different sets of inputs and outputs but with the same bit width, thus reducing the number

of logic blocks used. The issues relating to the Core Generator are discussed in the next

section.

4.8 Core Generator

The Xilinx CORE Generator System offers an optimized, predefined set of building

blocks for common functions. It provides a catalog of user-customizable functions

ranging in complexity from simple arithmetic operators (adders, accumulators, and

multipliers), memories and FIFOs, to networking interfaces and system-level building

blocks such as filters and transforms. It simplifies the design steps and brings the design

to completion faster while still achieving high performance.

The cores delivered through the CORE Generator can be tailored to the design

requirements through their user-friendly core customization GUIs. Simply by specifying

the parameters, an optimized core can be generated for the target FPGA device. The core

generation process fabricates the logic for the core, partitions it into configurable logic

60

blocks (CLBs), and then places the CLBs relative to each other. The relative placement of

CLBs making up a core is maintained as the core is integrated into the overall design and

placed anywhere in the FPGA. The Core generator is used to generate a multiplier core

and a divider core in this thesis.

CORE MULTIPLIER

The multiplier core is a high-speed parallel implementation that multiplies an N-bit wide

variable times an M-bit wide variable and produces an N+M bit result. It accepts the

parameters and accordingly creates a design using a parameterized Verilog HDL recipe.

Verilog HDL instantiation code and a schematic symbol are created along with the netlist

for the design. An area-efficient, high-speed algorithm is used to give an efficient, tightly

packed design. Each stage is pipelined for maximum performance. In addition to this

area-efficient design, the CORE Generator contains a performance optimized design that

yields a 10% to 20% increase in speed, but uses more CLB resources.

The multiplier generator core here is used to generate a parallel multiplier.

The parallel multiplier takes 2 input buses, A and B each of N bits width where N can be

1 to 64, and calculates the multiplication of the values on these buses in parallel giving

out an output Q of 2N bits wide. A schematic of inputs and outputs is shown in the figure

4.9. The inputs and output can be either of type signed or unsigned.

 A

 B

 clk

Q

N

N
2N

Figure 4.9 Schematic diagram of the multiplier core

61

The multiplier core is generated using look-up tables (LUTs) available in the FPGA

device. It can be generated by using dedicated multiplier blocks too, but at the cost of

latency.

This multiplier core is used in the design to carry out many multiplications, which

otherwise would have required more built in multiplier blocks than are available in the

FPGA.

This is illustrated by implementing the code, which used core-generated multipliers, and

the code, which used built-in multiplier blocks separately. This is implemented on a

Spartan XC3S1000. The implementation results are given below.

The implementation result for a design in which only built in multiplier blocks were used

to carry out all the required multiplications are shown below.

Selected Device : 3s1000fg320-4

 Number of Slices: 6844 out of 7680 89%

 Number of Slice Flip Flops: 10322 out of 15360 67%

 Number of 4 input LUTs: 5733 out of 15360 37%

 Number of bonded IOBs: 200 out of 221 90%

 Number of MULT18X18s: 28 out of 24 116% (*)

 Number of GCLKs: 1 out of 8 12%

WARNING:Xst:1336 - (*) More than 100% of Device resources are used

As seen above, the number of internal multiplier blocks required is 28 while the number

of available multiplier blocks is 24. Thus the design does not fit into the chosen FPGA.

The implementation result for the design in which a pipelined multiplier core was used to

create different instances to carry out all of the multiplications are shown below.

Selected Device: 3s1000fg320-4

62

 Number of Slices: 7451 out of 7680 97%

 Number of Slice Flip Flops: 10690 out of 15360 69%

 Number of 4 input LUTs: 6703 out of 15360 43%

 Number of bonded IOBs: 200 out of 221 90%

 Number of MULT18X18s: 4 out of 24 16%

 Number of GCLKs: 1 out of 8 12%

Now the number of internal multiplier blocks being used is reduced to 4 since all the

required multiplications are carried on using slices and LUTs. As can be seen from both

the results, the number of slices and LUTs being used in the second method is only

slightly greater than in the first one. Thus, it can be concluded that using the core

generator multiplier in the design is area-efficient.

CORE DIVIDER

The Xilinx LogiCORE Pipelined Divider divides an M-bit-wide variable dividend by an

N-bit-wide variable divisor. The result of the division is an Mbit-wide quotient with an

N-bit-wide integer remainder.

The input data can be unsigned or signed. Dividend values can range from 1 to 24 bits,

divisor values can range from 3 to 24 bits, and fractional remainder values may range

from 3 to 24 bits. It is an efficient, high-speed, parallel implementation.

The Schematic of the core divider is shown in the figure 4.10.

Figure 4.10 Schematic diagram of the core divider

63

The design is highly pipelined. The amount of pipelining can be reduced to decrease the

area of the design at the expense of throughput. In the fully pipelined mode, the design

supports one division per clock cycle after an initial latency. The design also supports the

options of 2, 4, and 8 clock cycles per division after an initial latency.

The total latency (number of clocks required to get the first output) is a function of the bit

width of the dividend.

In this thesis, a pipelined divider core is generated. The bit-width of the dividend and

divisor is 20 bits. Since the dividend is 20bits and the remainder is chosen to be an

integer, the latency is 24, i.e., it takes 24 cycles to get the first output, since the number of

clock cycles per division is chosen to be 1.

Two instances of the core are created to carry out different division operations. As

mentioned earlier, this core is used in the block galpha to carry out the division as given

in function equations. Since the divisor is not a multiple of 2, the Xilinx tool cannot

carryout the division and since the inputs of the division change at every calculation

iteration, it is better to generate a core.

Now, consider the block diagram of the error block as shown in the figure 4.11. The

values of g(θ) and α of all the four phases are given as inputs. The block galpha is

instantiated into the error block gives out g(α). The number of bits required to represent

α, g(α) and g(θ) is already discussed. The same number of bits is used to represent the

values for each of the four phases.

 gtheta

 vpower

 isense

 alpha

error error

Figure 4.11 Block diagram of the block errorlow

64

The input isense consists of four one-bit signals from each of the phases. It determines

whether the measured g(θ) from a phase is available for computing the error or if the

computed g(α) must be used in its place because torque is being generated by that phase

at the particular time instance. Depending on value of the 4 different isense inputs, logic

is written to calculate the error using the equation repeated below.

() () ()+−+−=)()()()()()()()(, 32232112 αθαθαθαθαθ ggggggggerrortot

 ())()(3)()())(4)(3)(3)(4(141 αθαθαθαθ gggggggg −+−

Note that in this equation one or more of the g(θ)s might actually its corresponding g(α)

if they are not available due to that phase generating torque. As seen in the equation,

there are several multiplications involved, which require several multiplier blocks. The

number of multiplier blocks required is out of range of the Virtex XCV800 FPGA. Thus a

multiplier core is generated and the required numbers of instances of it are created to

perform the different multiplication operations.

The block diagram of the integrator blocks is as shown in the figure 4.12.

The equation that describes the integrator blocks is equation 4.1.

Xn+1

Xn

Vin Xn

Figure 4.12 Block diagram of the Integrator circuit

C1

65

Xn+1 = Vin* T + Xn (4.1)

where Vin the input to the integrator

 Xn+1 is the next state

 Xn is the present state which is given as feedback and added to the input to get the

 next state.

 C1 is the clock to the integrator whose period is T.

For a given input, the equation performs the integration and gives out the output.

The block diagram of the block wrap is as shown in figure 4.13.

The output of integrator block 2 is the estimated rotor position α is the input to the block

wrap. Since there are 8 stator poles, each is 45˚ apart. Therefore, the difference between

the aligned position of one phase and its nearest neighbor is 45˚, i.e. the rotor must rotate

45˚ to come into alignment with the next phase. A new angle is generated for each of the

phases, which is 45˚ away from the previous phase’s angle. Then each of the new angles

corresponding to each phases are wrapped such that they fall within the range -30˚ to

+30˚. This is done so that the same function g(α) can be used for each phase while still

getting the appropriately shifted outputs.

qa-45˚

in_1

qb-45˚

qc-45˚

qa

qb

qc

angle
wrap

angle
wrap

angle
wrap

angle
wrap

alpha

thetah
alpha1

alpha2

alpha3

alpha41

Figure 4.13 Block diagram for shifting and wrapping the angles

66

The block diagram of the commutator circuit for one phase is shown in figure 4.14.

The code for this circuit is written and instantiated for the four phases. It generates a four

bit output.

The Verilog code for the block Sensetheta was written and simulated first. Then the

module for the Commutator was added to it and simulated. The Verilog code for the

whole circuit is given in the appendix.

The code is implemented on a Xilinx Virtex XCV800 FPGA using the Xilinx EDA tool.

Before proceeding to the simulation results, let us look at the results of implementing the

complete circuit on the Virtex XCV800 FPGA.

Implementation results

Using Xilinx tools, the coded design is synthesized. After synthesis, the design is

translated, mapped, placed and routed onto the selected chip. The results of the

implementation are shown below.

 qsm

 qlrg

qlrg>qsm

 qph

 startin

com

Figure 4.14 Block diagram of commutator circuit for one phase

67

Release 6.1.03i Par G.26

Copyright (c) 1995-2003 Xilinx, Inc. All rights reserved.

Selected Device : v800hq240-4

 Number of Slices: 7844 out of 9408 83%

 Number of Slice Flip Flops: 10787 out of 18816 57%

 Number of 4 input LUTs: 7178 out of 18816 38%

 Number of bonded IOBs: 129 out of 170 75%

 Number of GCLKs: 1 out of 4 25%

The device utilization summary shows that the available resources are properly utilized.

4.9 Simulation Results

After the implementation of the circuit on the Virtex XCV800 using Xilinx tools, it is

simulated using the ModelSim simulator. These simulated results are presented in this

section. These simulated results will be compared with the results of the Simulink model

in the next chapter.

The result obtained by simulating each of the blocks is presented first and then the final

simulated results are discussed. First, the simulation result obtained for the block galpha

is discussed.

 Figure 4.15 shows the ModelSim simulation results for the block galpha for one value of

alpha.

68

As seen in the figure, to calculate g(α) for a given α, it takes 24 clock cycles. This is

because of the pipelined divider core instantiated into the block galpha to carryout the

division operation. Actually the input α has to be in given in radians, but for convenience

it is given in degrees. The value of α is given to be 13 degrees (0.226 rad). Therefore, the

result is also a scaled value. The actual value would be the result divided by 256.

Next, the error block is simulated and the results are shown in figure 4.15.

Figure 4.15 ModelSim simulation result for calculating g(α) for a given α.

69

The figure 4.17 shows the simulated result of the block errorlow. The values of g1(θ),

g2(θ), g3(θ), g4(θ) are 36, 295, 50,20 respectively. These g(θ) values are given as inputs

as shown in the figure. The value of α1=0° is given. α2, α3, α4 are shifted by 45° and

wrapped to lie in between -30° and +30°. These values are calculated to be 15, 30 and 0

respectively. As seen in the figure, g1(α), g2(α), g3(α), g4(α) have been calculated to be

19, 42, 337, 19 respectively. Using all these values, the error has been calculated as

shown in the figure. The result is a scaled value since the inputs have been multiplied by

a scale factor.

Figure 4.16 ModelSim simulation result for calculating error.

70

Figure 4.17 Simulation result of the rotor position estimator

Now, consider the simulation result of the block sensetheta. Consider the actual rotor

position θ1=13°. The values of θ2, θ3, θ4 are taken as explained earlier. The values of

g(θ) for each of the phases are calculated and given as input. The initial value of the

estimated rotor position will be taken as α1=0°. Then the shifted and wrapped values of

α2, α3, α4 will be 15°, 30°, 0°. For these values of α, g(α) will be calculated for all four

phases. Using all these values, the error will be calculated. The calculated error would be

given as input to the integrator1, which would give out motor speed as output. This is

shown in figure 4.17. The calculated error is added to the motor speed and given as input

to integrator2. Integrator2’s output is the estimated rotor position, α. This value will be

71

given as feedback to the circuit as α1. And again, the same process will be repeated until

the estimated rotor position converges to the actual rotor position. In this case, until α

reaches the value of 13°. Since g(θ) is not changing with time θ is not changing with time

and thus the rotor’s speed is zero. In turn this means that the final estimated value α of

the rotor position will not be changing with time and the final estimated value of the

rotor’s velocity is zero. This behavior is shown in figure 4.18.

Figure 4.18 Simulation result showing the final output when α becomes equal to θ

and speed becomes zero.

72

CHAPTER 5

TESTING OF THE ESTIMATOR ON AN FPGA

5.1 Comparison of Simulink and Verilog Design Results

The results obtained by simulating the Simulink model and those obtained by simulating

the design using ModelSim Simulator are presented here for comparison. The estimated

rotor position information is plotted using Matlab. For different values of the input g(θ) =

[g1(θ) g2(θ) g3(θ) g4(θ)], the Simulink model is simulated. The design created in Verilog

is also simulated for the same values of g(θ) and the predicted estimate of the rotor

position is plotted.

Consider the rotor position to be fixed at some angle. Now this position of the rotor has to

be estimated since the rotor position cannot be measured directly. Knowing the inverse

inductance value g(θ) for each of the phases at the actual rotor position, the state

estimator can be used to estimate the position of the rotor. The simulation starts with the

estimated rotor position α equal to zero since the rotor position is not known. The

Simulink model is simulated and its results are compared to the post synthesis simulated

Verilog design. The value of the estimated rotor position, when the error defined in

previous chapters becomes zero, must be equal to the actual rotor position.

Figure 5.1 shows the simulated result obtained by simulating the Simulink model for

θ=18°. Figure 5.2 shows the simulated result obtained from the post synthesis simulation

of the Verilog design for θ=18° using the Modelsim Simulator.

For θ=18°, the values of g1(θ), g2(θ), g3(θ), g4(θ) are calculated and given as input to the

Simulink model and the Verilog design model. While simulating the post synthesis

Verilog design model using Modelsim Simulator, it is observed that the time taken to

calculate the error for the actual and estimated values of the inverse inductance and to

obtain the estimated rotor position value from it is 7µs, which is the sample time. The

73

Simulink model is simulated for the same sample time and then the results obtained by

both the Simulink model and the Verilog design model are compared.

This estimated position value, α is given as feedback and the same process repeats until

the error decays to zero. The estimated position value when the error equals zero is the

actual rotor position. As seen in the figure, the process repeats after every 7µs and the

total time taken for the estimated value to become equal to the actual value is about

3.5ms.

0 0.5 1 1.5 2 2.5 3 3.5

x 10-3

0

5

10

15

20

25
theta=18 degrees

time

al
ph

a
in

 d
eg

re
es

 Figure 5.1 Simulated estimated rotor position transient obtained from the Simulink
model for θ=18°.

74

0 0.5 1 1.5 2 2.5 3 3.5

x 10-3

0

5

10

15

20

25
theta=18degrees

time

al
ph

a
in

 d
eg

re
es

As seen in the figures 5.1 and 5.2, the post synthesis simulation result almost complies

with the Simulink simulation result. Since the values of g(θ) are fractional numbers,

multiplication factors are used so that they can be represented in digital form as Verilog

deals with only binary integer numbers. Similarly, the calculated error is also in the range

of -0.9 to +0.6, hence multiplication factors are used to represent the error in binary

integer form. Many intermediate signals like the inputs and outputs of the integrators are

also approximated to the nearest integer. Because of these approximations, there is a

slight difference in the post synthesis Verilog simulation result and the Simulink

simulated result, though they follow similar trajectories and the time taken to obtain the

estimated rotor position is the same.

Figure 5.2 Simulated estimated rotor position transient obtained from the post
synthesis Verilog model for θ=18°.

75

The figures 5.3 and 5.4 show the calculated error plotted in Matlab for the Simulink

model and the experimental result obtained by simulating the Verilog design respectively.

As the estimated rotor position value α reaches the actual rotor position value θ, the error

has to decay to zero. It is observed that the time at which error becomes zero as seen in

figure 5.4 is the time when α becomes equal to θ as seen in figure 5.3. As mentioned

earlier, since the process repeats every 7µs, the error is calculated every 7µs. Thus, the

error is plotted versus time for every 7µs.

0 0.5 1 1.5 2 2.5 3 3.5

x 10-3

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Error for theta=18degrees

Figure 5.3 Simulated result of the calculated error for the Simulink model for
θ=18°.

76

0 0.5 1 1.5 2 2.5 3

x 10-3

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
error for theta=18degrees

time

er
ro

r

Another set of results for θ=13° is presented in figures 5.5 and 5.6. The input values of

g1(θ), g2(θ), g3(θ), g4(θ) are given as input to both the Simulink model and the post

synthesis Verilog model and the circuit is simulated. The values obtained for the

estimated rotor position and error is plotted using Matlab for both sets of results. Figure

5.5 shows the simulated result obtained from the Simulink model.

Figure 5.4 Simulated error transient obtained from the post synthesis Verilog
model for θ=18°.

77

0 0.5 1 1.5 2 2.5 3 3.5

x 10-3

0

5

10

15

20

25

Figure 5.6 shows the simulated result obtained by simulating the post synthesis Verilog

design with an actual fixed rotor position equal to θ=13°. The Verilog result matches the

general shape and duration of the result obtained from the Simulink model.

As the circuit is simulated, the estimated rotor position starts from its in error initial value

of zero and varies until it becomes equal to the actual rotor position, at which time the

error becomes zero.

Figure 5.5 Simulated estimated rotor position transient obtained from the Simulink
model for θ=13°.

78

0 0.5 1 1.5 2 2.5 3 3.5

x 10-3

0

5

10

15

20

25

time

al
ph

a
in

 d
eg

re
es

Figure 5.7 shows the simulated error obtained from the Simulink model when θ=13°.

From figures 5.5 and 5.7, it is observed that the error decays to zero as the estimated rotor

position reaches the actual value. Figure 5.11 shows the simulated estimated rotor

position transient obtained from the post synthesis Verilog model for θ=13°.

Figure 5.6 Simulated estimated rotor position transient obtained from the post
synthesis Verilog model for θ=13°.

79

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10-3

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

time

er
ro

r

error calculated for theta=13degress

Figure 5.7 Simulated error transient obtained from the Simulink model for θ=13°.

Figure 5.8 Simulated error transient obtained from the post synthesis Verilog
model for θ=13°.

80

5.2 Testing the FPGA Circuit

The code written in Verilog must be converted to a bit stream before it can be

downloading into the FPGA. After downloading the bits, the system can be tested by

giving the inputs as required. Here, the system is tested using a Xilinx XSV board, which

contains the Virtex XCV800 FPGA.

XSV Board

The XSV Board brings the power of the XILINX Virtex FPGA embedded in a

framework for processing video and audio signals. The XSV Board can take a single

Virtex FPGA from 50K to 800K gates in size.[8]

The XSV Board has a variety of interfaces for communicating with the outside world:

parallel and serial ports, Xchecker cable, a USB port, PS/2 mouse and keyboard port and

10/100 Ethernet PHY layer interface. There are also two independent expansion ports,

each with 38 general-purpose I/O pins connected directly to the Virtex FPGA.

XSV Board Features

The XSV Board includes many resources, but the ones used in this thesis to implement

the position estimator circuit are presented here.

• Programmable logic chips:

XILINX Virtex FPGA: Virtex FPGAs from 57 Kgates (XCV50) up to 888 Kgates

(XCV800) in a 240-pin PQFP or HQFP package is compatible with the XSV

Board. The Virtex FPGA is the main repository of programmable logic on the XSV

Board. XCV800 has been used in this thesis.

81

XILINX XC95108 CPLD: The CPLD is used to manage the configuration of the

Virtex FPGA via the parallel port, serial port, or Flash RAM. The CPLD also

controls the configuration of the Ethernet PHY chip.

• Programmable oscillator that provides a clock signal to the FPGA and CPLD

derived form a 100 MHz base frequency.

• Two expansion headers interface the FPGA to external circuitry through 76

general- purpose I/Os.

• Four pushbuttons and one eight-position DIP switch provide general-purpose

inputs to the FPGA and CPLD.

• Two LED digits and one LED bargraph let the FPGA and CPLD display status

information.

• Parallel/serial port interfaces let the CPLD send and receive data in a parallel or

serial format similar to a PC.

• ATX power connector or 9 VDC power jack lets the XSV Board receive power

from a standard ATX power supply or a 9 VDC power supply.

The locations of these resources are indicated in the simplified view of the XSV Board

shown in appendix. Each of these resources will be described in the following section.

Setting the XSV Board Clock Oscillator Frequency

The XSV Board has a 100 MHz programmable oscillator. The 100 MHz master

frequency can be divided by factors of 1, 2, ... up to 2052 to get clock frequencies of 100

MHz, 50 MHz, ... down to 48.7 KHz, respectively. The divided frequency is sent to the

rest of the XSV Board circuitry as a clock signal. The divisor is stored in non-volatile

82

memory in the oscillator chip so it will resume operation at its programmed frequency

whenever power is applied to the XSV Board.

Programming the Interface

The Virtex FPGA is the main repository of programmable logic on the XSV Board. The

CPLD manages the configuration of the FPGA via the parallel port or from the Flash

memory. Therefore, the CPLD must be configured so that it implements the necessary

interface. The CPLD stores its configuration in its internal non-volatile memory so the

interface is restored each time power is applied to the XSV Board.

Downloading Virtex configuration bits

Once the CPLD is programmed with the downloading interface circuit, you can

download bit streams into the Virtex FPGA.

Assigning Inputs and Outputs

Each of the input and output bits of the design are assigned to the pins of the expansion

headers. The inputs can also be assigned to the Pushbuttons and Dip switch. The output

bits can be assigned to the LEDs or the LED bargraph. This is done using the Xilinx tools

where the input/ output bits can be assigned to any of the desired pins. After downloading

the program into the FPGA, the assigned pins can be checked to see if the result on it is a

high or a low.

5.3 Testing the system

The control system for the SRM drive is shown in figure 5.9. To test the estimator and

commutator design without the rest of the system, the inputs and outputs must be

generated. This is done as summarized below.

83

1. The input to the estimator, gi(θ) which is the digitized output of the low pass

filter, is generated in the program itself. The system is tested for different inputs

of gi(θ).

2. The inputs to the commutator, on/off angles, which has to be given from the

microprocessor of the motor control system, are generated in the program itself.

3. The output of the commutator has to be given to the current regulator.

4. The estimated rotor position which does not come out of the FPGA in figure 5.9

was brought out and measured with a logic analyzer.

Figure 5.10 shows the experimental setup used for testing the circuit.

Low
pass
filter

Current
Regulator

Microprocessor

Rotor

Position
Estimator

Commutator

 FPGA

gi(θ)

αi comi

Phase on/off angles

Figure 5.9 Block diagram of the SRM Control system

Iφ i

A/D

Icom

Iφ i

Switch
on/off

A/D

A/D

A/D

A/D

84

The steps involved in programming the FPGA and testing it are given below.

1. The power is given to the FPGA using the 9 VDC power supply.

2. The frequency of the clock to the FPGA is set by setting the oscillator frequency

on the XSV board. Here the frequency is set to 5MHz.

3. After setting the frequency, the CPLD is configured so that it acts as an interface

between the parallel port and the FPGA. Then the FPGA is ready to be

programmed.

4. Before generating the bit stream, the inputs and outputs should be assigned to the

pins on the FPGA. This is done by generating a ucf file using the Xilinx tools.

Actually this assigns some pins to the inputs and outputs. But the pin assignments

can be changed by editing the constraints file and assigning the pins as needed.

5. After the pins are assigned, the bit stream is generated from the Verilog code

using the Xilinx tools. These bits are downloaded into the FPGA through the

parallel port. Since the FPGA is volatile it has to be programmed each time the

power is turned on. Once the code is downloaded onto an FPGA, the testing can

be done.

 Xilinx
 FPGA

clk

Programming cable

Logic
Analyzer

Figure 5.10 Experimental setup for testing the design

Power
supply

outputs

85

6. The results are captured using a Logic Analyzer. The logic analyzer channels are

connected to the pins of the FPGA. The results on these pins are captured in the

logic analyzer and can be viewed by connecting the logic analyzer to a PC.

5.4 FPGA implementation results

A test program was written to evaluate various sub-blocks of the Verilog program within

the FPGA. The bit file for the block galpha where the estimated rotor position α is given

as input and the output is g(α) is programmed into the FPGA. For different values of α,

the output is checked. The results captured by the logic analyzer are shown in the figure

5.11 for α=15°. As shown in the figure 5.11, the FPGA output g(α)=42 after 24 clock

cycles. The values are scaled values and not the exact values obtained from the Simulink

model. Converting the scaled values showed that they were equal to the output from the

Simulink model.

86

The error block was tested with the following inputs:

g1(θ)=36; g2(θ)=295; g3(θ)=50; g4(θ)=20;

α1=10; α2=-35; α3=-80; α4=-135

The error is calculated using equation 2.5. The error block output is shown in figure 5.12

and is again found to be the correct scaled value.

for alpha=15
at tempi1=24

g(alpha)=42

Figure 5.11 Experimental FPGA output for the block galpha

87

The Commutator block was also tested separately on the FPGA. The following inputs

have been given within the program while the input startin was assigned to the dipswitch.

The output com, which is a 4-bit output, is assigned to the pins of the LED bargraph.

Then the bit file is downloaded into the FPGA.

qcomin =17’b10001010000000010

qphin=8’b00001010

θph1=13

As seen from the inputs θsm=2, θlrg=20, θlrg>θsm=1. For the θphi values of the four

phases, the output has to be generated as shown in table 5.1

Figure 5.12 Experimental FPGA output for the block errorlow

88

The bargraph shows the correct output 1000.

The position estimator block was also tested separately in the FPGA. For different input

values of gi(θ) the circuit was tested.

In the first case the inputs are g1(θ)=36; g2(θ)=295; g3(θ)=50; g4(θ)=20;

The bit file generated for the block sensetheta is downloaded into the FPGA. The output

values were captured using a logic analyzer and plotted using Matlab. Figure 5.13 shows

the plotted values of the rotor position for the given input. As in the simulations the initial

estimated rotor position output has the incorrect value of 0º and the estimated rotor

ultimately converges to the correct value.

θphi θph> θsm θph<θlrg θlrg>θsm com

13 1 1 1 1

-28 0 0 1 0

-17 0 1 1 0

2 1 0 1 0

Table 5.1 Commutator block output for the four phases

89

The result in figure 5.13 matches well with the result in figure 5.5, which shows the

simulation result of the Simulink model for θ=13º and still better with the post synthesis

results in figure 5.6. The error output given by the FPGA is plotted and shown in figure

5.14.

0 0.5 1 1.5 2 2.5 3 3.5

x 10-3

0

5

10

15

20

25

time

al
ph

a
in

 d
eg

re
es

Figure 5.13 Experimentally measured FPGA output for an
actual rotor position equal to θ=13º

90

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10-3

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

time

er
ro

r

error calculated for theta=13degress

Figure 5.15 shows the output of the FPGA captured by the Logic analyzer. The

waveforms show the various outputs during the part of the transient where α becomes

equal to 13º and thus equal to θ. The results in figure 5.15 also show that the error

becomes zero at this point.

Figure 5.14 Experimentally measured FPGA result for the error
for θ=13°.

91

Results similar to those in figures 5.11 through 5.15 were obtained for different inputs

and found to match with the results given by the Simulink model in all cases. The output

of the Position Estimator is given to the Commutator circuit and also tested on the FPGA.

This was also found to be working correctly.

Figure 5.15 Waveform showing the FPGA output for the block sensetheta

92

5.5 Conclusion

A Rotor Position Estimator for a Switched Reluctance Motor that had been developed

previously is successfully implemented using Verilog and programmed into an FPGA.

The rotor position estimator developed previously was available as a Simulink model and

a FPGA design is created from it. The Verilog HDL design is validated by implementing

the code on an FPGA and experimentally testing it. The experimental results obtained are

compared with the Simulink model results and are found to match.

The results of the position estimator implementation on an FPGA can be compared with

the position estimator implementation on a Signal Processor. It is found that the FPGA

rotor position estimator with a 5MHz clock frequency can update its rotor position

estimate every 7.0µs compared to an update time of 50µs for a TMS320C6701-150 DSP

implementation using a commercial DSP board. This is approximately a 7 to one

reduction in the update time.

93

Appendix A : Verilog Code for Position Estimator and Commutator

//Verilog Code for Position Estimator

module ST_Comm(clk,thetah,errlow_act,tempi1,com);

reg [9:0]gth1,gth2,gth3,gth4;
reg [3:0]isense;
reg [5:0]vpower;
input clk;
reg clr;
output [7:0]thetah;
reg [7:0]thetah,qphin;
wire [7:0]u1,u2,u3,u4;
wire [18:0]wmh;
output [9:0]errlow_act;
reg [9:0]errlow_act;
wire [18:0]errlow;
reg [18:0]error;

reg [2:0]loop;
reg [9:0]H1;
reg [24:0]H2;
reg Gimod,sign,s;
wire j1,j2,j3,j4,y;
output [5:0]tempi1;
wire [18:0]in_1;
reg [18:0]tin_1,ta;
reg [24:0]d;
reg [24:0]d1;
reg [7:0]qa;
reg [7:0]qb,qc,qd;

reg [7:0]alpha1,alpha2,alpha3,alpha4;
wire [7:0]talpha2,talpha3,talpha4;
reg [15:0]x;

wire [9:0]gtheta1,gtheta2,gtheta3,gtheta4;

reg [16:0]qcomin;
reg startin;
output [3:0]com;

EL_NEW errlw(clk,clr,gth1,gth2,gth3,gth4,alpha1,alpha2,alpha3,alpha4,vpower,isense,

94

tempi1,galpha1,galpha2,galpha3,galpha4,errlow);
intH2_NEW nit(wmh,d,clk,tempi1);

intH1_NEW nittt(in_1,d1,clk,tempi1,sign);

wrap phb(clk,qb,talpha2);
wrap phc(clk,qc,talpha3);
wrap phd(clk,qd,talpha4);

comm cc(com,qcomin,qphin,startin,clk);

always @(posedge clk)
begin
 x=x+1;
 gth1=36;
 gth2=295;
 gth3=50;
 gth4=20;
 isense=15;
 vpower=42;
 H2=16000000;
 H1=8000;
 Gimod=1;
 clr=1'b1;
 s=1'b0;

if(x<12230)
 begin
 errlow_act=error/1024;
 if (s==1'b1) errlow_act[9]=1'b1;
 else errlow_act[9]=1'b0;

 if(errlow[18]==1'b0)
 error=errlow;
 else
 begin
 error=~(errlow)+1;
 s=1'b1;
 end

 if (tempi1==28)
 d=(error*62500)/1024;
 if(tempi1==30)
 if(x<10000)
 d1=(error*8000)/256;

95

 if(x>10000)
 d1=(error*8000)/128;
 if(x>4000)
 sign=1'b1;
 else if(x<4000) sign=1'b0;

if(x<4655)
begin
 if(in_1<1300)
 begin
 tin_1=(in_1*10)/128;
 ta=in_1/128;
 end
 else if(in_1>1300)
 begin
 tin_1=(in_1*10)/64;
 ta=in_1/64;
 end
end
else if(x>4655)
begin
 tin_1=(in_1*10)/64;
 ta=in_1/64;
 end

 qa=ta;
 qb=qa-45;
 qc=qb-45;
 qd=qc-45;

 if(qb>128)
 begin
 qb[6:0]=~(qb)+1;
 qb[7]=1'b1;
 end
 if(qc>128)
 begin
 qc[6:0]=~(qc)+1;
 qc[7]=1'b1;
 end
 if(qd>128)
 begin
 qd[6:0]=~(qd)+1;
 qd[7]=1'b1;
 end

96

 alpha1=qa;
 alpha2=talpha2;
 alpha3=talpha3;
 alpha4=talpha4;

 thetah=tin_1;

 if(x==12220)
 begin
 qphin=13;
 qcomin=17'b10001010000000100;
 startin=1'b0;
 end
 if(x==12230)
 begin
 x=0;
 loop=loop+1;
 alpha1=0;
 alpha2=0;
 alpha3=0;
 alpha4=0;
 end
end
end

endmodule

//Verilog module for the error

module
EL_NEW(clk,clr,gth1,gth2,gth3,gth4,alpha1,alpha2,alpha3,alpha4,vpower,isense,tempi1,
galpha1,galpha2,galpha3,galpha4,errlow_act);

input clk,clr;

output [18:0]errlow_act;
reg [18:0]errlow_act;
output [9:0]galpha1,galpha2,galpha3,galpha4;
output [5:0]tempi1;
input [9:0]gth1,gth2,gth3,gth4; //factor=*256
wire [9:0]tgalpha1;
reg [9:0]ttgalpha1;
input [5:0]vpower;
input [3:0]isense;
input [7:0]alpha1,alpha2,alpha3,alpha4;
reg [18:0]temp_errlow;

97

reg [18:0]errlow;
wire [7:0]u1,u2,u3,u4;

reg [9:0]gtheta1,gtheta2,gtheta3,gtheta4;
wire j2,j3,j4;
reg [9:0]x;

wire [5:0]tempi2,tempi3,tempi4;
wire [19:0]mout1,mout2,mout3,mout4,mout5,mout6,mout7,mout8;

GA_NEW g1(clk,clr,alpha1,vpower,u1,j1,tempi1,galpha1);
GA_NEW g2(clk,clr,alpha2,vpower,u2,j2,tempi2,galpha2);
GA_NEW g3(clk,clr,alpha3,vpower,u3,j3,tempi3,galpha3);
GA_NEW g4(clk,clr,alpha4,vpower,u4,j4,tempi4,galpha4);

mult1 m1(clk,gtheta2,galpha1,mout1);
mult1 m2(clk,gtheta1,galpha2,mout2);
mult1 m3(clk,gtheta3,galpha2,mout3);
mult1 m4(clk,gtheta2,galpha3,mout4);
mult1 m5(clk,gtheta4,galpha3,mout5);
mult1 m6(clk,gtheta3,galpha4,mout6);
mult1 m7(clk,gtheta1,galpha4,mout7);
mult1 m8(clk,gtheta4,galpha1,mout8);

always @(posedge(clk))
begin

if (isense[0]==1'b1) gtheta1=gth1;
 else gtheta1=galpha1;
if (isense[1]==1'b1) gtheta2=gth2;
 else gtheta2=galpha2;
if (isense[2]==1'b1) gtheta3=gth3;
 else gtheta3=galpha3;
if (isense[3]==1'b1) gtheta4=gth4;
 else gtheta4=galpha4;

temp_errlow=((mout1-mout2)+(mout3-mout4)+(mout5-mout6)+(mout7-mout8));

errlow=temp_errlow;
errlow_act=errlow;
end

98

endmodule

// verilog module for the block galpha

module GA_NEW(clk,clr,alpha,vpower,u1,j,tempi,galph);
input [7:0]alpha;
output j;
reg j;
input [5:0]vpower;
input clk,clr;

output [9:0]galph;
reg [9:0]galph;
reg [18:0]temp_galph;

reg [18:0]quotF1,quotF2;
wire [18:0]tquotF1,tquotF2;
reg [18:0]Fcn11;
reg [18:0]Fcn12,Fcn22;
output [6:0]u1;
reg [6:0]u1;
reg [7:0]u1_5;
reg [18:0]prod;

reg [5:0]Dmod;
reg [13:0]Fmod;
reg [5:0]Lpideal,mpideal,thetaTm;
reg [7:0]Laideal;
reg [8:0]mideal;

wire [18:0]remF1,remF2;
reg [18:0]tremF1,tremF2;
reg sw1;

reg [5:0]i;
output [5:0]tempi;
reg [5:0]tempi;
reg k;
reg l;

divtemp ddd(Fcn11,Fcn12,tquotF1,remF1,clk);
divtemp dddd(Fcn11,Fcn22,tquotF2,remF2,clk);
always @(posedge(clk))
begin

99

 u1=alpha;

Dmod=40;
 Fmod=10000;

 Laideal=8'b10001001; // 0.0084*16384 (137)
 mideal=9'b100101100; // 0.0183*16384 (300)

 Lpideal=6'b001100; // 0.00075*16384 (12)
 mpideal=6'b100010; // 0.0021*16384 (34)
 thetaTm=6'b011000; // 0.4189*180/3.14 (24deg)

 if(j==1'b1)
 l=1'b1;
else
 l=1'b0;
 end
 always @(negedge(clk))
begin

 if(clr==0)
 begin
 i=0;
 end
 else if(clr==1 && l==1'b1)
 begin
 i=0;
 end
 else
 i=i+1;
 if(i==3)
 begin
 tempi=i-3;
 tempi=tempi+1;
 end
 if(i<3) tempi=0;
 if(i>3) tempi=tempi+1;

 Fcn11=67200; //((Dmod * Dmod)* vpower);

 u1_5=5*u1;
 if(Laideal>(u1_5))

100

Fcn12=(Laideal-(u1_5)); // (mideal*pi/180)=5 (deg)
//factor=(100*100*Fmod/16384)

 else Fcn12=~(Laideal-(u1_5))+1;

 prod=6*(u1-thetaTm); // mpideal*10*pi/180=6
 if(120>prod) Fcn22=(120-prod); //factor=(10*100*100*Fmod/16384)
 else Fcn22=~(120-prod)+1 ; //10*Lpideal=120

 if(u1<=thetaTm) sw1=1'b1;
 else sw1=1'b0;

 tremF1=remF1;
 tremF2=remF2;

 if((tremF1*2)< Fcn12) tremF1=1'b0;
 else tremF1=1'b1;
 if((tremF2*2)< Fcn22) tremF2=1'b0;
 else tremF2=1'b1;

 if(tempi==25) k=1'b1;
 if(k==1'b1)
 begin
 quotF1=tquotF1;
 quotF2=tquotF2;

 if(sw1==1'b1)
 begin
 temp_galph=quotF1+tremF1;
 galph=(temp_galph*5)/128

 end
 else
 begin
 temp_galph=quotF2+tremF2;
 galph=(temp_galph*54)/128
 end
 end

 if (tempi==32)
 j=1'b1;
 else
 j=1'b0;

101

end

endmodule

// Verilog Module for Block integrator

module intH1_NEW(vout,vin,clk,tempi1,sign);
output [18:0]vout;
input [24:0]vin;
reg [18:0]vout;
input clk,sign;
input [5:0]tempi1;
reg [18:0]xn,xn1;

initial
begin
 vout=0;
end

always@(posedge clk)
begin

if(sign==1'b0)
 xn1=((vin*60)/(512*1024*8))+ xn;
 else if(sign==1'b1)
 xn1=xn-((vin*60)/(512*1024*8));

if (vin==0) xn1=0;
 vout=xn1;

if(tempi1==30) xn=xn1;

end

endmodule

// Verilog module for the block wrap

module wrap(clk,angle,wa);

input clk;
input [7:0]angle;
output [7:0]wa;

102

reg [7:0]wa,ta;

always @(posedge clk)
begin
 if((angle >= 0) & (angle <= 30))
 wa= angle;
 if((angle > 30) & (angle <= 90))
 wa= angle -60;
 if((angle > 90) & (angle <= 127))
 wa= angle -120;

 if((angle > 128) & (angle <= 158))
 begin
 wa[6:0]= angle- 128;
 wa[7]=1'b1;
 end

 if((angle > 158) & (angle <= 218))
 begin
 if (angle <188) wa[6:0]=~(angle- 188)+1;
 else wa[6:0]=(angle- 188);
 wa[7]=1'b1;
 end

if((angle > 218) & (angle <= 255))
 begin
 if (angle <248) wa[6:0]=~(angle- 248)+1;
 else wa[6:0]=(angle- 248);
 wa[7]=1'b1;
 end

end
endmodule

// Verilog Module for the block commutator

module comm(com,qcomin,qphin,startin,clk);
input startin,clk;

input [16:0]qcomin;
input [7:0]qphin;
output [3:0]com;
wire [7:0]qwb,qwc,qwd;
reg [7:0]qpha,qphb,qphc,qphd,qa,qb,qc,qd;

103

comm1 cm1(qcomin[7:0],qcomin[15:8],qcomin[16],qpha,startin,com[0]);
comm1 cm2(qcomin[7:0],qcomin[15:8],qcomin[16],qphb,startin,com[1]);
comm1 cm3(qcomin[7:0],qcomin[15:8],qcomin[16],qphc,startin,com[2]);
comm1 cm4(qcomin[7:0],qcomin[15:8],qcomin[16],qphd,startin,com[3]);

wrap phb(clk,qb,qwb);
wrap phc(clk,qc,qwc);
wrap phd(clk,qd,qwd);

always @(posedge(clk))
begin

 qa=qphin;
 qb=qa-45;
 qc=qb-45;
 qd=qc-45;

 if(qb>128)
 begin
 qb[6:0]=~(qb)+1;
 qb[7]=1'b1;
 end
 if(qc>128)
 begin
 qc[6:0]=~(qc)+1;
 qc[7]=1'b1;
 end
 if(qd>128)
 begin
 qd[6:0]=~(qd)+1;
 qd[7]=1'b1;
 end
 qpha=qa;
 qphb=qwb;
 qphc=qwc;
 qphd=qwd;

end

endmodule

// verilog module for commutator of one phase

 module comm1(qsm,qlrg,qlrg_qsm,qph,startin,comon);
input [7:0]qsm,qlrg,qph;

104

input qlrg_qsm,startin;
output comon;
reg comon;
reg [2:0]mux1;
reg mout;

always @(qph,qsm,qlrg,qlrg_qsm,startin)
begin

if(qph[7]==qlrg[7])
begin
 if(qph<=qlrg) mux1[2]=1'b1;else mux1[2]=1'b0;
end
else if((qph[7]==1'b1) & (qlrg[7]==1'b0)) mux1[2]=1'b1;
 else if((qph[7]==1'b0) & (qlrg[7]==1'b1)) mux1[2]=1'b0;

if(qph[7]==qsm[7])
begin
 if(qph>=qsm) mux1[1]=1'b1;else mux1[1]=1'b0;
end
else if((qph[7]==1'b1) & (qsm[7]==1'b0)) mux1[1]=1'b0;
 else if((qph[7]==1'b0) & (qsm[7]==1'b1)) mux1[1]=1'b1;

if(qlrg_qsm==1'b1) mux1[0]=1'b1;else mux1[0]=1'b0;

 case (mux1)
 3'b000: mout=1'b0;
 3'b001: mout=1'b1;
 3'b010: mout=1'b1;
 3'b011: mout=1'b0;
 3'b100: mout=1'b0;
 3'b101: mout=1'b0;
 3'b110: mout=1'b0;
 3'b111: mout=1'b1;
 endcase

 comon= (~(startin)& mout);

end

endmodule

The cores generated for the pipelined divider and multiplier are also instantiated in to the
Verilog design.

105

References

1. Miller, TJE, “Switched Reluctance motors and their control”, Magna Physics

Publishing and Clarendon Press, Oxford,1993

2. Krishnan, R., “ Switched Reluctance Motor drives: Modeling, Simulation,

Analysis, Design and Applications”, CRC Press, 2001

3. Radun, A. V. "Analytically Calculating the SRM's Unaligned Inductance," IEEE

Transactions on Magnetics, Vol. 35, n. 6., pp. 4473-4481 November/December

1999

4. Anwar, M. N., Hussain, I., and Radun, A. V., “A Comprehensive Design

Methodology for Switched Reluctance Machines,” IEEE Transactions On

Industry Applications, vol. 37, n. 6, pp. 1684-1692, November/December 2001

5. Xilinx, Virtex XCV800, http://direct.xilinx.com/bvdocs/publications/ds003.pdf.

6. Xilinx, Spartan XC3S1000,

http://direct.xilinx.com/bvdocs/publications/ds099.pdf.

7. Agilent Logic Wave Analyzer, http://cp.literature.agilent.com/litweb/pdf/5968-

5560E.pdf.

8. XSV board, www.xess.com-manuals-xsv-manual-v1_1.mdi.

9. Brown, S and Vranesic, Z.,” Fundamentals of Digital Logic with Verilog Design

“, Mcgraw- Hill Science/Engineering/Math, 2002

10. Yalamanchili, Sudhakar, “ Introductory VHDL from Simulation to Synthesis”,

Prentice Hall, 2001

11. Ciletti, Michael D., “Modeling, Synthesis and Rapid Prototyping with the Verilog

HDL”, Prentice Hall, 1999

12. Hennessy, J and Patterson, D, “ Computer Architecture: A Quantitative

Approach”, Morgan Kaufmann, 2003

13. Ciletti, Michael D., “ Starter’s Guide to Verilog 2001”, Prentice Hall, 2003

106

14. Gallegos-Lopez G, Kjaer PC and Miller TJE [1997] A New Sensorless Method

for Switched Reluctance Motor Drives, IEEE-IAS 97, New Orleans, pp.564-570.

15. Perl, T.; Husain, I.; Elbuluk, M.; Design trends and trade-offs for sensorless

operation of switched reluctance motor drives. Industry Applications

Conference, IEEE, Volume: 1; Pages: 278 - 285 vol.1.

16. Ray, W.F.; Al-Bahadly, I.H.; Sensorless methods for determining the rotor

position of switched reluctance motors. Power Electronics and Applications,

1993; Pages: 7 - 13 vol.6.

107

Vita

Srilaxmi Pampana was born in Hyderabad, India on May 2, 1980. She received her

Bachelor of Technology degree from VNR Vignana Jyothi Institute of Engineering and

Technology, JNTU, India in 2001. She worked as an intern at Hindustan Cables Limited

from January 2001 to June 2001. She did her research work under Dr. Arthur Radun from

August 2003 to October 2004.

	FPGA BASED IMPLEMENTATION OF A POSITION ESTIMATOR FOR CONTROLLING A SWITCHED RELUCTANCE MOTOR
	Recommended Citation

	Microsoft Word - temp2_pdf.doc

