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ABSTRACT OF THESIS 

 
 

FPGA BASED IMPLEMENTATION OF A POSITION ESTIMATOR 
FOR CONTROLLING A SWITCHED RELUCTANCE MOTOR 

 
 
Rotor Position information is essential in the operation of the Switched Reluctance Motor 
(SRM) for properly controlling its phase currents. This thesis uses Field Programmable 
Gate Array (FPGA) technology to implement a method to estimate the SRM’s rotor 
position using the inverse inductance value of the SRM’s phases. The estimated rotor 
position is given as input to the Commutator circuit, also implemented in the FPGA, to 
determine when torque-producing currents should be input in the SRM phase windings. 
The Estimator and Commutator design is coded using Verilog HDL and is simulated 
using Xilinx tools. This circuit is implemented on a Xilinx Virtex XCV800 FPGA 
system. The experimentally generated output is validated by comparing it with simulation 
results from a Simulink model of the Estimator. The performance of the FPGA based 
SRM rotor position estimator in terms of calculation time is compared to a digital signal 
processor (DSP) implementation of the same position estimator algorithm. It is found that 
the FPGA rotor position Estimator with a 5MHz clock can update its rotor position 
estimate every 7µs compared to an update time of 50µs for a TMS320C6701-150 DSP 
implementation using a commercial DSP board. This is a greater than 7 to one reduction 
in the update time. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Introduction to Switched Reluctance Motor 
  

The switched reluctance motor (SRM) is a doubly salient and singly excited machine 

with an unequal number of rotor and stator poles to avoid magnetic locking between the 

stator and rotor poles. The main advantages of Switched Reluctance motors are their 

simple construction due to the absence of magnets, rotor conductors, and brushes and 

high system efficiency over a wide speed range. However, the need for a direct rotor 

position sensor to commutate the current from phase to phase synchronously with rotor 

position has excluded the motor from many cost-sensitive applications. 

 

For successful and reliable operation of the SRM, it is essential to know the rotor position 

accurately. For high performance SRM drives used in aircrafts, ships, and servo systems 

accurate rotor position is required to avoid initial starting hesitation. An encoder, 

resolver, or Hall sensor attached to the shaft is normally used to supply the rotor position, 

but the use of these sensors increases costs, decreases system reliability, and also 

increases the overall physical envelope of the motor drive and the number of motor wires. 

A variety of algorithms for sensorless control have been developed, most of which 

involve evaluation of the variation of magnetic circuit parameters that are dependent on 

the rotor position. These sensorless schemes use only terminal measurements and do not 

require additional hardware while maintaining reliable SRM operation over the entire 

speed and torque range with high resolution and accuracy. 

 

In this thesis, a sensorless technique that has been developed to determine the SRM’s 

rotor position is implemented using a field programmable gate array (FPGA) and the 

performance of the FPGA implementation is compared to a signal processor 

implementation.  
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1.2 Basic Structure and Principle of SRM Operation 
 

A Switched Reluctance (SR) motor is a rotating electric machine where both the stator 

and rotor have salient poles, with windings only on the stator. Windings of diametrically 

opposite stator poles are connected in series or parallel to form one phase of the machine. 

The cross-section diagram of a 4-phase, 8/6 (# of stator poles/# of rotor poles) SRM is 

shown in figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

                  

 

The basic principle of a SRM operation is that when a stator phase is excited, the rotor of 

the SRM always rotates to the nearest position of minimum reluctance (aligned position), 

which corresponds to the minimum stored energy in the system. 

When a stator pole pair is not aligned with a rotor pole pair, coils of the stator pole pair 

are excited by a sequence of current pulses applied to the phase and a magnetic flux path 

is created through the excited stator poles, air gap and the nearest rotor poles. Due to the 

tendency for the reluctance of the flux path to minimize, the rotor poles are attracted to 

the stator poles, producing torque. Then, when the stator pole pair becomes nearly 

aligned with the rotor pole pair, the excitation to the active coils is removed so that torque 

is not produced in the reverse direction; instead, coils of an adjacent stator pole pair are 

excited so that another rotor pole pair is attracted to the new stator pole pair since they 

are not aligned. By selectively exciting the stator pole pairs to attract rotor pole pairs, 

 

A

B

C

D

A

D

C 

B

rotor

Figure 1.1 Cross-section diagram of an 8/6, four-phase SRM 
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synchronous continuous motion and continuous torque are produced. The current pulses 

need to be applied to the respective phase at the correct rotor position relative to the 

excited phase. Therefore, it is evident that the rotor position plays a critical role in 

determining which phase of the motor must be energized in order to produce the desired 

torque in the desired direction.  

 

1.3  Contribution of the Thesis 

 
The rotor position information in SRM drives is essential in determining the switching 

instants for proper control of speed, torque and torque pulsations. A shaft position 

transducer is usually employed to determine the rotor position. In inexpensive systems 

the rotor position sensor is comprised of a magnetized ring with Hall Effect sensors, or 

opto-interrupters with a slotted disk that produce discrete signals with no information 

between the pulses. In more expensive systems, a large number of pulses per revolution 

can be obtained from a resolver or optical encoder. Alternatively, a large number of 

pulses can be obtained by phase locking a high frequency oscillation to the pulses of 

discrete position sensors. Systems with such high resolution can work well down to zero 

speed. However, these sensors add complexity and cost to the system. Moreover, 

electromagnetic interference and temperature effects tend to reduce the reliability of the 

system. In order to avoid these difficulties some form of indirect position-sensing scheme 

is desirable. Several indirect position-sensing methods have been patented and published 

for sensorless control of SRM drives. The various indirect position-sensing techniques 

presented in the literature have their own advantages and disadvantages. Furthermore, the 

developed methods are application specific, depending on factors like, motor 

characteristics, converter topology, control strategy etc. The design considerations 

directly affect the type of indirect position scheme to be adopted for the drive. 

 

The expected benefits of the indirect methods are: elimination of the electrical sensor 

connections, reduced SRM size, no maintenance, insusceptible to environmental factors 

and increased reliability. In addition, the expected features of desirable indirect methods 
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include: operating at zero speed and higher speed the same as conventional direct 

position sensors. 

 

 All of these indirect sensing methods use the instantaneous phase inductance variation 

information in some way to detect the rotor position at low speeds. This is possible with 

SRMs since the flux-angle-current characteristics vary significantly between the aligned 

and unaligned positions of the doubly salient stator and rotor poles.  

 

In this thesis, a new method which estimates the rotor position by comparing the 

measured and estimated conductance values and calculating an error, which is input to a 

state estimator, is implemented using a FPGA. The estimated rotor position angle is used 

to control the electronic commutator, which controls when current is allowed in the 

machine’s phases. The commutator is included in the FPGA with the state estimator and 

error calculation hardware. The rotor position estimator model is created and simulated in 

the Matlab/Simulink environment. The design is coded using the Verilog hardware 

design language and synthesized using Xilinx tools and simulated using Modelsim 

Simulator. The Simulated results obtained from both Simulink and Modelsim are 

compared. The design is then implemented on an FPGA chip and tested. 

  

 

 The block diagram of the entire motor drive system is as shown in figure 1.2. 
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Figure 1.2: The Block diagram of the entire SRM based motor system 

 

The Power Converter typically uses Silicon MOSFETs to control the voltage to the 

motor. The turning on and turning off of the MOSFETs is controlled by a current 

regulator circuit that forces the SRMs phase currents to be equal to the current command. 

The current command to the current regulator is the desired current in an SRM phase. 

The current command depends on the desired average torque. The rotor position 

estimator gives the rotor position which is given as input to the commutator, which 

controls the current pulses, that is determines which phase has to be excited to get the 

desired torque. 

This thesis deals with the design of the blocks titled Rotor Position Estimator and 

Commutator in the FPGA block, in figure 1.2. The inputs and outputs of the FPGA are 

summarized in figure 1.3. The inputs to the estimator are used to compute the rotor 

position. The instantaneous position information is used as an input to the commutator to 

derive the instant of switching of the currents. 

 

 



 

6 

 
 

  

1.4 Outline of the Thesis 
This thesis is organized as follows: 

 

Chapter 1 gives a general introduction of switched reluctance motors: its basic structure 

and principle of operation. Then the motivation of this thesis, which is the 

implementation of the rotor position estimator on a Field Programmable Gate Array 

(FPGA) is given. 

 

Chapter 2 discusses the basic SRM model and the background issues related to the rotor 

position estimator and SRM control. 

 

Chapter 3 gives the basic SRM drive system model created in Simulink and Matlab and 

important simulation results for the implementation of the rotor position estimator. 

 

Chapter 4 introduces to the design of the rotor position estimator using the Verilog 

Hardware design language and its synthesis and simulation results using Xilinx tools and 

Modelsim Simulator. It also introduces to the Field Programmable Gate Array (FPGA). 

  

 
 

Sensorless 
Rotor 

Position 
Estimator 

and 
Commutator 

      com 

      thetah 

  wmh 

qcoma in 

 vpower 

gtheta in 

isense 

startin 

Figure 1.3 Block Diagram of Rotor Position Estimator and Commutator 
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Chapter 5 gives the comparison of the simulation results obtained using both Simulink 

and Modelsim. It also gives the implementation of the rotor position estimator on the 

FPGA. Experimental results from a programmed FPGA are presented to verify the 

correct operation of the rotor position estimator. The performance of the FPGA based 

SRM rotor position estimator in terms of calculation time is compared to a signal 

processor implementation of the same position estimator algorithm. 
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CHAPTER 2 

DESIGN ANALYSIS OF ROTOR POSITION ESTIMATOR 
 

2.1 Variation of inductance with rotor position 

 
An efficient operation of the Switched Reluctance Motor (SRM) can be achieved only by 

proper determination of the rotor position. Rotor position measurement or estimation is 

an integral part of SRM control because of the nature of reluctance torque production. 

The excitation of the SRM phases needs to be properly synchronized with the rotor 

position for effective control of speed, torque and torque pulsation. 

 

All SRM’s possess a unique relationship between phase inductance, phase current, and 

rotor position, which makes prediction of rotor position possible. Since the rate of change 

of phase current is dictated by the incremental inductance of the phase circuit, and the 

incremental inductance is in turn a function of rotor position and phase current, rotor 

position can be deduced from knowledge of phase current and its rate of change. 

 

At low speeds, to estimate the rotor position of the SRM, the variation of the phase 

inductance with rotor position can be used. But because the SRM operates with 

substantial iron saturation at torque producing currents, the phase inductance is a function 

of both rotor position and phase current.  

  

The SRM motion is produced because of the variable reluctance in the air gap between 

the rotor and the stator. When a stator winding is energized, producing a single magnetic 

field, reluctance torque is produced by the tendency of the rotor to move to its minimum 

reluctance position. When a rotor pole is aligned with a stator pole, as shown in figure 

2.1, there is no torque because field lines are orthogonal to the surfaces (considering a 

small gap). In this aligned position, the unsaturated inductance is a maximum since the 

reluctance is minimum. If one displaces the rotor from the aligned position, there will be 

torque production that will tend to rotate the rotor back to the aligned position. 
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If current is injected in the phase when the rotor is rotated to the unaligned position, as 

shown in figure 2.2, there will not be torque production (or very little). If one displaces 

the rotor from the unaligned position, then a torque is produced that tends to displace the 

rotor to the nearest aligned position. 

 

 

Rotor 
pole 

Rotor 
pole 

Unaligned position 

 
                          Figure 2.2 Unaligned Position 

 

When rotor poles are aligned with the stator poles of a relevant phase the flux linkage, for 

a given phase current, is maximized. The flux linkage is a maximum when the 

unsaturated inductance is a maximum. However at this aligned position the relationship 

between flux linkage and phase current is extremely nonlinear in a well-designed 

machine, because the poles are magnetically saturated at the rated phase current. 

rotor 

Stator 
 
Aligned position 

Figure 2.1 Aligned Position 
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The flux linked by a phase versus phase current for different rotor positions is plotted in 

figure 2.3. The slope of the flux curves at a fixed rotor position is the incremental phase 

inductance. 
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Figure 2.3 Plot of the SRM’s phase flux versus current for different rotor 

positions showing the effect of iron saturation. 

 

Because this slope changes with current so does the phase inductance as shown in figure 

2.4 where the phase inductance is plotted versus rotor position for different currents.  
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Figure 2.4 Plot of the SRM’s phase inductance versus rotor position for 

different currents. 

 

At low currents, the phase inductance has an essentially triangular shape versus rotor 

position while at high currents the phase inductance is far from triangular. This makes 

using the current in the torque-producing phase for rotor position estimation very 

complex. Thus, the normal practice is to stimulate the non-torque-producing phases that 

normally have zero current in them for some instantaneous rotor positions, with small 

sensing currents, that do not saturate these phases and produce little torque, to do the 

position estimation. Figure 2.5 shows the aligned incremental phase inductance versus 

current for an experimental SRM. For iron saturation to be ignored in this machine the 

sensing phase current must be less than about 2.0A. It has its maximum inductance when 

it is in an aligned position and minimum inductance when unaligned. When the voltage is 

applied to the stator phase the current in that phase increases and the SRM creates torque 

in the direction of increasing inductance.  
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Figure 2.5 Plot of the phase inductance at the aligned  

              position versus current for an SRM. 

 

 

2.2 Theory behind the Rotor Position Estimator used in this thesis 

 
When voltage is applied across the stator winding of the SRM as shown in the figure 2.6,   

 
 

Vph 

IL(t) 

 t1             t/2               t 

Figure 2.6 Current Profile across an inductor 
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the current in the inductor obeys the following equations 

 

( )
dt

di)t(L)t(V ph
phph θ= ,  ( ) τ

τθ
τ

+= ∫ d
)(L
)(V)t(i)t(i

t

t
ph

ph
1phph

1

   (2.1) 

 

Vph(t) is a constant from t1 to t with a value equal to the DC voltage, VDC. It will be 

assumed that iph(t1) = 0 since t1 coincides with a zero phase current. It will also be 

assumed that the modulation frequency Fmod is high enough that the inductance does not 

vary over the time period of one modulation cycle. In this case  

 

( ) ( ) ( ) tV)t(gd)(V)t(gd)(V
)t(L

1)t(i DC1
t

1t

ph1
t

1t

ph
1ph

ph ⋅⋅θ≈ττθ≡ττ
θ

= ∫∫   (2.2) 

 

where g(θ) has been defined as the inverse of the phase inductance. Equation 2 gives the 

current during the increasing current part of the waveform in figure 2.6 and is a positive 

ramp as expected. The peak phase current (at t = t1 + DmodTmod) is modulated by the 

inverse phase inductance function gph(θ) which does not depend on the details of the 

phase current or voltage during one modulation cycle. Similarly the phase current ramps 

down during the decreasing current part of the waveform generating a triangle of current 

whose peak depends on gph(θ). Taking the average of the phase current over one 

modulation cycle gives 

( ) ( ) ( ) ∫ ∫∫ ∫
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1
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1
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1mod
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1

1
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T1 dt)(
T

1)(dt)()(
T

1)(t
t

t

t

t

phph

t

t

t

t

phph dVtgdVtgiph ττθττθθ  

( )
4

)()()(t mod
T1 mod

TVgiiph DC
phsense θθθ =≡       (2.3) 

Thus the average of the phase current over one modulation cycle is proportional to the 

inverse phase inductance function gph(θ). 

The gph(θ) functions (one for each phase) can be used to estimate the SRM’s rotor 

position since they are known ahead of time from the machine’s characteristics and they 

can be measured by exciting the phases of the SRM as described above. For simplicity in 
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what follows, it will be assumed that the known machine inductance profile has a 

constant value equal to the unaligned inductance for rotor positions where the rotor and 

stator poles do not overlap and it varies linearly from the unaligned inductance value to 

the aligned inductance value when the poles overlap as shown in figure 2.7. 
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Figure 2.7 Ideal phase inductance profile versus rotor position. 

 

 

An error between the estimated and measured angle cannot be computed directly since 

the rotor position is not measured. However a suitable error can be defined using the 

gph(θ) functions which can be measured using the average in equation 2.3. Let θ be the 

actual rotor position and α be the estimated rotor position, then the error for data from 

phases one and two is 

 

( ) )()()()(, 21121 αθαθαθ ggggerror −=       (2.4) 

 

Note that when θ = α, the error is zero. The total error is just the sum of the errors for 

each phase pair. The error for a four phase SRM is 
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( ) ( ) ( )+−+−= )()()()()()()()(, 32232112 αθαθαθαθαθ ggggggggerrortot  

( ) ( ))()()()()()()()( 14414334 αθαθαθαθ gggggggg −+−  (2.5) 

 

The total error is also zero when θ = α. The total error depends on both θ and α and thus 

on both θ and α – θ. It can be verified that this error has one sign for α – θ  positive and 

the opposite sign when α – θ is negative for any θ. This is shown in figure 2.8 for an 

experimental 4 phase SRM for α – θ = +/-1º, +/-5º, and +/-10º and rotor positions from 0º 

to 90º. 
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Figure 2.8 The computed error for an experimental 4 phase SRM for α – θ = +/-1º,  

                  +/-5º, and +/-10º and rotor positions from 0º to 90º. 

 

Thus, this error can be used in a state estimator to estimate the rotor position. The gain of 

the estimator depends on rotor position but because the sign of the error does not vary 

with rotor position, it will be possible to design a stable state estimator. 
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2.3 Rotor Position State Estimator Equations  
 

Consider the physical system of a motor. The state equations for the physical system are 

of the form 

 

Xp = A xp + B up              (2.6)                                         

Yp = C xp                   (2.7)  

 

Where the subscript p indicates the variables are for the physical system. The motor’s 

acceleration is given by 

 

         loade
m TT

dt
Jdw

−=           (2.8) 

          where,     J= Moment of Inertia       

                      onaccelerati
dt

dwm
=  

                    Te= electrical Torque 

      Tload = mechanical Torque 

 

When the motor runs at steady speed, the acceleration is zero because the load and 

electrical torques balance. Therefore 

 
dt

dwm =0          (2.9) 

 

The rate of change of rotor position is the rotor speed, wm  given by 

m
dt
d ωθ

=           (2.10) 

where θ is the angular position of the rotor of the motor. 

 

The equation (2.6) can be deduced from equations (2.9) and (2.10) 
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                  (2.11)        
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Since time rate of change of the rotor position is nothing but ωm (the rate of change of 

position is speed), the first row of the matrix is [0   1] and since the acceleration is zero, 

the rotor speed ωm is zero, hence the second row of matrix is [0    0]. 

 

The state equations for the state estimator in the linear case are 

 

Xe = A xe + B ue   + H (Ye – Yp)                (2.11) 

Ye = C xe          (2.12)  

 

Since the model system used to estimate the unmeasurable state is not exactly the same as 

the real physical system, an error between what is measured and the estimator’s 

prediction of what is measured (Y) is input to the model estimator equations. In equation 

2.11 this error input is given by H (Ye – Yp), where H is a constant gain matrix to be 

determined by the designer such that the error between the estimated state and the actual 

state values decays to zero (thus H (Ye – Yp) decays to zero) and thus the estimated state 

is the correct value. The gain matrix H is adjusted to see how fast and with what 

dynamics the state error decays to zero 

 

The error is the difference between the actual and the estimated values and can be 

computed by 

 

d Error / dt = d (Xp - Xe) / dt 

         = A Xp + B Up - A Xe + B Ue   + H (Ye – Yp)   

         = A (Xp- Xe) – H(C Xe - C Xp) 

         =  (A+HC) (Xp- Xe) 

         = (A+HC) ε           (2.13) 

   

ε= ε0 e (A+HC) t 
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For the error to decay to zero the real parts of the eigen values of the matrix (A+HC) must 

be negative. The matrix H is chosen so that the error decays with the desired dynamics.  

 

For the SRM rotor position estimator the state vector and state vector error vectors are 

   

⎥
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           (2.14) 
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=
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m
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where α is the estimated rotor position angle and ωα  is the estimated speed of the rotor. 

Differentiating equation (2.14),  
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But because of equation (2.9), (Te- Tload) is equal to zero. 

 

The equation for the state estimator is defined as 
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where errortot(θ,α) was defined previously in equation 2.5. To compute the stability of the 

state error e the nonlinear error function must be linearized. 

 

( ) θθθθ εεθ
θ

εθαθθαθ ⋅⎟
⎠
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⎜
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⎛

∂
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≈=−= 0,),(),(),(),( tottottottot error
e

errorerrorerror  (2.18) 

 

The partial derivative in equation 2.18 can be estimated from the results in figure 2.8. 

With the linearization of the error function the error dynamics are governed by 
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The equations (2.16) and (2.17) can be represented by the block diagram shown in figure 

2.9. 

 

 
H1 

H2 ∫

∫
ωα 

Low Pass 
Filter 

Compute 
errortot(θ,α)

gi(θ)iφ 

Compute 
gi(α) gi(α) 

α 

 
Figure2.9. Block diagram representation of the state estimator 

 

This system is used to estimate the values of rotor position and rotor speed. In this thesis, 

this system is coded using the Verilog hardware design language and then is implemented 
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on an FPGA chip. The programmed FPGA chip would be suitable for use as part of the 

SRM motor control. 

 

The block diagram of the control system of the Switched Reluctance Motor is as shown 

in figure 2.10. 
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Figure 2.10 Block Diagram of the SRM control system 

 

The block diagram of the block FPGA, which is actually the basis of this thesis, is as 

shown in the figure 2.11. 
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H1 

H2 ∫ 

∫ 

ωα 
Compute 
error(θ,α) gi(θ) 

Compute 
gi(α) 

gi(α) 

α
Comutator 

FPGA 

Phase on/off angles 

 
Figure 2.11 Block diagram of the FPGA that is the subject of this thesis 

 

 

The estimated value of rotor position, α is given as input to the commutator circuit.  

The basic block diagram of the commutator is as shown in the figure 2.12.  

   

 
  

The commutator gets the estimated rotor position angle as input, which it compares with 

the desired angle range and determines which of the four phases is to be excited and then 

accordingly turns on the phase that is to be excited. Thus, the current is given as input to 

that phase, which will in turn produce the desired torque. The commutator compares the 

instantaneous estimated rotor position α with the values (θsm, θlrg) which are given as 

input through ‘θcomin’ and commutates the current in the corresponding phase. The 

 
 

Commutator 

α 
 
θcomin 
 
startin 

com 

Figure2.12 Block diagram of Commutator 
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commutator insures that the currents in the stator circuits are switched on and off in 

accordance with the rotor position. The torque can be controlled to give a resultant which 

is positive (i.e. motor action) or is negative (i.e. generator action) simply by switching the 

current in the coil on and off at appropriate instants. 

 

A model of the circuitry in the FPGA and which is the subject of this thesis has been 

created in Simulink prior to this thesis research and was available to facilitate this 

research. This model will be discussed in detail in Chapter 3. 
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CHAPTER 3 

SIMULINK MODEL OF THE CIRCUIT TO BE DESIGNED 
 

3.1 Introduction to Simulink model 
 

The simulation of a system is important in view of its design and experimental 

realization. Simulation using Matlab/Simulink allows a high flexible modeling 

environment to model power electronic systems containing electrical machinery, 

electronic controls, and power circuits. This thesis implements part of the control design 

for a power electronics controller for a SRM. During this thesis a complete 

Matlab/Simulink model of this power electronics system was available. It included a 

model of the part of the control being implemented here. All Simulink simulations are 

documented by their block diagrams, their corresponding special Matlab functions and 

their input parameters. A strong aspect of the SRM simulation using Simulink is the use 

of conventional blocks allowing easier understanding of the program’s structure. 

Figure 3.1 shows the block diagram of the Rotor Position Estimator and Commutator 

with all the inputs and outputs. 

 

 
 

Rotor 
Position 

Estimator 

    θh  
 
   

 ωmh 

 
gthetain 
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Figure 3.1 Block Diagram of Rotor Position Estimator and Commutator
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Consider the block diagram of the Sensorless Rotor position estimator. The input gthetain 

represents the inverse inductance value of the actual rotor position g(θ). The input 

vpower is the voltage applied to the motor. The input isense is the select signal given as 

input to the estimator to choose between g(θ) and g(α). Recall that the error is defined as 

 

( ) ( ) ( )+−+−= )()()()()()()()(, 32232112 αθαθαθαθαθ ggggggggerrortot  

( ) ( ))()()()()()()()( 14414334 αθαθαθαθ gggggggg −+−  

 

If the measured g(θ) from a particular phase is not available because the rotor is in a 

position where that phase is producing torque (as seen in figure 3.2), the calculated g(α) 

for that phase is used instead. The signal isense is high when the rotor is in a position 

where the given phase is not producing torque and thus is being energized with sense 

pulses to produce g(θ)and is low when the rotor is in a position where the given phase is 

producing torque as shown in figure 3.3. When the select signal isense is high, g(θ) is 

selected and thus used in the error calculation used to estimate the rotor position. When 

isense is low, g(α) for the given phase is selected because the g(θ) for that phase is not 

available, and thus error is computed without the g(θ) information from the given phase. 

The error is computed using only the g(θ)s from the other phases.  

 
 

Sense Current 

Torque Producing Current 

 
 

Fig. 3.2 Phase current showing the torque producing and sense phase currents 
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Figure 3.3 Plot of measured (from simulation) g1(θ) and the select signal isense for 

phase one. 

 

The output ωmh represents the speed of the motor. The output θh represents the estimated 

rotor position, α. This rotor position angle, α is the input to the commutator as θphin. The 

rotor position angle is shifted to produce 3 additional angles. These shifted angles are 

input to the same commutator hardware to produce the commutator output for the other 3 

phases.  

3.2 Commutator Block 

Now, consider the commutator block. The input startin is the select signal given to the 

commutator, which tells the commutator whether the user wants the SRM to operate 

normally and produce torque or to go into startup mode. If the startin select signal is high, 

the control and position estimator go into start up mode. In this mode the control 

continuously applies sense pulses to all four phases of the SRM so that the SRM’s rotor 

position can be estimated without a net torque being produced and without the rotor 

rotating. When the user wants the SRM to produce torque, the input startin is made low 

taking the control and position estimator out of the startup mode. Now the control 

commutates the SRM so that it produces the commanded torque.  

The input qcomin is a concatenation of the angles θsm, θlrg and a one bit signal θlrg>θsm, 

given as a single digital word. 
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The angle θsm is the smaller of θsm and θlrg. If the motor is rotating in the forward 

direction θsm is the turn-on angle and θlrg is the turn off angle and the reverse is true if the 

motor is rotating in the reverse direction. These angles are the rotor’s position defined 

relative to a given stator. This rotor position is near the rotor’s unaligned position with 

respect to the stator pole.  

The commutator checks if the estimated rotor position angle α falls in between θsm and 

θlrg. If the estimated rotor position is between these two angles the commutator outputs a 

one, otherwise it outputs a zero as shown in figure 3.4. This is done for all the four phases 

of the stator and accordingly each phase of the stator is commutated enabling the SRM to 

produce torque.  

The signal θlrg>θsm is high when θlrg is greater than θsm, i.e. the normal case and low 

when θlrg is smaller than θsm, i.e. when the angles are outside the range of –30º to +30º 

and they must be wrapped to stay within this range as illustrated in figure 3.5 for forward 

rotor rotation. 
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Figure 3.4 Commutator output for forward and reverse directions under normal 

conditions. 
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Figure 3.5 Commutator output for forward rotation when the turn on angle is 

advanced beyond the allowed range. 

 

The output com is the four-bit output from the commutator corresponding to the four 

phases, each bit being high or low according to whether that phase is to produce torque or 

not. 

The commutation for all possible combinations of α with respect to θsm, θlrg and θlrg>θsm 

is discussed below. 

θph> θsm θph<θlrg θlrg>θsm com 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 

Table 3.1 Truth Table for the Commutator 
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As seen from the table 1.1, the commutator turns on for only three cases. 

1) When the estimated rotor position θph falls in between θsm and θlrg, i.e., θph is greater 

than θsm and smaller than θlrg and θlrg is greater than θsm. 

2) When qph is larger than both θsm and θlrg and θlrg is smaller than θsm. 

3) When qph is smaller than both θsm and θlrg and θlrg is smaller than θsm. 

This truth table is obtained from figures 3.4 and 3.5.  

A Simulink model developed for the commutator block and available for this thesis 

showing all the four phases is as shown in figure 3.6. Note that in the Simulink model the 

letter q is used for θ and no subscripts are used. The figure shows the block named four 

wrapped angles in which the shifting of the rotor position angle by 45˚ takes place for 

each phase, and then wrapping also takes place such that the rotor position angle for each 

phase lies in between -30˚ and +30˚. The blocks named commutator1, commutator2 etc. 

represents the commutator for each phase.  
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Figure 3.6 Simulink model of the commutator block. 
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Figure 3.7 shows the Simulink model of the block commutator1, which is a sub-block of 

the commutator model. As seen in the figure, the angle θsm (qsm), the angle θlrg (qlrg), the 

signal corresponding to θlrg>θsm (qlrg>qsm), the startin signal and the estimated rotor 

position angle are the inputs. The model checks if the rotor angle is greater than θsm and 

also if it is less than θlrg and accordingly gives the 3-bit input to the look-up table which 

contains the corresponding truth-table shown in table 3.1. The model also checks the 

status of the startin signal. The output of the AND gate is the output of the commutator 

for that phase. If it is one, the phase is energized to produce torque and if it is zero, the 

phase is energized with sense pulses.  
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Figure 3.7 Simulink model of the commutator block for one phase 
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3.3 Rotor Position Estimator 
 

Now consider the block diagram of the Sensorless rotor position estimator in figure 3.1 

shown in figure 3.8. The signals g(θ) (gthetain), VDC (vpower) and isense (isense) are 

inputs to the error computing block. Based on these inputs and also the shifted and 

wrapped estimated rotor position α (alpha), the error is calculated. 

 

Figure 3.8 Simulink model of the rotor position estimator. 

 

As discussed in chapter 2, the error is calculated using the measured inverse inductance 

values g(θ) and the computed inverse inductance values g(α) using equation 2.5. To 

compute the error, the values of g(α) for all four phases must be computed. 
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Figure 3.9 shows the Simulink model for calculating g(α) for each SRM phase.  

 

 

1

g(alpha)
Switch 

<=

Relational
Operator

Mux

Mux

f(u)

Fcn1

f(u)

Fcn

-C- 

Constant 

|u| 

Abs 

2 
vpower 

1 
alpha 

 

Figure 3.9 Simulink model of the block galpha to calculate g(α) 

 

While calculating g(α), the absolute value of α is used since the function is an even 

function of α. The inverse inductance function g(α) is a function of α and should be equal 

to the measured g(θ) function obtained by demodulating (low pass filtering) the sense 

pulse currents. The sense pulse currents are triangular in shape with a peak value 

determined by the SRM’s phase inductance. Thus g(α) is calculated by using the 

following equation. 

)alpha*midealLaideal(*F*100
)D(*vpower)g(

mod2

2mod

−
=α                                   (3.1) 

where, vpower is the input power. 

Dmod is the modulation duty cycle in % = 40 

Fmod is the modulation frequency =1000Hz 

Laideal is the inductance value in the aligned position= 0.0084 
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mideal= (Laideal-Lpideal )/thetaTm 

Lpideal is the phase inductance at a rotor position of +/- 24º 

thetaTm is the torque producing angle range, and 100 is to convert the % duty cycle to its 

decimal value. 

In the Simulink model, equation 3.1 is computed by the block labeled Fcn, if alpha 

<thetaTm (α<24˚), otherwise equation 3.2 computed by Fcn1 is used. 

 

)thetaTmalpha(*mpidealLpideal(*F*100
)D(*vpower)g(

mod2

2mod

−−
=α   (3.2) 

mpideal= (Lpideal-Luideal)/ (thetaum-thetaTm); 

thetaum is the unaligned rotor position angle in radians 

 

It is known that the maximum inductance occurs at the position of minimum reluctance 

when the rotor pole aligns with the stator poles, and the minimum inductance occurs 

when the rotor and stator poles are completely unaligned. Therefore the inverse 

inductance g(α) is maximum when the rotor and stator align with each other and is 

minimum when unaligned. 

 

Figure 3.10 shows the alpha profile varying between -30˚ to +30˚ and figure 3.11 shows 

the corresponding g(α) profile obtained by simulating the block galpha.  
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Figure 3.10 The rotor position angle profile. 
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Figure 3.11 The inverse inductance value profile. 
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 Therefore, as seen in these figures, when a rotor pole is in complete alignment with a 

stator pole i.e., α is 0˚, the inductance is at its maximum, and therefore the inverse of 

inductance, g(α) is minimum. As α increases from 0˚ to 30˚, inductance decreases thus 

increasing the value of g(α) to the maximum value and as α decreases from 30˚ to -30˚, 

g(α) also decreases to the minimum value.  

 

Now, consider the Simulink model of the block for computing the error. Four of the 

galpha blocks shown in figure 3.9, one for each phase, are instantiated in the error block. 

The values of α for each phase are the input to each of these blocks and they compute 

outputs g(α) for all four phases. The definition of the error requires all four values of the 

computed g(α)s and all four values of the measured g(θ)s, one for each phase. If a phase 

is producing torque there is no measured g(θ) from that phase. In this case g(α) is 

substituted for g(θ). Depending on the input signal isense, a switch is used to select if 

g(α) should be substituted for g(θ). Four switches are used, one for each of the four 

phases. Then the values of g(α) and g(θ) of all the four phases are connected through 

multiplier blocks and then are added or subtracted accordingly to calculate the error. The 

simulation result from the error block for values of α and θ varying as shown in figure 

3.10 is given in figure 3.12. As seen in the result, the average error goes to zero as the 

estimated value of the rotor position (α) becomes equal to the actual value of the rotor 

position (θ). The average value is zero though there are fluctuations.   
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Figure 3.12 The error calculated for the actual and estimated inverse inductance 

profile. 

 

Now consider the Simulink model of the rotor position estimator shown in figure 3.8. The 

sub-block galpha and the error block are instantiated in this main block.  

The error calculated by the error block is used as the input to a state estimator to estimate 

the rotor position. This is done using the equations in chapter 2. The gains in the state 

estimator are chosen such that the state estimator is stable and its output converges to the 

correct values rapidly. The error multiplied with a gain factor is given as an input to an 

integrator whose output is the angular speed of the motor. Figure 3.13 shows the 

predicted estimated SRM speed using the Simulink model when the actual speed is 

constant and there is an initial error is the estimated rotor position. From the figure, we 

observe that the speed reaches its required constant value as the error between the actual 

and estimated rotor position tends to zero. Figure 3.14 shows the estimated rotor position 

for the SRM. The estimated angle has been wrapped such that it falls in between -30˚ and 

+30˚. 
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Figure 3.13 Estimated rotor speed for the SRM in radian/second (for a constant 

speed of 2000rpm). 
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Figure 3.14 Estimated rotor position for the SRM 

 

The next chapter describes the design and implementation of the commutator and 

position estimator design described in this chapter using an FPGA. 
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CHAPTER 4 

IMPLEMENTATION OF THE ROTOR POSITION 
ESTIMATOR ON AN FPGA 

 

4.1 Block Diagram of the system 
 
The block diagram of the rotor position estimator and commutator system summarizing 

the inputs and outputs is as shown in the figure 4.1. 

 

The number of bits required to represent the inputs and outputs are selected to obtain the 

required accuracy. The width of the inputs and outputs must be determined in order to 

implement the position estimator and commutator. Each of the inputs and the outputs and 

their bit representation are discussed in this section. 

The input ‘qcomain’ is a concatenation of the angles θsm, θlrg and the signal θlrg>θsm, 

which are given as a single input. As discussed earlier θsm and θlrg establish the range of 

rotor positions within which an SRM phase is to produce torque. Since there are six rotor 

poles, the angle between the rotor poles is 60º. Thus the values for θsm and θlrg can be 

anywhere between -30º to +30º. So, a 6-bit number can be used to represent these angles 

to within approximately 1º since 63126 =− . However, the allowable error is 0.5º, so that 

it is necessary to choose a 7-bit number to represent the angle. One more bit is required to 
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Figure 4.1: Block diagram of the Position Estimator and Commutator 
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represent the sign. Thus, an 8-bit word is used to represent each of θsm and θlrg. Since 

θlrg>θsm is a select signal as described in chapter 3, it is a 1-bit number. Thus, a 17-bit 

number is required to represent ‘qcomain’.  

The value of the DC input voltage ‘vpower’, which is the voltage applied to the motor, is 

typically 42 volts for the SRM drive system under consideration. The number of bits 

chosen to represent the value of the voltage is 6 bits since 

63126 =− . 

Thus assuming the input voltage is always less than 63V, the voltage can be represented 

to within 1V. The actual rotor position angle is unknown and what is measured is g(θ) 

(gtheta). This signal is measured from the demodulated (low pas filtered) current sense 

pulses. The analog version of this signal will be scaled to be between 0 and 12V. This 

analog signal will be converted to digital form before being input to the FPGA. The input 

‘gthetain’ represents the four different g(θ) signals, one for each of the four phases. As 

seen in the Simulink block diagram in Fig. 4.1, ‘gthetain is represented by a dark line 

indicating that it is a bus, consisting of input from all the four phases. The measured g(θ)s 

will be used to compute an error with the calculated g(α)s. To insure the accuracy of this 

error calculation which includes multiple multiplies and adds, the number of bits used to 

represent g(θ) in digital form is 9 bits, one bit more than used for the angles. 

The input ‘isense’ is the select signal given as input to the estimator to choose between 

using g(θ) and g(α) in the error calculation depending on whether the given phase is 

producing torque. There is one ‘isense’ select line for each of the four phases. Thus 

‘isense’ is a 4-bit number, with each bit coming from one of the four phases. 

The input ‘startin’ is the select signal given to the commutator and is used to turn the 

commutator on or off. Thus, it is a 1-bit number. 

The output ‘wmh’ is the estimated angular speed of the motor. For the SRM this position 

estimator is being designed for the machine inductance and the smallest current values 

that can be measured while still measuring the largest current values that are required 

limits the maximum speed the position estimator can operate at 2,500rpm which gives the 

maximum value of speed to be 262 radian/second. Therefore, the number of bits required 
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to represent wmh is 10 bits including the sign bit which is required because the speed is 

negative if the SRM is turning backwards. 

Consider the number of bits to represent the estimated rotor position, α. The rotor 

position can vary from 0 to 360˚. Since there are 6 rotor poles, the angle between each of 

the poles is 60º. Now considering the position of the rotor pole with respect to the stator 

pole was defined to vary from -30º to +30º, the number of bits chosen for representing the 

rotor position should be able to represent 60 values including the sign. Choosing the 

allowable error for the estimated rotor position to be 0.5º, a 7-bit number is chosen. Since 

a sign bit is also required, a total of 8 bits is required to represent the estimated rotor 

position.  

4.2 Angle wrapping 
 
The fundamental principle of operation of a SRM is the variation in flux linkage with the 

change in the angular position of the rotor. When a rotor pole pair aligns with the stator 

pole pair, the flux linked by that stator phase is at a maximum. When the rotor pole pair 

moves away from the stator pole pair, it becomes unaligned with the stator phase, then 

the flux linked by the stator phase is at a minimum. Thus, the stator flux goes from 

maximum to its minimum as each of the six rotor poles pass through the stator poles. 

The flux profile versus rotor position is as shown in figure 4.2. Since the SRM for which 

the position estimator is being implemented has four phases and its rotor has six poles, 

the flux will repeat six times in 360º so the angular period is 360º /6 = 60º.  

 

Figure 4.2: Flux linked by phase A as a function of the rotor position 
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As seen in the flux profile, the flux changes from unaligned to aligned position when the 

rotor position changes from -30º to 0º and then goes back to unaligned position from 0º to 

30º. Since it repeats after every 60˚, it is sufficient to consider only the angles from -30º 

to +30˚ of rotor rotation.  

Since there are four stator phases, angle between them is 360˚/4 = 90˚. Hence, the angle 

between each of the eight stator poles is 45º. Therefore, once the rotor position for one 

phase has been determined, by shifting the rotor position by multiples of 45˚, the rotor 

position for all the other phases is determined relative to their own stator poles.  

The rotor position has the periodicity of the phase flux so that it will repeat every 60º just 

as the phase flux does. Thus, the rotor position only needs to be estimated for the interval 

from -30º to +30˚. Thus when the rotor position reaches 30˚ it goes back to -30˚.  This is 

known as wrapping the angle at 30˚. Assume that θ represents the actual angle and α 

represents the wrapped angle confined between -30º and +30˚ Then if θ = 45º, then α= θ-

60˚=-15˚.Similarly, if θ = 150º, then α= θ-120˚=30˚ and so on.  

 

The type of the input and output signals and the number of bits assigned for each of them 

is summarized in the table 4.1. 
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Table 4. 1: The Input and Output signals of the circuit represented in the HDL code 

 

 

 

 

 

 

 

I/O signal 

 

Type 

 

I/O, the signal 

represents 

# of bits used 

to represent 

the signal 

 

qcomain 

 

input 

Turn-on and turn-

off angles input to 

all four phases of 

commutator 

 

17 

vpower Input 
Voltage to the 

motor 
6 

gthetain Input 
g( θ ) input from all 

four phases 
9*4=36 

isense Input 
sense select signal 

to estimator 
1*4=4 

startin Input 

Start signal to all 

four phases of 

commutator 

1 

com Output 

Output from all 

four phases of 

commutator 

1*4=4 

α Output 
Estimated rotor 

position 
8 

wmh Output Rotor speed 10 
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4.3 Selection of the programmable device 

 

The different programmable devices that can be used to implement the position estimator 

are 

1. Microcontroller 

2. Digital Signal Processor (DSP) 

3. Field Programmable Gate Array(FPGA)   

 

While microprocessors have been the dominant devices in use for general-purpose 

computing for the last decade, there is still a large gap between the computational 

efficiency of microprocessors and custom silicon. Reconfigurable devices, such as 

FPGAs, have come closer to closing that gap, offering a 10 times benefit in 

computational density over microprocessors, and often offering another potential 10 

times improvement in yielded functional density on low granularity operations. On highly 

regular computations, reconfigurable architectures have a clear superiority to traditional 

processor architectures. On tasks with high functional diversity, microprocessors use 

silicon more efficiently than reconfigurable devices. Microprocessors are not specifically 

designed to do calculations in real time. 

FPGAs have proven extremely efficient for certain processing tasks. The key to their 

cost/performance advantage is that conventional processors are often limited by 

instruction bandwidth and execution restrictions or by an insufficient number or type of 

functional units. FPGAs exploit more program parallelism. By dedicating significantly 

less instruction memory per active computing element, they achieve a 10 times 

improvement in functional density over microprocessors. At the same time this lower 

memory ratio allows reconfigurable devices to deploy active capacity at a finer grained 

level, allowing them to realize a higher yield of their raw capacity, sometimes as much as 

10 times than conventional processors. 
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Based on all the factors, the FPGA is expected to be able to perform the position 

estimation function with a shorter sampling/update time. The position estimator and 

commutator functions described above have already been implemented by engineers at 

Mechatronic Systems using a TMS320C6701-150 DSP based commercial DSP board. 

This implementation resulted in a sampling and position estimate update time that just 

met the SRM drive-system requirements. Simulink simulations showed that an analog 

(zero sampling and up date time) implementation of the position estimator resulted in 

smaller errors compared to the DSP implementation. Thus, the system performance will 

be improved if the sample and position estimate update time is reduced from what was 

achieved with the DSP. Thus, the research presented here was undertaken to verify that a 

FPGA based implementation of the position estimator and commutator would result in a 

design with a reduced sample and update time compared to the DSP implementation and 

to quantify the improvement. 

 
4.4 Field Programmable Gate Arrays 
 

A Field Programmable Gate Array (FPGA) is a microchip made with millions of 

programmable logic gates. FPGAs are readily programmable and can be programmed and 

reprogrammed repeatedly. They must be programmed by users to connect the chip’s 

resources in the appropriate manner to implement the desired functionality. 

 

A FPGA contains a regular, extendable, flexible and programmable architecture of logic 

blocks surrounded by input/output blocks on the perimeter. These functional blocks are 

linked together by a hierarchy of highly versatile programmable interconnects. 

The basic block diagram of an FPGA is as shown in the figure 4.3. 

 

 

. 
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Figure 4.3 Block diagram of an FPGA 

 

The basic components of an FPGA are: 

      1. CLBs (Configurable Logic Blocks) 

2. IOBs (Input/Output Blocks) 

3. Switch matrix (resources for interconnection) 

 

An FPGA consists of thousands of CLBs. Each CLB consists of a small number of inputs 

and outputs, a look-up table (LUT), flip-flops and a few basic gates. Multiplexers are 

used to configure the interconnections between CLB components and the inputs and 

outputs of the CLB. LUTs are used to implement combinational logic by implementing 

the truth tables corresponding to the logic circuit. The flip-flops are used as sequential 

components and can be configured to operate on either edge of the clock or as latches. 

Thus, a CLB can be configured to implement the combinational and sequential 
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components that have been assigned to it. Loading these configuration bits for each CLB 

within the FPGA is referred to as the process of programming the FPGA. 

 

The perimeter of configurable Input/Output Blocks (IOBs) provides a programmable 

interface between the internal logic array and the external device package pins. Each IOB 

contains a few logic gates and flip-flops. The input and output signals can directly pass to 

the pin or can be stored in a flip-flop as shown in figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Block diagram of a Virtex IOB 

 

 

Programmable-interconnection resources within the FPGA provide routing paths to 

connect inputs and outputs of the IOBs and CLBs into logic networks. 

The interconnection wires in the FPGA are organized as horizontal and vertical routing 

channels between rows and columns of logic blocks. At the intersection of the horizontal 

and vertical wires are switches, which collectively form a switch matrix.  
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The FPGA user logic functions and interconnections are determined by the configuration 

program data stored in internal static memory cells. 

 

The factors affecting the selection of the programming device are: 

1. Number of available IOBs 

2. Total number of system gates. 

 

Number of IOBs 

The Input/Output Block (IOB) provides a programmable, bidirectional interface between 

I/O pin and the FPGA’s internal logic. 

Since the total number of bits required to represent all of the inputs and outputs is 81and  

each of the bits is assigned to a separate I/O port, the number of independent I/O ports 

required is 81. This method of transmitting data, where each bit of information is 

assigned to an individual port is called parallel data transmission. 

 

Number of system gates 

There are many intermediate signals generated, like the signal to represent the error 

calculated between g(θ) and g(α), the signals given as input and taken as output from the 

two integrators. There are many calculations including multiplications and divisions to be 

done, which require many logic gates.  

 

 

4.5 Type of FPGA 
 

Based on the availability of the required number of IOBs and the number of system gates 

and multipliers, either of the following devices can be used. 

 

1. Virtex XCV800 

2. Spartan XC3S1000 
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The datasheets for each of these devices are found in the Xilinx website, the link to which 

is given in the reference 5 and 6. 

The number of available resources in each of the FPGA chips, as given in the data sheets 

is summarized in the table 4.2. 

 

 

Device 

 

Virtex XCV800 

 

Spartan XC3S1000 

 

System gates 

 

888,439 

 

1M 

 

Total CLBs 

 

4704 

 

1920 

 

Maximum user I/O 

 

240 

 

391 

 

Dedicated multipliers 

 

N/A 

 

24 

 

Table 4.2 Comparison of Resources available in Virtex and Spartan 

 

The design is implemented on both these devices to determine which would be a better 

choice. The implementation results are as shown below. 

 

Implementation results using Virtex XCV800 

Release 6.1.03i Par G.26 

Copyright (c) 1995-2003 Xilinx, Inc.  All rights reserved. 

Selected Device: v800hq240-4  

 

 Number of Slices:                         7844  out of   9408    83%   

 Number of Slice Flip Flops:         10787  out of  18816    57%   

 Number of 4 input LUTs:              7178  out of  18816    38%   

 Number of bonded IOBs:              129  out of    170    75%   
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 Number of GCLKs:                       1  out of      4    25%   

 

Implementation results using Spartan XC3S1000 

Selected Device: 3s1000ft256-4  

 

 Number of Slices:                          7705  out of   7680   100% (*)  

 Number of Slice Flip Flops:          10769  out of  15360    70%   

 Number of 4 input LUTs:              7103  out of  15360    46%   

 Number of bonded IOBs:               92  out of    173    53%   

 Number of MULT18X18s:            28  out of     24    116% (*)  

 Number of GCLKs:                       3  out of      8    37%   

 

WARNING:Xst:1336 -  (*) More than 100% of Device resources are used 

 

As one can observe the number of slices (logic blocks) used by the Spartan chip is more 

than what is available and hence the design wouldn’t fit onto the Spartan XC3S1000. The 

number of multipliers available in the Spartan chip is also less than required. Though 

using the Core generator would reduce the number of multipliers required it would 

increase the number of logic gates required. Thus, the Spartan XC3S1000 is not a feasible 

choice. As seen in the implementation result of the Virtex chip, the design will fit onto it 

while not having excessive resources unused. Hence, the Xilinx Virtex XCV800 is 

chosen to implement the circuit and test it. 

 

 

4.6 Xilinx Virtex XCV800 

 
The general characteristics of a FPGA have been discussed in the previous section. The 

main characteristics of the chosen FPGA, the Xilinx Virtex XCV800 are discussed here.  

The Virtex user-programmable FPGA, shown in Figure 4.5, comprises two major 

configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). 

CLBs interconnect through a general routing matrix (GRM). The GRM comprises an 
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array of routing switches located at the intersections of horizontal and vertical routing 

channels. Each CLB nests into a VersaBlock that also provides local routing resources to 

connect the CLB to the GRM. The VersaRing I/O interface provides additional routing 

resources around the periphery of the device. This routing improves I/O routability and 

facilitates pin locking. 

 

Figure 4.5Virtex architecture overview 

 

The Virtex architecture also includes dedicated block memories, Clock DLLs for clock-

distribution delay compensation and clock domain control and 3-State buffers (BUFTs) 

associated with each CLB that drive dedicated segmentable horizontal routing resources. 
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4.7 Digital Design Flow 
 

The design flow is the sequence of events that begin with some abstract specification of a 

design and ends with a configured FPGA. This design procedure consists of five steps: 

Design entry, Simulation, Synthesis, Implementation, Device download and program file 

formatting. The design flow described here is in reference to the Xilinx ISE (Integrated 

Synthesis Environment) 6.1i CAD tool and is as illustrated in the figure. However, most 

of the activities will have a counterpart in any vendors’ design flow. 
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MODERN CAD-TOOL BASED DIGITAL SYSTEM DESIGN FLOW 
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Figure 4.6 Digital Design Flow 
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Figure 4.6 Digital Design Flow (cont.) 



 

54 

The initial description of any design may be in the form of state diagrams or Boolean 

expressions, but these are refined through various stages to into an FPGA 

implementation. These various stages are discussed below. 

 

Design Entry: The design entry describes the functionality of the design. It could be 

done by schematic capture or a state transition diagram or by constructing an HDL based 

model using Verilog HDL or VHDL. An HDL model is constructed by writing HDL 

code using a text editor. Modern simulators and synthesis tools provide syntax-directed 

editors and facilities for insertion of language templates to facilitate easier coding. This 

step produces the HDL source for a model that is analyzed to an internal form while it is 

checked for conformance to the syntax and semantics of the HDL. [10]  

 

Behavioral Simulation: The HDL model is simulated at the Register Transfer level 

(RTL) to establish functional correctness. This is the step that involves simulating the 

functionality of a device to determine that it is working as per the specification and that it 

will produce correct results. This type of simulation is very important to get as many bugs 

out of the HDL code as possible. After the design entry is done, a functional simulation is 

done. If there is an error the 'design entry' step is re-visited and necessary changes are 

made leading to a successful simulation.  

 

Synthesis: It is the process where the RTL design is optimally translated to the gate level 

design which can be mapped to the logic blocks in the FPGA meeting the timing and area 

constraints as desired by the user. In this step, the HDL code is converted into a device 

netlist format. 

 

 Implementation: Design implementation is the process of mapping, placing, routing and 

generating a BIT file for the design.  

Mapping: Once the gate-level netlist is designed, the next step is mapping the design onto 

an FPGA. The design is mapped to the primitives such as function generators, flip-flops 

or latches that are used in the target chip. 



 

55 

Place and Route: The mapped design is placed by assigning the primitives to 

configurable logic blocks (CLBs). After placing, the primitives are connected by routing 

the connections through the switch matrix. Once the design is placed and routed, accurate 

information about timing delays between parts of the circuit can be obtained. After place 

and route, the design is simulated for design verification since post place and route 

simulation is more accurate than the functional simulation.  

Bit generation: A bitstream is generated from the physical place and route information. 

 

 Programming: The configuration bits or bitstream is loaded into the target FPGA. The 

chip has now been configured to implement the design. 

 

In this thesis, the EDA tool used for the design is the Xilinx ISE (Integrated Synthesis 

Environment) 6.1i and the HDL selected was Verilog HDL. 

 

The HDL code for the required design is written using the Verilog Hardware design 

language.  

Each of the codes for the blocks galpha, error, and integrators instantiated into the main 

design circuit are discussed here separately in detail. 

 

The functional block diagram of sensetheta is as shown in the figure 4.7. The codes of the 

blocks denoted by error, intH1, intH2, wrap are instantiated into the main code. Each of 

the blocks is discussed in detail here. 
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The block diagram to calculate the value of g(α), when a value of α is given as input is 

shown in the figure 4.8.  

 
 

 

 

The function g(α) is calculated by using the equations 4.1 and 4.2. 
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Figure 4.7 Block diagram of the block sensetheta 

Figure 4.8 Block diagram of the block galpha 
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)*(**100
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mod
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mod

alphamidealLaidealF
Dvpower
−

=α              if alpha<thetaTm        (4.1) 

 

)thetaTmalpha(*mpidealLpideal(*F*100
)D(*vpower)g(

mod2

2mod

−−
=α   if alpha>thetaTm  (4.2) 

 

The function output g(α),and its input α are the variables in the equation. The remaining 

parameters vpower, Dmod, Fmod, Laideal, mideal, Lpideal, mpideal seen in the equation are 

constants. In order to reduce the logic required to represent these constants, they are 

represented by binary numbers instead of integers that use more logic blocks. Some of 

these constants are real numbers, so multiplication factors are used, so that they are 

represented in binary form. The table 4.4 shows the actual values of the constants, the 

number of bits used to represent them in binary form and their binary representation.  

 

Constant 

denoted by 

Actual value 

 

# of bits 

required

Binary representation 

Vpower 42 6 6’b101010 

Dmod 40 6 6’b101000 

Fmod 1000 10 10’b0111111000 

Laideal 0.0084*16384= 137 

 

8 8'b10001001 

mideal 0.0183*16384=300 9 9'b100101100 

Lpideal 0.0075*16384=12 4 4’b1100 

mpideal 0.0021*16384=34 6 6'b100010 
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thetaTm 0.4189*180/3.14=24 5 6'b011000 

 

 

 

As seen in table 4.4, the value of Laideal is a real number (0.0084), which cannot be 

represented in binary form easily.  Thus it is multiplied by the factor 16384 which gives 

the new number 137., It is the decimal number  that is then represented in binary form as 

shown in table 4.4. The same is done for the constants denoting mideal, Lpideal and 

mpideal. 

 

As seen in the equations 4.1 and 4.2, there are several arithmetic operations like addition, 

subtraction, multiplication division and conditional operations that must be handled by 

the Verilog HDL and the EDA tool. Performing all of the operations except division is 

easily handled by Verilog HDL and the EDA tool. The Xilinx tool can handle division by 

two and higher powers of two like 21, 22, 23, etc., but cannot perform division by numbers 

other than multiples of two. A special algorithm is required to perform that operation. 

Various methods are available to overcome this problem. 

 

1. Algorithmic method: Several algorithms are available which can perform division 

by iterative subtraction techniques. But this method is too tedious and complex. 

2. Using Core Generator: The core generator available in the Xilinx tool can be used 

to generate a core to perform division. The same core can be used to generate 

different instances as long as the parameters are of the same width. This is a very 

effective method when many divisions have to be performed, though it takes 

several clock cycles to complete one division. A pipelined division core can be 

used to improve efficiency.    

3. Using multiplication factors: In this method, the divisor is multiplied by a factor 

so that it is converted into powers of 2. Dividing by this power of 2 can be 

performed easily. This is approach is illustrated in the following example. 

Table 4.4   Constants used in the block galpha of the HDL code 
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In the block integrator representing intH1, the input has to be multiplied by 3.5µs, 

but since it cannot be represented in binary form, it is multiplied by a factor such 

that it can be represented in binary format and also equals that value. Thus it is 

multiplied by a factor equal to 30/1024*1024*8 which is equal to 3.5µs and also 

the divisor part which is 1024*1024*8 are all powers of 2 and thus the division 

can be carried on without any trouble. However this method cannot be used where 

the input changes periodically since different factors will have to be used for 

different inputs. 

  

In this thesis, both the method using a core generator and the method using multiplication 

factors are used.  

A pipelined divider core has been generated for the block galpha where g(α) is calculated 

from α. Here the dividend and divisor are of fixed width for different values of input and 

thus the core divider is used to obtain the outputs. Another instance of the same pipelined 

divider core has also been used for other functions besides the g(θ) function with 

different sets of inputs and outputs but with the same bit width, thus reducing the number 

of logic blocks used. The issues relating to the Core Generator are discussed in the next 

section. 

 

4.8 Core Generator 
 

The Xilinx CORE Generator System offers an optimized, predefined set of building 

blocks for common functions. It provides a catalog of user-customizable functions 

ranging in complexity from simple arithmetic operators (adders, accumulators, and 

multipliers), memories and FIFOs, to networking interfaces and system-level building 

blocks such as filters and transforms. It simplifies the design steps and brings the design 

to completion faster while still achieving high performance. 

The cores delivered through the CORE Generator can be tailored to the design 

requirements through their user-friendly core customization GUIs. Simply by specifying 

the parameters, an optimized core can be generated for the target FPGA device. The core 

generation process fabricates the logic for the core, partitions it into configurable logic 
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blocks (CLBs), and then places the CLBs relative to each other. The relative placement of 

CLBs making up a core is maintained as the core is integrated into the overall design and 

placed anywhere in the FPGA. The Core generator is used to generate a multiplier core 

and a divider core in this thesis. 

 

CORE MULTIPLIER 

  

The multiplier core is a high-speed parallel implementation that multiplies an N-bit wide 

variable times an M-bit wide variable and produces an N+M bit result. It accepts the 

parameters and accordingly creates a design using a parameterized Verilog HDL recipe. 

Verilog HDL instantiation code and a schematic symbol are created along with the netlist 

for the design. An area-efficient, high-speed algorithm is used to give an efficient, tightly 

packed design. Each stage is pipelined for maximum performance. In addition to this 

area-efficient design, the CORE Generator contains a performance optimized design that 

yields a 10% to 20% increase in speed, but uses more CLB resources. 

 

The multiplier generator core here is used to generate a parallel multiplier.  

The parallel multiplier takes 2 input buses, A and B each of N bits width where N can be 

1 to 64, and calculates the multiplication of the values on these buses in parallel giving 

out an output Q of 2N bits wide. A schematic of inputs and outputs is shown in the figure 

4.9. The inputs and output can be either of type signed or unsigned. 

 
 

 

 

 

 

     A 
 
    B 
 
                
   clk 

Q 

N 

N 
2N

Figure 4.9 Schematic diagram of the multiplier core 
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The multiplier core is generated using look-up tables (LUTs) available in the FPGA 

device. It can be generated by using dedicated multiplier blocks too, but at the cost of 

latency.  

This multiplier core is used in the design to carry out many multiplications, which 

otherwise would have required more built in multiplier blocks than are available in the 

FPGA. 

This is illustrated by implementing the code, which used core-generated multipliers, and 

the code, which used built-in multiplier blocks separately. This is implemented on a 

Spartan XC3S1000. The implementation results are given below. 

 

The implementation result for a design in which only built in multiplier blocks were used 

to carry out all the required multiplications are shown below. 

 

Selected Device : 3s1000fg320-4  

 

 Number of Slices:                    6844  out of   7680    89%   

 Number of Slice Flip Flops:         10322  out of  15360    67%   

 Number of 4 input LUTs:              5733  out of  15360    37%   

 Number of bonded IOBs:                200  out of    221   90% 

 Number of MULT18X18s:                  28  out of     24   116% (*)  

 Number of GCLKs:                        1  out of      8    12%   

 

WARNING:Xst:1336 -  (*) More than 100% of Device resources are used 

 

As seen above, the number of internal multiplier blocks required is 28 while the number 

of available multiplier blocks is 24. Thus the design does not fit into the chosen FPGA. 

The implementation result for the design in which a pipelined multiplier core was used to 

create different instances to carry out all of the multiplications are shown below. 

 

Selected Device: 3s1000fg320-4  
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 Number of Slices:                    7451  out of   7680    97%   

 Number of Slice Flip Flops:         10690  out of  15360    69%   

 Number of 4 input LUTs:              6703  out of  15360    43%   

 Number of bonded IOBs:                200  out of    221   90%   

 Number of MULT18X18s:                   4  out of     24    16%   

 Number of GCLKs:                        1  out of      8    12%   

 

Now the number of internal multiplier blocks being used is reduced to 4 since all the 

required multiplications are carried on using slices and LUTs. As can be seen from both 

the results, the number of slices and LUTs being used in the second method is only 

slightly greater than in the first one. Thus, it can be concluded that using the core 

generator multiplier in the design is area-efficient. 

 

CORE DIVIDER 
 

The Xilinx LogiCORE Pipelined Divider divides an M-bit-wide variable dividend by an 

N-bit-wide variable divisor. The result of the division is an Mbit-wide quotient with an 

N-bit-wide integer remainder. 

The input data can be unsigned or signed. Dividend values can range from 1 to 24 bits, 

divisor values can range from 3 to 24 bits, and fractional remainder values may range 

from 3 to 24 bits. It is an efficient, high-speed, parallel implementation.  

The Schematic of the core divider is shown in the figure 4.10. 

  
 

 

 

 

Figure 4.10 Schematic diagram of the core divider 
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The design is highly pipelined. The amount of pipelining can be reduced to decrease the 

area of the design at the expense of throughput. In the fully pipelined mode, the design 

supports one division per clock cycle after an initial latency. The design also supports the 

options of 2, 4, and 8 clock cycles per division after an initial latency. 

 

The total latency (number of clocks required to get the first output) is a function of the bit 

width of the dividend.  

 

In this thesis, a pipelined divider core is generated. The bit-width of the dividend and 

divisor is 20 bits. Since the dividend is 20bits and the remainder is chosen to be an 

integer, the latency is 24, i.e., it takes 24 cycles to get the first output, since the number of 

clock cycles per division is chosen to be 1. 

 

Two instances of the core are created to carry out different division operations. As 

mentioned earlier, this core is used in the block galpha to carry out the division as given 

in function equations. Since the divisor is not a multiple of 2, the Xilinx tool cannot 

carryout the division and since the inputs of the division change at every calculation 

iteration, it is better to generate a core. 

 

Now, consider the block diagram of the error block as shown in the figure 4.11. The 

values of g(θ) and α of  all the four phases are given as inputs. The block galpha is 

instantiated into the error block gives out g(α). The number of bits required to represent 

α, g(α) and g(θ) is already discussed. The same number of bits is used to represent the 

values for each of the four phases.  

 
 

  gtheta 
 
 vpower 
 
   isense 
 
   alpha 

 
 

error error 

Figure 4.11 Block diagram of the block errorlow 
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The input isense consists of four one-bit signals from each of the phases. It determines 

whether the measured g(θ) from a phase is available for computing the error or if the 

computed g(α) must be used in its place because torque is being generated by that phase 

at the particular time instance. Depending on value of the 4 different isense inputs, logic 

is written to calculate the error using the equation repeated below.  

 

( ) ( ) ( )+−+−= )()()()()()()()(, 32232112 αθαθαθαθαθ ggggggggerrortot  

                           ( ))()(3)()())(4)(3)(3)(4( 141 αθαθαθαθ gggggggg −+−  

Note that in this equation one or more of the g(θ)s might actually its corresponding g(α) 

if they are not available due to that phase generating torque. As seen in the equation, 

there are several multiplications involved, which require several multiplier blocks. The 

number of multiplier blocks required is out of range of the Virtex XCV800 FPGA. Thus a 

multiplier core is generated and the required numbers of instances of it are created to 

perform the different multiplication operations. 

 

The block diagram of the integrator blocks is as shown in the figure 4.12. 

 

 
  

The equation that describes the integrator blocks is equation 4.1. 

  

 
 

Xn+1 

Xn 

Vin Xn 

Figure 4.12   Block diagram of the Integrator circuit 

C1 
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Xn+1 = Vin* T + Xn                                                                                                                 (4.1)   

      
where Vin the input to the integrator 

           Xn+1 is the next state 

           Xn is the present state which is given as feedback and added to the input to get the   

            next state. 

           C1 is the clock to the integrator whose period is T. 

 

For a given input, the equation performs the integration and gives out the output. 

 

The block diagram of the block wrap is as shown in figure 4.13. 

 
 

The output of integrator block 2 is the estimated rotor position α is the input to the block 

wrap. Since there are 8 stator poles, each is 45˚ apart. Therefore, the difference between 

the aligned position of one phase and its nearest neighbor is 45˚, i.e. the rotor must rotate 

45˚ to come into alignment with the next phase. A new angle is generated for each of the 

phases, which is 45˚ away from the previous phase’s angle. Then each of the new angles 

corresponding to each phases are wrapped such that they fall within the range -30˚ to 

+30˚. This is done so that the same function g(α) can be used for each phase while still 

getting the appropriately shifted outputs. 

qa-45˚ 

in_1 

qb-45˚ 

qc-45˚ 

qa 

qb 

qc 

angle 
wrap 

angle 
wrap 

angle 
wrap 

angle 
wrap 

 

alpha 

thetah
alpha1 

alpha2 

alpha3 

alpha41 

Figure 4.13 Block diagram for shifting and wrapping the angles 
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The block diagram of the commutator circuit for one phase is shown in figure 4.14. 

                             

 
 

The code for this circuit is written and instantiated for the four phases. It generates a four 

bit output. 

 

The Verilog code for the block Sensetheta was written and simulated first. Then the 

module for the Commutator was added to it and simulated. The Verilog code for the 

whole circuit is given in the appendix. 

The code is implemented on a Xilinx Virtex XCV800 FPGA using the Xilinx EDA tool. 

Before proceeding to the simulation results, let us look at the results of implementing the 

complete circuit on the Virtex XCV800 FPGA. 

  

Implementation results 

 

Using Xilinx tools, the coded design is synthesized. After synthesis, the design is 

translated, mapped, placed and routed onto the selected chip. The results of the 

implementation are shown below. 

 

 

 

   
        qsm 
         
        qlrg 
 
qlrg>qsm 
          
         qph 
  
      startin 

com 

Figure 4.14     Block diagram of commutator circuit for one phase  
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Release 6.1.03i Par G.26 

Copyright (c) 1995-2003 Xilinx, Inc.  All rights reserved. 

Selected Device : v800hq240-4  

 

 Number of Slices:                    7844  out of   9408    83%   

 Number of Slice Flip Flops:         10787  out of  18816    57%   

 Number of 4 input LUTs:              7178  out of  18816    38%   

 Number of bonded IOBs:                129  out of    170    75%   

 Number of GCLKs:                        1  out of      4    25%   

 

The device utilization summary shows that the available resources are properly utilized. 

 

4.9 Simulation Results 
 

After the implementation of the circuit on the Virtex XCV800 using Xilinx tools, it is 

simulated using the ModelSim simulator. These simulated results are presented in this 

section. These simulated results will be compared with the results of the Simulink model 

in the next chapter. 

The result obtained by simulating each of the blocks is presented first and then the final 

simulated results are discussed. First, the simulation result obtained for the block galpha 

is discussed. 

 Figure 4.15 shows the ModelSim simulation results for the block galpha for one value of 

alpha. 
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As seen in the figure, to calculate g(α) for a given α, it takes 24 clock cycles. This is 

because of the pipelined divider core instantiated into the block galpha to carryout the 

division operation. Actually the input α has to be in given in radians, but for convenience 

it is given in degrees. The value of α is given to be 13 degrees (0.226 rad). Therefore, the 

result is also a scaled value. The actual value would be the result divided by 256. 

 

Next, the error block is simulated and the results are shown in figure 4.15. 

Figure 4.15   ModelSim simulation result for calculating g(α) for a given α. 
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The figure 4.17 shows the simulated result of the block errorlow. The values of g1(θ), 

g2(θ), g3(θ), g4(θ) are 36, 295, 50,20 respectively. These g(θ ) values are given as inputs 

as shown in the figure. The value of α1=0° is given. α2, α3, α4 are shifted by 45° and 

wrapped to lie in between -30° and +30°. These values are calculated to be 15, 30 and 0 

respectively. As seen in the figure, g1(α), g2(α), g3(α), g4(α) have been calculated to be 

19, 42, 337, 19 respectively. Using all these values, the error has been calculated as 

shown in the figure. The result is a scaled value since the inputs have been multiplied by 

a scale factor. 

 

Figure 4.16 ModelSim simulation result for calculating error. 
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Figure 4.17 Simulation result of the rotor position estimator 

 

Now, consider the simulation result of the block sensetheta. Consider the actual rotor 

position θ1=13°. The values of θ2, θ3, θ4 are taken as explained earlier. The values of 

g(θ) for each of the phases are calculated and given as input. The initial value of the 

estimated rotor position will be taken as α1=0°. Then the shifted and wrapped values of 

α2, α3, α4 will be 15°, 30°, 0°. For these values of α, g(α) will be calculated for all four 

phases. Using all these values, the error will be calculated. The calculated error would be 

given as input to the integrator1, which would give out motor speed as output. This is 

shown in figure 4.17. The calculated error is added to the motor speed and given as input 

to integrator2. Integrator2’s output is the estimated rotor position, α. This value will be 
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given as feedback to the circuit as α1. And again, the same process will be repeated until 

the estimated rotor position converges to the actual rotor position. In this case, until α 

reaches the value of 13°. Since g(θ) is not changing with time θ is not changing with time 

and thus the rotor’s speed is zero. In turn this means that the final estimated value α of 

the rotor position will not be changing with time and the final estimated value of the 

rotor’s velocity is zero. This behavior is shown in figure 4.18.  

 

 

Figure 4.18 Simulation result showing the final output when α becomes equal to θ 

and speed becomes zero. 
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CHAPTER 5 

TESTING OF THE ESTIMATOR ON AN FPGA 
 

5.1 Comparison of Simulink and Verilog Design Results 

 
The results obtained by simulating the Simulink model and those obtained by simulating 

the design using ModelSim Simulator are presented here for comparison. The estimated 

rotor position information is plotted using Matlab. For different values of the input g(θ) = 

[g1(θ) g2(θ) g3(θ) g4(θ)], the Simulink model is simulated. The design created in Verilog 

is also simulated for the same values of g(θ) and the predicted estimate of the rotor 

position is plotted.  

 

Consider the rotor position to be fixed at some angle. Now this position of the rotor has to 

be estimated since the rotor position cannot be measured directly. Knowing the inverse 

inductance value g(θ) for each of the phases at the actual rotor position, the state 

estimator can be used to estimate the position of the rotor. The simulation starts with the 

estimated rotor position α equal to zero since the rotor position is not known. The 

Simulink model is simulated and its results are compared to the post synthesis simulated 

Verilog design. The value of the estimated rotor position, when the error defined in 

previous chapters becomes zero, must be equal to the actual rotor position. 

Figure 5.1 shows the simulated result obtained by simulating the Simulink model for 

θ=18°. Figure 5.2 shows the simulated result obtained from the post synthesis simulation 

of the Verilog design for θ=18° using the Modelsim Simulator.  

 

For θ=18°, the values of g1(θ), g2(θ), g3(θ), g4(θ) are calculated and given as input to the 

Simulink model and the Verilog design model. While simulating the post synthesis 

Verilog design model using Modelsim Simulator, it is observed that the time taken to 

calculate the error for the actual and estimated values of the inverse inductance and to 

obtain the estimated rotor position value from it is 7µs, which is the sample time. The 
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Simulink model is simulated for the same sample time and then the results obtained by 

both the Simulink model and the Verilog design model are compared. 

This estimated position value, α is given as feedback and the same process repeats until 

the error decays to zero. The estimated position value when the error equals zero is the 

actual rotor position. As seen in the figure, the process repeats after every 7µs and the 

total time taken for the estimated value to become equal to the actual value is about 

3.5ms. 
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 Figure 5.1 Simulated estimated rotor position transient obtained from the Simulink 
model for θ=18°. 
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As seen in the figures 5.1 and 5.2, the post synthesis simulation result almost complies 

with the Simulink simulation result. Since the values of g(θ) are fractional numbers, 

multiplication factors are used so that they can be represented in digital form as Verilog 

deals with only binary integer numbers. Similarly, the calculated error is also in the range 

of -0.9 to +0.6, hence multiplication factors are used to represent the error in binary 

integer form. Many intermediate signals like the inputs and outputs of the integrators are 

also approximated to the nearest integer. Because of these approximations, there is a 

slight difference in the post synthesis Verilog simulation result and the Simulink 

simulated result, though they follow similar trajectories and the time taken to obtain the 

estimated rotor position is the same. 

 

 

 

Figure 5.2 Simulated estimated rotor position transient obtained from the post 
synthesis Verilog model for θ=18°.  
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The figures 5.3 and 5.4 show the calculated error plotted in Matlab for the Simulink 

model and the experimental result obtained by simulating the Verilog design respectively. 

As the estimated rotor position value α reaches the actual rotor position value θ, the error 

has to decay to zero. It is observed that the time at which error becomes zero as seen in 

figure 5.4 is the time when α becomes equal to θ as seen in figure 5.3. As mentioned 

earlier, since the process repeats every 7µs, the error is calculated every 7µs. Thus, the 

error is plotted versus time for every 7µs. 
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Figure 5.3 Simulated result of the calculated error for the Simulink model for 
θ=18°. 
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Another set of results for θ=13° is presented in figures 5.5 and 5.6. The input values of 

g1(θ), g2(θ), g3(θ), g4(θ) are given as input to both the Simulink model and the post 

synthesis Verilog model and the circuit is simulated. The values obtained for the 

estimated rotor position and error is plotted using Matlab for both sets of results. Figure 

5.5 shows the simulated result obtained from the Simulink model. 

Figure 5.4 Simulated error transient obtained from the post synthesis Verilog 
model for θ=18°. 
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Figure 5.6 shows the simulated result obtained by simulating the post synthesis Verilog 

design with an actual fixed rotor position equal to θ=13°. The Verilog result matches the 

general shape and duration of the result obtained from the Simulink model.  

As the circuit is simulated, the estimated rotor position starts from its in error initial value 

of zero and varies until it becomes equal to the actual rotor position, at which time the 

error becomes zero.  

Figure 5.5 Simulated estimated rotor position transient obtained from the Simulink 
model for θ=13°. 
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Figure 5.7 shows the simulated error obtained from the Simulink model when θ=13°. 

From figures 5.5 and 5.7, it is observed that the error decays to zero as the estimated rotor 

position reaches the actual value. Figure 5.11 shows the simulated estimated rotor 

position transient obtained from the post synthesis Verilog model for θ=13°. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Simulated estimated rotor position transient obtained from the post 
synthesis Verilog model for θ=13°. 
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Figure 5.7 Simulated error transient  obtained from the Simulink model for θ=13°. 

Figure 5.8 Simulated error transient obtained from the post synthesis Verilog 
model for θ=13°. 
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5.2 Testing the FPGA Circuit 

            
The code written in Verilog must be converted to a bit stream before it can be 

downloading into the FPGA. After downloading the bits, the system can be tested by 

giving the inputs as required. Here, the system is tested using a Xilinx XSV board, which 

contains the Virtex XCV800 FPGA. 

 

XSV Board 

 

The XSV Board brings the power of the XILINX Virtex FPGA embedded in a 

framework for processing video and audio signals. The XSV Board can take a single 

Virtex FPGA from 50K to 800K gates in size.[8] 

 

The XSV Board has a variety of interfaces for communicating with the outside world: 

parallel and serial ports, Xchecker cable, a USB port, PS/2 mouse and keyboard port and 

10/100 Ethernet PHY layer interface. There are also two independent expansion ports, 

each with 38 general-purpose I/O pins connected directly to the Virtex FPGA. 

 

XSV Board Features 

 

The XSV Board includes many resources, but the ones used in this thesis to implement 

the position estimator circuit are presented here. 

• Programmable logic chips: 

 

XILINX Virtex FPGA: Virtex FPGAs from 57 Kgates (XCV50) up to 888 Kgates 

(XCV800) in a 240-pin PQFP or HQFP package is compatible with the XSV 

Board. The Virtex FPGA is the main repository of programmable logic on the XSV 

Board. XCV800 has been used in this thesis. 
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XILINX XC95108 CPLD: The CPLD is used to manage the configuration of the 

Virtex FPGA via the parallel port, serial port, or Flash RAM. The CPLD also 

controls the configuration of the Ethernet PHY chip. 

 

• Programmable oscillator that provides a clock signal to the FPGA and CPLD 

derived form a 100 MHz base frequency.  

 

• Two expansion headers interface the FPGA to external circuitry through 76 

general- purpose I/Os. 

 

• Four pushbuttons and one eight-position DIP switch provide general-purpose 

inputs to the FPGA and CPLD. 

 

•  Two LED digits and one LED bargraph let the FPGA and CPLD display status 

information. 

 

• Parallel/serial port interfaces let the CPLD send and receive data in a parallel or 

serial format similar to a PC. 

 

• ATX power connector or 9 VDC power jack lets the XSV Board receive power 

from a standard ATX power supply or a 9 VDC power supply. 

 

The locations of these resources are indicated in the simplified view of the XSV Board 

shown in appendix. Each of these resources will be described in the following section. 

 

Setting the XSV Board Clock Oscillator Frequency 

 

The XSV Board has a 100 MHz programmable oscillator. The 100 MHz master 

frequency can be divided by factors of 1, 2, ... up to 2052 to get clock frequencies of 100 

MHz, 50 MHz, ... down to 48.7 KHz, respectively. The divided frequency is sent to the 

rest of the XSV Board circuitry as a clock signal. The divisor is stored in non-volatile 
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memory in the oscillator chip so it will resume operation at its programmed frequency 

whenever power is applied to the XSV Board.  

 

Programming the Interface 

 

The Virtex FPGA is the main repository of programmable logic on the XSV Board. The 

CPLD manages the configuration of the FPGA via the parallel port or from the Flash 

memory. Therefore, the CPLD must be configured so that it implements the necessary 

interface. The CPLD stores its configuration in its internal non-volatile memory so the 

interface is restored each time power is applied to the XSV Board. 

 

Downloading Virtex configuration bits 

 

Once the CPLD is programmed with the downloading interface circuit, you can 

download bit streams into the Virtex FPGA. 

 

Assigning Inputs and Outputs  

 

Each of the input and output bits of the design are assigned to the pins of the expansion 

headers. The inputs can also be assigned to the Pushbuttons and Dip switch. The output 

bits can be assigned to the LEDs or the LED bargraph. This is done using the Xilinx tools 

where the input/ output bits can be assigned to any of the desired pins. After downloading 

the program into the FPGA, the assigned pins can be checked to see if the result on it is a 

high or a low. 

 

5.3 Testing the system 
 

The control system for the SRM drive is shown in figure 5.9. To test the estimator and 

commutator design without the rest of the system, the inputs and outputs must be 

generated. This is done as summarized below. 
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1. The input to the estimator, gi(θ) which is the digitized output of the low pass 

filter, is generated in the program itself. The system is tested for different inputs 

of gi(θ). 

2. The inputs to the commutator, on/off angles, which has to be given from the 

microprocessor of the motor control system, are generated in the program itself. 

3. The output of the commutator has to be given to the current regulator.  

4. The estimated rotor position which does not come out of the FPGA in figure 5.9 

was brought out and measured with a logic analyzer. 

Figure 5.10 shows the experimental setup used for testing the circuit.  
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Figure 5.9 Block diagram of the SRM Control system 
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The steps involved in programming the FPGA and testing it are given below. 

 

1. The power is given to the FPGA using the 9 VDC power supply. 

2.  The frequency of the clock to the FPGA is set by setting the oscillator frequency 

on the XSV board. Here the frequency is set to 5MHz. 

3. After setting the frequency, the CPLD is configured so that it acts as an interface 

between the parallel port and the FPGA. Then the FPGA is ready to be 

programmed.  

4. Before generating the bit stream, the inputs and outputs should be assigned to the 

pins on the FPGA. This is done by generating a ucf file using the Xilinx tools. 

Actually this assigns some pins to the inputs and outputs. But the pin assignments 

can be changed by editing the constraints file and assigning the pins as needed. 

5. After the pins are assigned, the bit stream is generated from the Verilog code 

using the Xilinx tools. These bits are downloaded into the FPGA through the 

parallel port. Since the FPGA is volatile it has to be programmed each time the 

power is turned on. Once the code is downloaded onto an FPGA, the testing can 

be done. 

 
     Xilinx  
     FPGA 

clk 

Programming cable 

Logic  
Analyzer 

Figure 5.10 Experimental setup for testing the design 

Power 
supply 

outputs 
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6.  The results are captured using a Logic Analyzer. The logic analyzer channels are 

connected to the pins of the FPGA. The results on these pins are captured in the 

logic analyzer and can be viewed by connecting the logic analyzer to a PC.  

 
 
5.4 FPGA implementation results   
 
 
A test program was written to evaluate various sub-blocks of the Verilog program within 

the FPGA. The bit file for the block galpha where the estimated rotor position α is given 

as input and the output is g(α) is programmed into the FPGA. For different values of α, 

the output is checked. The results captured by the logic analyzer are shown in the figure 

5.11 for α=15°. As shown in the figure 5.11, the FPGA output g(α)=42 after 24 clock 

cycles. The values are scaled values and not the exact values obtained from the Simulink 

model. Converting the scaled values showed that they were equal to the output from the 

Simulink model. 
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The error block was tested with the following inputs: 

g1(θ)=36; g2(θ)=295; g3(θ)=50; g4(θ)=20; 

α1=10; α2=-35; α3=-80; α4=-135 

The error is calculated using equation 2.5. The error block output is shown in figure 5.12 

and is again found to be the correct scaled value. 

 

 
 

for alpha=15 
at tempi1=24 

g(alpha)=42 

Figure 5.11 Experimental FPGA output for the block galpha 
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The Commutator block was also tested separately on the FPGA. The following inputs 

have been given within the program while the input startin was assigned to the dipswitch. 

The output com, which is a 4-bit output, is assigned to the pins of the LED bargraph. 

Then the bit file is downloaded into the FPGA.  

qcomin =17’b10001010000000010 

qphin=8’b00001010 

θph1=13 

As seen from the inputs θsm=2, θlrg=20, θlrg>θsm=1. For the θphi values of the four 

phases, the output has to be generated as shown in table 5.1 

 

 

 

 

Figure 5.12 Experimental FPGA output for the block errorlow 



 

88 

 

 

 

 

 

 

 

 

 

 

The bargraph shows the correct output 1000. 

 

The position estimator block was also tested separately in the FPGA. For different input 

values of gi(θ ) the circuit was tested. 

In the first case the inputs are g1(θ)=36; g2(θ)=295; g3(θ)=50; g4(θ)=20; 

The bit file generated for the block sensetheta is downloaded into the FPGA. The output 

values were captured using a logic analyzer and plotted using Matlab. Figure 5.13 shows 

the plotted values of the rotor position for the given input. As in the simulations the initial 

estimated rotor position output has the incorrect value of 0º and the estimated rotor 

ultimately converges to the correct value. 

θphi θph> θsm θph<θlrg θlrg>θsm com 

13 1 1 1 1 

-28 0 0 1 0 

-17 0 1 1 0 

2 1 0 1 0 

Table 5.1 Commutator block output for the four phases 
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The result in figure 5.13 matches well with the result in figure 5.5, which shows the 

simulation result of the Simulink model for θ=13º and still better with the post synthesis 

results in figure 5.6. The error output given by the FPGA is plotted and shown in figure 

5.14. 
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Figure 5.13 Experimentally measured FPGA output for an 
actual rotor position equal to θ=13º 
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Figure 5.15 shows the output of the FPGA captured by the Logic analyzer. The 

waveforms show the various outputs during the part of the transient where α becomes 

equal to 13º and thus equal to θ. The results in figure 5.15 also show that the error 

becomes zero at this point. 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 5.14 Experimentally measured FPGA result for the error 
for θ=13°. 
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Results similar to those in figures 5.11 through 5.15 were obtained for different inputs 

and found to match with the results given by the Simulink model in all cases. The output 

of the Position Estimator is given to the Commutator circuit and also tested on the FPGA. 

This was also found to be working correctly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.15 Waveform showing the FPGA output for the block sensetheta 
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5.5 Conclusion 
 

A Rotor Position Estimator for a Switched Reluctance Motor that had been developed 

previously is successfully implemented using Verilog and programmed into an FPGA. 

The rotor position estimator developed previously was available as a Simulink model and 

a FPGA design is created from it. The Verilog HDL design is validated by implementing 

the code on an FPGA and experimentally testing it. The experimental results obtained are 

compared with the Simulink model results and are found to match.  

 

The results of the position estimator implementation on an FPGA can be compared with 

the position estimator implementation on a Signal Processor. It is found that the FPGA 

rotor position estimator with a 5MHz clock frequency can update its rotor position 

estimate every 7.0µs compared to an update time of 50µs for a TMS320C6701-150 DSP 

implementation using a commercial DSP board. This is approximately a 7 to one 

reduction in the update time. 
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Appendix A  : Verilog Code for Position Estimator and Commutator 
 
//Verilog Code for Position Estimator 
 
module ST_Comm(clk,thetah,errlow_act,tempi1,com); 
 
reg [9:0]gth1,gth2,gth3,gth4; 
reg [3:0]isense; 
reg [5:0]vpower; 
input clk; 
reg clr; 
output [7:0]thetah; 
reg [7:0]thetah,qphin; 
wire [7:0]u1,u2,u3,u4; 
wire [18:0]wmh; 
output [9:0]errlow_act; 
reg [9:0]errlow_act; 
wire [18:0]errlow; 
reg [18:0]error;    
 
reg [2:0]loop; 
reg [9:0]H1; 
reg [24:0]H2; 
reg Gimod,sign,s;  
wire j1,j2,j3,j4,y; 
output [5:0]tempi1; 
wire [18:0]in_1; 
reg [18:0]tin_1,ta; 
reg [24:0]d; 
reg [24:0]d1; 
reg [7:0]qa; 
reg [7:0]qb,qc,qd; 
 
reg [7:0]alpha1,alpha2,alpha3,alpha4; 
wire [7:0]talpha2,talpha3,talpha4; 
reg [15:0]x; 
 
wire [9:0]gtheta1,gtheta2,gtheta3,gtheta4; 
 
reg [16:0]qcomin; 
reg startin; 
output [3:0]com; 
 
EL_NEW  errlw(clk,clr,gth1,gth2,gth3,gth4,alpha1,alpha2,alpha3,alpha4,vpower,isense, 
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tempi1,galpha1,galpha2,galpha3,galpha4,errlow); 
intH2_NEW nit(wmh,d,clk,tempi1);   
 
intH1_NEW nittt(in_1,d1,clk,tempi1,sign); 
 
wrap phb(clk,qb,talpha2);  
wrap phc(clk,qc,talpha3); 
wrap phd(clk,qd,talpha4); 
 
comm cc(com,qcomin,qphin,startin,clk); 
 
always @(posedge clk) 
begin 
 x=x+1; 
   gth1=36; 
  gth2=295; 
  gth3=50; 
  gth4=20; 
  isense=15; 
  vpower=42; 
  H2=16000000; 
  H1=8000; 
  Gimod=1; 
  clr=1'b1; 
  s=1'b0; 
   
if(x<12230) 
 begin 
  errlow_act=error/1024; 
  if (s==1'b1) errlow_act[9]=1'b1; 
  else errlow_act[9]=1'b0; 
             
  if(errlow[18]==1'b0) 
     error=errlow; 
  else 
  begin 
   error=~(errlow)+1; 
    s=1'b1; 
  end 
 
 
  if (tempi1==28) 
      d=(error*62500)/1024;    
  if(tempi1==30) 
     if(x<10000) 
   d1=(error*8000)/256;  



 

95 

     if(x>10000) 
   d1=(error*8000)/128; 
    if(x>4000) 
       sign=1'b1; 
   else if(x<4000) sign=1'b0; 
 
                           
if(x<4655) 
begin 
  if(in_1<1300)    
  begin 
 tin_1=(in_1*10)/128; 
 ta=in_1/128;  
  end 
  else if(in_1>1300) 
  begin 
    tin_1=(in_1*10)/64; 
    ta=in_1/64; 
  end     
end 
else if(x>4655) 
begin 
 tin_1=(in_1*10)/64; 
 ta=in_1/64; 
 end     
     
    qa=ta;       
 qb=qa-45; 
 qc=qb-45; 
 qd=qc-45; 
 
 if(qb>128) 
 begin 
  qb[6:0]=~(qb)+1; 
  qb[7]=1'b1; 
            end 
 if(qc>128) 
 begin 
  qc[6:0]=~(qc)+1; 
  qc[7]=1'b1; 
            end 
 if(qd>128) 
 begin 
  qd[6:0]=~(qd)+1; 
  qd[7]=1'b1; 
            end 
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            alpha1=qa;     
 alpha2=talpha2;       
 alpha3=talpha3; 
           alpha4=talpha4; 
 
    thetah=tin_1;  
 
       if(x==12220) 
    begin 
    qphin=13; 
    qcomin=17'b10001010000000100; 
      startin=1'b0; 
    end 
     if(x==12230) 
          begin 
             x=0; 
  loop=loop+1; 
  alpha1=0; 
  alpha2=0; 
  alpha3=0; 
  alpha4=0; 
          end     
end 
end 
 
endmodule 
  
//Verilog module for the error 
 
module 
EL_NEW(clk,clr,gth1,gth2,gth3,gth4,alpha1,alpha2,alpha3,alpha4,vpower,isense,tempi1,
galpha1,galpha2,galpha3,galpha4,errlow_act); 
 
input clk,clr; 
 
output [18:0]errlow_act; 
reg [18:0]errlow_act; 
output [9:0]galpha1,galpha2,galpha3,galpha4; 
output [5:0]tempi1; 
input [9:0]gth1,gth2,gth3,gth4; //factor=*256 
wire [9:0]tgalpha1; 
reg [9:0]ttgalpha1; 
input [5:0]vpower; 
input [3:0]isense; 
input [7:0]alpha1,alpha2,alpha3,alpha4; 
reg [18:0]temp_errlow; 
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reg [18:0]errlow; 
wire [7:0]u1,u2,u3,u4; 
 
 
reg [9:0]gtheta1,gtheta2,gtheta3,gtheta4; 
wire j2,j3,j4; 
reg [9:0]x; 
 
wire [5:0]tempi2,tempi3,tempi4; 
wire [19:0]mout1,mout2,mout3,mout4,mout5,mout6,mout7,mout8; 
 
 
GA_NEW g1(clk,clr,alpha1,vpower,u1,j1,tempi1,galpha1); 
GA_NEW g2(clk,clr,alpha2,vpower,u2,j2,tempi2,galpha2); 
GA_NEW g3(clk,clr,alpha3,vpower,u3,j3,tempi3,galpha3); 
GA_NEW g4(clk,clr,alpha4,vpower,u4,j4,tempi4,galpha4); 
 
mult1 m1(clk,gtheta2,galpha1,mout1); 
mult1 m2(clk,gtheta1,galpha2,mout2); 
mult1 m3(clk,gtheta3,galpha2,mout3); 
mult1 m4(clk,gtheta2,galpha3,mout4); 
mult1 m5(clk,gtheta4,galpha3,mout5); 
mult1 m6(clk,gtheta3,galpha4,mout6); 
mult1 m7(clk,gtheta1,galpha4,mout7); 
mult1 m8(clk,gtheta4,galpha1,mout8); 
 
always @(posedge(clk)) 
begin 
  
if (isense[0]==1'b1)  gtheta1=gth1;   
 else          gtheta1=galpha1; 
if (isense[1]==1'b1)  gtheta2=gth2; 
 else          gtheta2=galpha2; 
if (isense[2]==1'b1)  gtheta3=gth3; 
 else          gtheta3=galpha3; 
if (isense[3]==1'b1)  gtheta4=gth4; 
 else          gtheta4=galpha4; 
 
temp_errlow=((mout1-mout2)+(mout3-mout4)+(mout5-mout6)+(mout7-mout8)); 
 
 
errlow=temp_errlow;       
errlow_act=errlow; 
end 
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endmodule       
        
// verilog module for the block galpha 
 
module GA_NEW(clk,clr,alpha,vpower,u1,j,tempi,galph); 
input [7:0]alpha; 
output j; 
reg j; 
input [5:0]vpower;       
input clk,clr; 
 
output [9:0]galph; 
reg [9:0]galph; 
reg [18:0]temp_galph; 
 
reg [18:0]quotF1,quotF2; 
wire [18:0]tquotF1,tquotF2; 
reg [18:0]Fcn11;         
reg [18:0]Fcn12,Fcn22; 
output [6:0]u1; 
reg [6:0]u1; 
reg [7:0]u1_5; 
reg [18:0]prod; 
 
reg [5:0]Dmod; 
reg [13:0]Fmod; 
reg [5:0]Lpideal,mpideal,thetaTm; 
reg [7:0]Laideal; 
reg [8:0]mideal;     
 
wire [18:0]remF1,remF2; 
reg [18:0]tremF1,tremF2; 
reg sw1; 
 
reg [5:0]i; 
output [5:0]tempi; 
reg [5:0]tempi; 
reg k; 
reg l; 
 
divtemp ddd(Fcn11,Fcn12,tquotF1,remF1,clk); 
divtemp dddd(Fcn11,Fcn22,tquotF2,remF2,clk); 
always @(posedge(clk)) 
begin 
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  u1=alpha; 
   
 
Dmod=40; 
 Fmod=10000; 
 
 Laideal=8'b10001001;     // 0.0084*16384  (137) 
 mideal=9'b100101100; // 0.0183*16384 (300) 
 
 Lpideal=6'b001100; // 0.00075*16384 (12) 
 mpideal=6'b100010; // 0.0021*16384 (34) 
 thetaTm=6'b011000; // 0.4189*180/3.14 (24deg)  
   
  
 if(j==1'b1) 
  l=1'b1; 
else 
 l=1'b0;    
 end 
  always @(negedge(clk)) 
begin 
      
 if(clr==0) 
 begin 
  i=0; 
 end 
 else if(clr==1 && l==1'b1) 
 begin 
  i=0; 
 end      
 else     
      i=i+1; 
 if(i==3) 
 begin 
  tempi=i-3; 
  tempi=tempi+1; 
 end 
 if(i<3) tempi=0; 
 if(i>3) tempi=tempi+1; 
      
 Fcn11=67200;  //(( Dmod * Dmod )* vpower);    
  
  
  u1_5=5*u1; 
  if(Laideal>(u1_5))  
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Fcn12=(Laideal-(u1_5));    // (mideal*pi/180)=5 (deg)    
//factor=(100*100*Fmod/16384) 

  else Fcn12=~(Laideal-(u1_5))+1;      
       
  
 prod=6*(u1-thetaTm);    // mpideal*10*pi/180=6 
 if(120>prod)   Fcn22=(120-prod);  //factor=(10*100*100*Fmod/16384) 
 else Fcn22=~(120-prod)+1 ;             //10*Lpideal=120 
     
 if(u1<=thetaTm) sw1=1'b1; 
 else sw1=1'b0; 
  
 tremF1=remF1; 
 tremF2=remF2; 
 
 if((tremF1*2)< Fcn12) tremF1=1'b0; 
  else tremF1=1'b1; 
 if((tremF2*2)< Fcn22) tremF2=1'b0; 
  else tremF2=1'b1; 
 
  if(tempi==25)  k=1'b1;  
  if(k==1'b1) 
   begin  
      quotF1=tquotF1;   
   quotF2=tquotF2; 
        
    if(sw1==1'b1) 
   begin 
    temp_galph=quotF1+tremF1; 
    galph=(temp_galph*5)/128 
 
   end    
    else  
   begin 
    temp_galph=quotF2+tremF2; 
    galph=(temp_galph*54)/128 
   end      
      end 
  
 if (tempi==32)       
   j=1'b1;        
  else 
   j=1'b0;  
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end 
  
endmodule        
    
// Verilog Module for Block integrator 
 
 
module intH1_NEW(vout,vin,clk,tempi1,sign); 
output [18:0]vout;   
input [24:0]vin; 
reg [18:0]vout; 
input clk,sign; 
input [5:0]tempi1; 
reg [18:0]xn,xn1; 
 
initial  
begin 
  vout=0; 
end 
 
 
always@(posedge clk) 
begin 
 
if(sign==1'b0) 
  xn1=((vin*60)/(512*1024*8))+ xn;  
  else if(sign==1'b1) 
   xn1=xn-((vin*60)/(512*1024*8)); 
 
if (vin==0) xn1=0;         
 vout=xn1; 
 
if(tempi1==30) xn=xn1;  
       
end  
       
endmodule 
 
  
// Verilog module for the block wrap 
 
module wrap(clk,angle,wa); 
 
input clk; 
input [7:0]angle; 
output [7:0]wa; 
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reg [7:0]wa,ta; 
 
always @(posedge clk) 
begin 
  if((angle >= 0) & (angle <= 30)) 
  wa= angle; 
  if((angle > 30) & (angle <= 90)) 
  wa= angle -60; 
  if((angle > 90) & (angle <= 127)) 
  wa= angle -120; 
 
 if((angle > 128) & (angle <= 158)) 
 begin 
 wa[6:0]= angle- 128; 
 wa[7]=1'b1; 
 end 
 
 if((angle > 158) & (angle <= 218)) 
 begin 
 if (angle <188) wa[6:0]=~( angle- 188)+1; 
 else    wa[6:0]=( angle- 188); 
 wa[7]=1'b1; 
 end 
 
if((angle > 218) & (angle <= 255)) 
 begin 
 if (angle <248) wa[6:0]=~( angle- 248)+1; 
 else    wa[6:0]=( angle- 248); 
 wa[7]=1'b1; 
 end 
 
end 
endmodule 
 
 
// Verilog Module for the block commutator 
 
 
module comm(com,qcomin,qphin,startin,clk); 
input startin,clk; 
 
input [16:0]qcomin; 
input [7:0]qphin; 
output [3:0]com; 
wire [7:0]qwb,qwc,qwd; 
reg [7:0]qpha,qphb,qphc,qphd,qa,qb,qc,qd; 
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comm1 cm1(qcomin[7:0],qcomin[15:8],qcomin[16],qpha,startin,com[0]); 
comm1 cm2(qcomin[7:0],qcomin[15:8],qcomin[16],qphb,startin,com[1]); 
comm1 cm3(qcomin[7:0],qcomin[15:8],qcomin[16],qphc,startin,com[2]); 
comm1 cm4(qcomin[7:0],qcomin[15:8],qcomin[16],qphd,startin,com[3]); 
 
wrap phb(clk,qb,qwb);  
wrap phc(clk,qc,qwc); 
wrap phd(clk,qd,qwd); 
 
always @(posedge(clk)) 
begin 
 
     qa=qphin;       
 qb=qa-45; 
 qc=qb-45; 
 qd=qc-45; 
 
 if(qb>128) 
 begin 
  qb[6:0]=~(qb)+1; 
  qb[7]=1'b1; 
     end 
 if(qc>128) 
 begin 
  qc[6:0]=~(qc)+1; 
  qc[7]=1'b1; 
     end 
 if(qd>128) 
 begin 
  qd[6:0]=~(qd)+1; 
  qd[7]=1'b1; 
     end 
     qpha=qa;     
 qphb=qwb; 
 qphc=qwc; 
 qphd=qwd; 
 
end 
 
endmodule 
  
// verilog module for commutator of one phase 
 
 module comm1(qsm,qlrg,qlrg_qsm,qph,startin,comon); 
input [7:0]qsm,qlrg,qph; 



 

104 

input qlrg_qsm,startin; 
output comon; 
reg comon; 
reg [2:0]mux1; 
reg mout; 
 
always @(qph,qsm,qlrg,qlrg_qsm,startin) 
begin 
 
if(qph[7]==qlrg[7]) 
begin 
 if(qph<=qlrg) mux1[2]=1'b1;else mux1[2]=1'b0; 
end 
else if((qph[7]==1'b1) & (qlrg[7]==1'b0)) mux1[2]=1'b1; 
     else if((qph[7]==1'b0) & (qlrg[7]==1'b1)) mux1[2]=1'b0; 
 
 
if(qph[7]==qsm[7]) 
begin  
 if(qph>=qsm) mux1[1]=1'b1;else mux1[1]=1'b0; 
end 
else if((qph[7]==1'b1) & (qsm[7]==1'b0)) mux1[1]=1'b0; 
     else if((qph[7]==1'b0) & (qsm[7]==1'b1)) mux1[1]=1'b1;  
 
if(qlrg_qsm==1'b1) mux1[0]=1'b1;else mux1[0]=1'b0; 
 
 case (mux1) 
  3'b000: mout=1'b0; 
          3'b001: mout=1'b1; 
        3'b010: mout=1'b1; 
          3'b011: mout=1'b0; 
         3'b100: mout=1'b0; 
         3'b101: mout=1'b0; 
          3'b110: mout=1'b0; 
          3'b111: mout=1'b1; 
 endcase 
 
  comon= (~(startin)& mout); 
  
end 
 
endmodule 
 
 
The cores generated for the pipelined divider and multiplier are also instantiated in to the 
Verilog design. 
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