63 research outputs found

    Implications of Inconsistencies between fMRI and dMRI on Multimodal Connectivity Estimation

    Get PDF
    International audienceThere is a recent trend towards integrating resting state functional magnetic resonance imaging (RS-fMRI) and diffusion MRI (dMRI) for brain connectivity estimation, as motivated by how estimates from these modalities are presumably two views reflecting the same underlying brain circuitry. In this paper, we show on a cohort of 60 subjects that conventional functional connectivity (FC) estimates based on Pearson's correlation and anatomical connectivity (AC) estimates based on fiber counts are actually not that highly correlated for typical RS-fMRI (~7 min) and dMRI (~32 gradient directions) data. The FC-AC correlation can be significantly increased by considering sparse partial correlation and modeling fiber endpoint uncertainty, but the resulting FC-AC correlation is still rather low in absolute terms. We further exemplify the inconsistencies between FC and AC estimates by integrating them as priors into activation detection and demonstrating significant differences in their detection sensitivity. Importantly, we illustrate that these inconsistencies can be useful in fMRI-dMRI integration for improving brain connectivity estimation

    Lagged and instantaneous dynamical influences related to brain structural connectivity

    Get PDF
    Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI) provides a structural connectivity (SC) coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI) accounts for the variations in the blood-oxygenation-level-dependent T2* signal, providing functional connectivity (FC).Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience. To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas) to be compared with FC connectivity matrices obtained by 3 different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM), linear correlations (C) and partial correlations (PC). We also considered the possibility of using lagged correlations in time series; so, we compared a lagged version of eSEM and Granger causality (GC). Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C nor PC) provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function.Comment: Accepted and published in Frontiers in Psychology in its current form. 27 pages, 1 table, 5 figures, 2 suppl. figure

    A Theoretical Investigation of the Relationship between Structural Equation Modeling and Partial Correlation in Functional MRI Effective Connectivity

    Get PDF
    An important field of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is the investigation of effective connectivity, that is, the actions that a given set of regions exert on one another. We recently proposed a data-driven method based on the partial correlation matrix that could provide some insight regarding the pattern of functional interaction between brain regions as represented by structural equation modeling (SEM). So far, the efficiency of this approach was mostly based on empirical evidence. In this paper, we provide theoretical fundaments explaining why and in what measure structural equation modeling and partial correlations are related. This gives better insight regarding what parts of SEM can be retrieved by partial correlation analysis and what remains inaccessible. We illustrate the different results with real data

    The effect of self-regulated learning and learning interest on mathematics learning outcomes

    Get PDF
    Learning outcomes are one of the important aspects in the learning process because it is used as a determining factor for the success of a learning process. The factors that influence student learning outcomes are divided into two, namely internal factors (learning interests, talents, motivation, self-regulation, etc.) and external factors (school environment, family environment, etc.). Self-regulation and learning interest were the focus of discussion in this research. This study aims to determine the positive and significant influence between independence and interest in learning on mathematics learning outcomes for class VIII students of SMP Negeri 24 Muaro Jambi. This type of research is associative quantitative research. The results showed that partially independence had a positive but not significant effect on mathematics learning outcomes with tcount = 1,323 and correlation coefficient 0,202, while interest in learning had a positive and significant effect mathematics learning outcomes with tcount = 4,193 and correlation coefficient 0,548. Simultaneously, independence and interest in learning have a positive and significant effect on mathematics learning outcomes for class VIII students of SMP Negeri 24 Muaro Jambi as shown by the Fcount = 41,196, with an effect of 66,8% and 33,2% influenced by other variables

    A Comparison of Static and Dynamic Functional Connectivities for Identifying Subjects and Biological Sex using Intrinsic Individual Brain Connectivity

    Get PDF
    Functional magnetic resonance imaging has revealed correlated activities in brain regions even in the absence of a task. Initial studies assumed this resting-state functional connectivity (FC) to be stationary in nature, but recent studies have modeled these activities as a dynamic network. Dynamic spatiotemporal models better model the brain activities, but are computationally more involved. A comparison of static and dynamic FCs was made to quantitatively study their efficacies in identifying intrinsic individual connectivity patterns using data from the Human Connectome project. Results show that the intrinsic individual brain connectivity pattern can be used as a ‘fingerprint’ to distinguish among and identify subjects and is more accurately captured with partial correlation and assuming static FC. It was also seen that the intrinsic individual brain connectivity patterns were invariant over a few months. Additionally, biological sex identification was successfully performed using the intrinsic individual connectivity patterns, and group averages of male and female FC matrices. Edge consistency, edge variability and differential power measures were used to identify the major resting-state networks involved in identifying subjects and their sex
    • 

    corecore