112,399 research outputs found

    Partial Order Reduction for Security Protocols

    Get PDF
    Security protocols are concurrent processes that communicate using cryptography with the aim of achieving various security properties. Recent work on their formal verification has brought procedures and tools for deciding trace equivalence properties (e.g., anonymity, unlinkability, vote secrecy) for a bounded number of sessions. However, these procedures are based on a naive symbolic exploration of all traces of the considered processes which, unsurprisingly, greatly limits the scalability and practical impact of the verification tools. In this paper, we overcome this difficulty by developing partial order reduction techniques for the verification of security protocols. We provide reduced transition systems that optimally eliminate redundant traces, and which are adequate for model-checking trace equivalence properties of protocols by means of symbolic execution. We have implemented our reductions in the tool Apte, and demonstrated that it achieves the expected speedup on various protocols

    A Reduced Semantics for Deciding Trace Equivalence

    Full text link
    Many privacy-type properties of security protocols can be modelled using trace equivalence properties in suitable process algebras. It has been shown that such properties can be decided for interesting classes of finite processes (i.e., without replication) by means of symbolic execution and constraint solving. However, this does not suffice to obtain practical tools. Current prototypes suffer from a classical combinatorial explosion problem caused by the exploration of many interleavings in the behaviour of processes. M\"odersheim et al. have tackled this problem for reachability properties using partial order reduction techniques. We revisit their work, generalize it and adapt it for equivalence checking. We obtain an optimisation in the form of a reduced symbolic semantics that eliminates redundant interleavings on the fly. The obtained partial order reduction technique has been integrated in a tool called APTE. We conducted complete benchmarks showing dramatic improvements.Comment: Accepted for publication in LMC

    A reduced semantics for deciding trace equivalence using constraint systems

    Full text link
    Many privacy-type properties of security protocols can be modelled using trace equivalence properties in suitable process algebras. It has been shown that such properties can be decided for interesting classes of finite processes (i.e., without replication) by means of symbolic execution and constraint solving. However, this does not suffice to obtain practical tools. Current prototypes suffer from a classical combinatorial explosion problem caused by the exploration of many interleavings in the behaviour of processes. M\"odersheim et al. have tackled this problem for reachability properties using partial order reduction techniques. We revisit their work, generalize it and adapt it for equivalence checking. We obtain an optimization in the form of a reduced symbolic semantics that eliminates redundant interleavings on the fly.Comment: Accepted for publication at POST'1

    Automatic analysis of distance bounding protocols

    Full text link
    Distance bounding protocols are used by nodes in wireless networks to calculate upper bounds on their distances to other nodes. However, dishonest nodes in the network can turn the calculations both illegitimate and inaccurate when they participate in protocol executions. It is important to analyze protocols for the possibility of such violations. Past efforts to analyze distance bounding protocols have only been manual. However, automated approaches are important since they are quite likely to find flaws that manual approaches cannot, as witnessed in literature for analysis pertaining to key establishment protocols. In this paper, we use the constraint solver tool to automatically analyze distance bounding protocols. We first formulate a new trace property called Secure Distance Bounding (SDB) that protocol executions must satisfy. We then classify the scenarios in which these protocols can operate considering the (dis)honesty of nodes and location of the attacker in the network. Finally, we extend the constraint solver so that it can be used to test protocols for violations of SDB in these scenarios and illustrate our technique on some published protocols.Comment: 22 pages, Appeared in Foundations of Computer Security, (Affiliated workshop of LICS 2009, Los Angeles, CA)

    Security bound of two-bases quantum key-distribution protocols using qudits

    Full text link
    We investigate the security bounds of quantum cryptographic protocols using dd-level systems. In particular, we focus on schemes that use two mutually unbiased bases, thus extending the BB84 quantum key distribution scheme to higher dimensions. Under the assumption of general coherent attacks, we derive an analytic expression for the ultimate upper security bound of such quantum cryptography schemes. This bound is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions such an equivalence is generally no longer valid.Comment: 12 pages, 2 figures, to appear in Phys. Rev.

    Relating two standard notions of secrecy

    Get PDF
    Two styles of definitions are usually considered to express that a security protocol preserves the confidentiality of a data s. Reachability-based secrecy means that s should never be disclosed while equivalence-based secrecy states that two executions of a protocol with distinct instances for s should be indistinguishable to an attacker. Although the second formulation ensures a higher level of security and is closer to cryptographic notions of secrecy, decidability results and automatic tools have mainly focused on the first definition so far. This paper initiates a systematic investigation of the situations where syntactic secrecy entails strong secrecy. We show that in the passive case, reachability-based secrecy actually implies equivalence-based secrecy for digital signatures, symmetric and asymmetric encryption provided that the primitives are probabilistic. For active adversaries, we provide sufficient (and rather tight) conditions on the protocol for this implication to hold.Comment: 29 pages, published in LMC

    Insecurity of Quantum Secure Computations

    Full text link
    It had been widely claimed that quantum mechanics can protect private information during public decision in for example the so-called two-party secure computation. If this were the case, quantum smart-cards could prevent fake teller machines from learning the PIN (Personal Identification Number) from the customers' input. Although such optimism has been challenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the security of quantum two-party computation itself remains unaddressed. Here I answer this question directly by showing that all ``one-sided'' two-party computations (which allow only one of the two parties to learn the result) are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and the so-called quantum one-out-of-two oblivious transfer are impossible. I also construct a class of functions that cannot be computed securely in any ``two-sided'' two-party computation. Nevertheless, quantum cryptography remains useful in key distribution and can still provide partial security in ``quantum money'' proposed by Wiesner.Comment: The discussion on the insecurity of even non-ideal protocols has been greatly extended. Other technical points are also clarified. Version accepted for publication in Phys. Rev.

    Pairing-based identification schemes

    Get PDF
    We propose four different identification schemes that make use of bilinear pairings, and prove their security under certain computational assumptions. Each of the schemes is more efficient and/or more secure than any known pairing-based identification scheme
    • 

    corecore