878 research outputs found

    Reversible Computation in Term Rewriting

    Full text link
    Essentially, in a reversible programming language, for each forward computation from state SS to state S′S', there exists a constructive method to go backwards from state S′S' to state SS. Besides its theoretical interest, reversible computation is a fundamental concept which is relevant in many different areas like cellular automata, bidirectional program transformation, or quantum computing, to name a few. In this work, we focus on term rewriting, a computation model that underlies most rule-based programming languages. In general, term rewriting is not reversible, even for injective functions; namely, given a rewrite step t1→t2t_1 \rightarrow t_2, we do not always have a decidable method to get t1t_1 from t2t_2. Here, we introduce a conservative extension of term rewriting that becomes reversible. Furthermore, we also define two transformations, injectivization and inversion, to make a rewrite system reversible using standard term rewriting. We illustrate the usefulness of our transformations in the context of bidirectional program transformation.Comment: To appear in the Journal of Logical and Algebraic Methods in Programmin

    Soundness of Unravelings for Conditional Term Rewriting Systems via Ultra-Properties Related to Linearity

    Full text link
    Unravelings are transformations from a conditional term rewriting system (CTRS, for short) over an original signature into an unconditional term rewriting systems (TRS, for short) over an extended signature. They are not sound w.r.t. reduction for every CTRS, while they are complete w.r.t. reduction. Here, soundness w.r.t. reduction means that every reduction sequence of the corresponding unraveled TRS, of which the initial and end terms are over the original signature, can be simulated by the reduction of the original CTRS. In this paper, we show that an optimized variant of Ohlebusch's unraveling for a deterministic CTRS is sound w.r.t. reduction if the corresponding unraveled TRS is left-linear or both right-linear and non-erasing. We also show that soundness of the variant implies that of Ohlebusch's unraveling. Finally, we show that soundness of Ohlebusch's unraveling is the weakest in soundness of the other unravelings and a transformation, proposed by Serbanuta and Rosu, for (normal) deterministic CTRSs, i.e., soundness of them respectively implies that of Ohlebusch's unraveling.Comment: 49 pages, 1 table, publication in Special Issue: Selected papers of the "22nd International Conference on Rewriting Techniques and Applications (RTA'11)

    A Finite Representation of the Narrowing Space

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-14125-1_4Narrowing basically extends rewriting by allowing free variables in terms and by replacing matching with unification. As a consequence, the search space of narrowing becomes usually infinite, as in logic programming. In this paper, we introduce the use of some operators that allow one to always produce a finite data structure that still represents all the narrowing derivations. Furthermore, we extract from this data structure a novel, compact equational representation of the (possibly infinite) answers computed by narrowing for a given initial term. Both the finite data structure and the equational representation of the computed answers might be useful in a number of areas, like program comprehension, static analysis, program transformation, etc.Nishida, N.; Vidal, G. (2013). A Finite Representation of the Narrowing Space. En Logic-Based Program Synthesis and Transformation. Springer. 54-71. doi:10.1007/978-3-319-14125-1_4S5471Albert, E., Vidal, G.: The Narrowing-Driven Approach to Functional Logic Program Specialization. New Generation Computing 20(1), 3–26 (2002)Alpuente, M., Falaschi, M., Vidal, G.: Partial Evaluation of Functional Logic Programs. ACM Transactions on Programming Languages and Systems 20(4), 768–844 (1998)Alpuente, M., Falaschi, M., Vidal, G.: Compositional Analysis for Equational Horn Programs. In: Rodríguez-Artalejo, M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 77–94. Springer, Heidelberg (1994)Antoy, S., Ariola, Z.: Narrowing the Narrowing Space. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 1–15. Springer, Heidelberg (1997)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236(1–2), 133–178 (2000)Arts, T., Zantema, H.: Termination of Logic Programs Using Semantic Unification. In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 219–233. Springer, Heidelberg (1996)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Bae, K., Escobar, S., Meseguer, J.: Abstract Logical Model Checking of Infinite-State Systems Using Narrowing. In: Proceedings of the 24th International Conference on Rewriting Techniques and Applications. LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.: Conjunctive partial deduction: foundations, control, algorihtms, and experiments. Journal of Logic Programming 41(2&3), 231–277 (1999)Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL Protocol Analyzer and its meta-logical properties. Theoretical Computer Science 367(1–2), 162–202 (2006)Escobar, S., Meseguer, J.: Symbolic Model Checking of Infinite-State Systems Using Narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007)Fribourg, L.: SLOG: A Logic Programming Language Interpreter Based on Clausal Superposition and Rewriting. In: Proceedings of the Symposium on Logic Programming, pp. 172–185. IEEE Press (1985)Gnaedig, I., Kirchner, H.: Proving weak properties of rewriting. Theoretical Computer Science 412(34), 4405–4438 (2011)Hanus, M.: The integration of functions into logic programming: From theory to practice. Journal of Logic Programming 19&20, 583–628 (1994)Hanus, M. (ed.): Curry: An integrated functional logic language (vers. 0.8.3) (2012). http://www.curry-language.orgHermenegildo, M., Rossi, F.: On the Correctness and Efficiency of Independent And-Parallelism in Logic Programs. In: Lusk, E., Overbeck, R. (eds.) Proceedings of the 1989 North American Conf. on Logic Programming, pp. 369–389. The MIT Press, Cambridge (1989)Hölldobler, S. (ed.): Foundations of Equational Logic Programming. LNCS, vol. 353. Springer, Heidelberg (1989)Meseguer, J., Thati, P.: Symbolic Reachability Analysis Using Narrowing and its Application to Verification of Cryptographic Protocols. Electronic Notes in Theoretical Computer Science 117, 153–182 (2005)Middeldorp, A., Okui, S.: A Deterministic Lazy Narrowing Calculus. Journal of Symbolic Computation 25(6), 733–757 (1998)Nishida, N., Sakai, M., Sakabe, T.: Generation of Inverse Computation Programs of Constructor Term Rewriting Systems. IEICE Transactions on Information and Systems J88–D–I(8), 1171–1183 (2005) (in Japanese)Nishida, N., Sakai, M., Sakabe, T.: Partial Inversion of Constructor Term Rewriting Systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer, Heidelberg (2005)Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Schmidt-Schauß, M. (ed.) Proceedings of the 22nd International Conference on Rewriting Techniques and Applications. LIPIcs, vol. 10, pp. 283–298. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)Nishida, N., Vidal, G.: Computing More Specific Versions of Conditional Rewriting Systems. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 137–154. Springer, Heidelberg (2013)Nutt, W., Réty, P., Smolka, G.: Basic Narrowing Revisited. Journal of Symbolic Computation 7(3/4), 295–317 (1989)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, London, UK (2002)Palamidessi, C.: Algebraic Properties of Idempotent Substitutions. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 386–399. Springer, Heidelberg (1990)Ramos, J.G., Silva, J., Vidal, G.: Fast Narrowing-Driven Partial Evaluation for Inductively Sequential Systems. In: Danvy, O., Pierce, B.C. (eds.) Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming, pp. 228–239. ACM Press (2005)Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commutativity and associativity. Journal of the ACM 21(4), 622–642 (1974

    Inverse Unfold Problem and Its Heuristic Solving

    Get PDF
    Unfold/fold transformations have been widely studied in various programming paradigms and are used in program transformations, theorem proving, and so on. This paper, by using an example, show that restoring an one-step unfolding is not easy, i.e., a challenging task, since some rules used by unfolding may be lost. We formalize this problem by regarding one-step program transformation as a relation. Next we discuss some issues on a specific framework, called pure-constructor systems, which constitute a subclass of conditional term rewriting systems. We show that the inverse of T preserves rewrite relations if T preserves rewrite relations and the signature. We propose a heuristic procedure to solve the problem, and show its successful examples. We improve the procedure, and show examples for which the improvement takes effect

    Reversible Term Rewriting

    Get PDF
    Essentially, in a reversible programming language, for each forward computation step from state S to state S', there exists a constructive and deterministic method to go backwards from state S' to state S. Besides its theoretical interest, reversible computation is a fundamental concept which is relevant in many different areas like cellular automata, bidirectional program transformation, or quantum computing, to name a few. In this paper, we focus on term rewriting, a computation model that underlies most rule-based programming languages. In general, term rewriting is not reversible, even for injective functions; namely, given a rewrite step t1 -> t2, we do not always have a decidable and deterministic method to get t1 from t2. Here, we introduce a conservative extension of term rewriting that becomes reversible. Furthermore, we also define a transformation to make a rewrite system reversible using standard term rewriting.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad (MINECO) under grant TIN2013-44742-C4-1-R, by the Generalitat Valenciana under grant PROMETEO-II/2015/013 (SmartLogic) and by the COST Action IC 1405 on Reversible Computation. A. Palacios was partially supported by the the EU (FEDER) and the Spanish Ayudas para contratos predoctorales para la formación de doctores de la Sec. Estado de Investigación, Desarrollo e Innovación del MINECO under FPI grant BES-2014-069749. Part of this research was done while the second and third authors were visiting Nagoya University; they gratefully acknowledge their hospitality.Nishida, N.; Palacios Corella, A.; Vidal Oriola, GF.; Nishida (2016). Reversible Term Rewriting. Schloss Dagstuhl-Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.FSCD.2016.28

    Automated Termination Proofs for Logic Programs by Term Rewriting

    Full text link
    There are two kinds of approaches for termination analysis of logic programs: "transformational" and "direct" ones. Direct approaches prove termination directly on the basis of the logic program. Transformational approaches transform a logic program into a term rewrite system (TRS) and then analyze termination of the resulting TRS instead. Thus, transformational approaches make all methods previously developed for TRSs available for logic programs as well. However, the applicability of most existing transformations is quite restricted, as they can only be used for certain subclasses of logic programs. (Most of them are restricted to well-moded programs.) In this paper we improve these transformations such that they become applicable for any definite logic program. To simulate the behavior of logic programs by TRSs, we slightly modify the notion of rewriting by permitting infinite terms. We show that our transformation results in TRSs which are indeed suitable for automated termination analysis. In contrast to most other methods for termination of logic programs, our technique is also sound for logic programming without occur check, which is typically used in practice. We implemented our approach in the termination prover AProVE and successfully evaluated it on a large collection of examples.Comment: 49 page

    Inductive types in the Calculus of Algebraic Constructions

    Get PDF
    In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higher-order rewrite rules. In this paper, we prove that almost all CIC can be seen as a CAC, and that it can be further extended with non-strictly positive types and inductive-recursive types together with non-free constructors and pattern-matching on defined symbols.Comment: Journal version of TLCA'0
    • …
    corecore