
Reversible Term Rewriting∗

Naoki Nishida1, Adrián Palacios2, and Germán Vidal3

1 Graduate School of Information Science, Nagoya University, Nagoya, Japan
nishida@is.nagoya-u.ac.jp

2 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain
apalacios@dsic.upv.es

3 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain
gvidal@dsic.upv.es

Abstract
Essentially, in a reversible programming language, for each forward computation step from state
S to state S′, there exists a constructive and deterministic method to go backwards from state S′
to state S. Besides its theoretical interest, reversible computation is a fundamental concept which
is relevant in many different areas like cellular automata, bidirectional program transformation,
or quantum computing, to name a few. In this paper, we focus on term rewriting, a computation
model that underlies most rule-based programming languages. In general, term rewriting is not
reversible, even for injective functions; namely, given a rewrite step t1 → t2, we do not always
have a decidable and deterministic method to get t1 from t2. Here, we introduce a conservative
extension of term rewriting that becomes reversible. Furthermore, we also define a transformation
to make a rewrite system reversible using standard term rewriting.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases term rewriting, reversible computation, program transformation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.28

1 Introduction

The notion of reversible computation can be traced back to Landauer’s pioneering work [14].
Although Landauer was mainly concerned with the energy consumption of erasing data in
irreversible computing (only recently experimentally measured [5]), he also claimed that
every computer can be made reversible by saving the history of the computation. However,
as Landauer himself pointed out, this would only postpone the problem of erasing the tape
of a reversible Turing machine before it could be reused. Bennett [3] improved the original
proposal so that the computation now ends with a tape that only contains the output of
a computation and the initial source, thus deleting all remaining “garbage” data, though
it performs twice the usual computation steps. More recently, Bennett’s result is extended
in [6] to nondeterministic Turing machines, where it is also proved that transforming an
irreversible Turing machine into a reversible one can be done with a quadratic loss of space.

∗ This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economía
y Competitividad (MINECO) under grant TIN2013-44742-C4-1-R, by the Generalitat Valenciana
under grant PROMETEO-II/2015/013 (SmartLogic) and by the COST Action IC1405 on Reversible
Computation. A. Palacios was partially supported by the the EU (FEDER) and the Spanish Ayudas
para contratos predoctorales para la formación de doctores de la Sec. Estado de Investigación, Desarrollo
e Innovación del MINECO under FPI grant BES-2014-069749. Part of this research was done while the
second and third authors were visiting Nagoya University; they gratefully acknowledge their hospitality.

© Naoki Nishida, Adrián Palacios, and Germán Vidal;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Reversible Term Rewriting

In the last decades, reversible computing and reversibilization – transforming an irrevers-
ible computation device into a reversible one – have been the subject of intense research,
giving rise to successful applications in many different fields ranging from cellular automata
[19] and bidirectional program transformation [15] to quantum computing [29], to name a
few. We refer the interested reader to, e.g., [4, 9, 30] for a high level account of the principles
of reversible computation.

In this work, we focus on term rewriting [2, 26], a computation model that underlies most
rule-based programming languages. Essentially, there are two approaches to designing a
reversible language: one can either restrict the language to only contain reversible constructs,
or one can include some additional information (typically, the history of the computation so
far) so that all constructs become reversible, which is called a Landauer’s embedding. The
first approach is considered, e.g., by Abramsky in the context of pattern matching automata
[1]. There, biorthogonality is required to ensure reversibility, which would be a very significant
restriction for term rewriting systems. Thus, we follow the second, more general approach by
introducing the information required for the reductions to become reversible.

To be more precise, we introduce a general and intuitive notion of reversible term
rewriting by following essentially a Landauer’s embedding. Given a rewrite system R and
its associated (standard) rewrite relation →R, we define a reversible extension of rewriting
with two components: a forward relation ⇀R and a backward relation ↽R, such that ⇀R is
a conservative extension of →R and, moreover, (⇀R)−1 =↽R. We note that the inverse
rewrite relation, (→R)−1, is not an appropriate basis for “reversible” rewriting since we
aim at defining a technique to undo a given reduction. In other words, given a rewriting
reduction s →∗R t, a reversible relation aims at computing the term s from t and R in a
decidable and deterministic way, which is not possible using (→R)−1 since it is generally
non-deterministic, non-confluent, and non-terminating, even for systems defining injective
functions (see Example 8). In contrast, our backward relation ↽R is deterministic (thus
confluent) and terminating.

We then introduce a flattening transformation for rewrite systems so that the reduction
at top positions of terms suffices to get a normal form in the transformed systems. For
instance, given the following rewrite system R = {a(0, y) → y, a(s(x), y) → s(a(x, y))}
defining the addition on natural numbers built from constructors 0 and s(), we produce the
following basic (conditional) system: R′ = {a(0, y) → y, a(s(x), y) → s(z) ⇐ a(x, y) � z}
(see Example 16 for more details). This allows us to provide an improved notion of reversible
rewriting in which some information – namely, the positions where reduction takes place – is
not required anymore. This opens the door to compile the reversible extension of rewriting
into the system rules. Loosely speaking, given a system R, we produce new systems Rf
and Rb such that standard rewriting in Rf , i.e., →Rf

, coincides with the forward reversible
extension ⇀R in the original system, and analogously →Rb

is equivalent to ↽R. E.g., for
the system R′ above, we would produce

Rf = { ai(0, y) → 〈y, β1〉,
ai(s(x), y) → 〈s(z), β2(w)〉 ⇐ ai(x, y)� 〈z, w〉 }

Rb = { a−1(y, β1) → 〈0, y〉,
a−1(s(z), β2(w)) → 〈s(x), y〉 ⇐ a−1(z, w)→ 〈x, y〉 }

where ai is an injective version of function a, a−1 is the inverse of ai, and β1, β2 are fresh
symbols introduced to label the rules of the original system.

We consider conditional rewrite systems in this work, not only to have a more general
notion of reversible rewriting, but also to define a reversibilization technique for unconditional

N. Nishida, A. Palacios, and G. Vidal 28:3

rewrite systems, since the application of flattening (cf. Section 4) may introduce conditions
in a system that is originally unconditional, as illustrated above. We refer the interested
reader to [21] for a definition of reversible term rewriting for unconditional systems.

The paper is organized as follows. After introducing some preliminaries in Section 2, we
present our approach to reversible term rewriting in Section 3. Then, Section 4 introduces
a transformation to basic systems, and Section 5 presents injectivization and inversion
transformations in order to make a rewrite system reversible with standard rewriting. Finally,
Section 6 discusses some related work and Section 7 concludes and points out some ideas for
future research. More details and missing proofs can be found in [21].

2 Preliminaries

We assume familiarity with basic concepts of term rewriting. We refer the reader to, e.g., [2]
and [26] for further details.

Terms and Substitutions. A signature F is a set of function symbols. Given a set of
variables V with F ∩ V = ∅, we denote the domain of terms by T (F ,V). We use f, g, . . . to
denote functions and x, y, . . . to denote variables. Positions are used to address the nodes of
a term viewed as a tree. A position p in a term t, in symbols p ∈ Pos(t), is represented by
a finite sequence of natural numbers, where ε denotes the root position. We let t|p denote
the subterm of t at position p and t[s]p the result of replacing the subterm t|p by the term
s. Var(t) denotes the set of variables appearing in t. We also let Var(t1, . . . , tn) denote
Var(t1) ∪ · · · ∪ Var(tn). A term t is ground if Var(t) = ∅.

A substitution σ : V 7→ T (F ,V) is a mapping from variables to terms such that Dom(σ) =
{x ∈ V | x 6= σ(x)} is its domain. A substitution σ is ground if xσ is ground for all
x ∈ Dom(σ). Substitutions are extended to morphisms from T (F ,V) to T (F ,V) in the
natural way. We denote the application of a substitution σ to a term t by tσ rather than
σ(t). The identity substitution is denoted by id. We let “◦” denote the composition of
substitutions, i.e., σ ◦ θ(x) = (xθ)σ = xθσ. The restriction θ |̀V of a substitution θ to a set
of variables V is defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise. TRSs and
Rewriting. A set of rewrite rules l → r such that l is a nonvariable term and r is a term
whose variables appear in l is called a term rewriting system (TRS for short); terms l and r
are called the left-hand side and the right-hand side of the rule, respectively. We restrict
ourselves to finite signatures and TRSs. Given a TRS R over a signature F , the defined
symbols DR are the root symbols of the left-hand sides of the rules and the constructors
are CR = F \ DR. Constructor terms of R are terms over CR and V, denoted by T (CR,V).
We sometimes omit R from DR and CR if it is clear from the context. A substitution σ is a
constructor substitution (of R) if xσ ∈ T (CR,V) for all variables x.

For a TRS R, we define the associated rewrite relation→R as the smallest binary relation
satisfying the following: given terms s, t ∈ T (F ,V), we have s→R t iff there exist a position
p in s, a rewrite rule l→ r ∈ R, and a substitution σ such that s|p = lσ and t = s[rσ]p; the
rewrite step is sometimes denoted by s→p,l→r t to make explicit the position and rule used
in this step. The instantiated left-hand side lσ is called a redex. A term t is called irreducible
or in normal form w.r.t. a TRS R if there is no term s with t→R s. A substitution is called
normalized w.r.t. R if every variable in the domain is replaced by a normal form w.r.t. R.
We sometimes omit “w.r.t. R” if it is clear from the context. A derivation is a (possibly
empty) sequence of rewrite steps. Given a binary relation →, we denote by →∗ its reflexive
and transitive closure, i.e., s→∗R t means that s can be reduced to t in R in zero or more
steps; we also use s→n

R t to denote that s can be reduced to t in exactly n steps.

FSCD 2016

28:4 Reversible Term Rewriting

In this paper, we consider conditional term rewrite systems (CTRSs); namely oriented
3-CTRSs, i.e., CTRSs where extra variables are allowed as long as Var(r) ⊆ Var(l)∪Var(C)
for any rule l → r ⇐ C [17]. In oriented CTRSs, a conditional rule l → r ⇐ C has the
form l → r ⇐ s1 � t1, . . . , sn � tn, where each oriented equation si � ti is interpreted as
reachability (→∗R). In the following, we denote by on a sequence of elements o1, . . . , on for
some n. We also write oi,j for the sequence oi, . . . , oj when i ≤ j (and the empty sequence
otherwise). We write o when the number of elements is not relevant. In addition, we denote
o1 � o′1, . . . , on � o′n by on � o′n. Moreover, we assume that rewrite rules are labelled, i.e.,
given a CTRS R, we denote by β : l→ r ⇐ sn � tn a rewrite rule with label β. Labels are
unique in a CTRS. Also, to relate label β to fixed variables, we consider that the variables of
the rewrite rules are not renamed and that the reduced terms are always ground.1 We often
write s→p,β t instead of s→p,l→r⇐sn→tn t if rule l→ r ⇐ sn → tn is labeled with β.

For a CTRS R, the associated rewrite relation →R is defined as the smallest binary
relation satisfying the following: given ground terms s, t ∈ T (F), we have s→R t iff there
exist a position p in s, a rewrite rule l → r ⇐ sn � tn ∈ R, and a ground substitution σ
such that s|p = lσ, siσ →∗R tiσ for all i = 1, . . . , n, and t = s[rσ]p.

In order to simplify the presentation, we only consider deterministic CTRSs (DCTRSs),
i.e., oriented 3-CTRSs where, for each rule l→ r ⇐ sn � tn, we have Var(si) ⊆ Var(l, ti−1)
for all i = 1, . . . , n. Intuitively speaking, the use of DCTRs allows us to compute the bindings
for the variables in the condition of a rule in a deterministic way. E.g., given a ground term t

and a rule β : l→ r ⇐ sn � tn with t|p = lθ, we have that s1θ is ground. Therefore, one can
reduce s1θ to some term s′1 such that s′1 is an instance of t1θ with some ground substitution
θ1. Now, we have that s2θθ1 is ground and we can reduce s2θθ1 to some term s′2 such that
s′2 is an instance of t2θθ1 with some ground substitution θ2, and so forth. If all equations in
the condition hold using θ1, . . . , θn, we have that t→p,β t[rσ]p with σ = θθ1 . . . θn.

I Example 1. Consider the following DCTRS R that defines the function double that doubles
the value of its argument when it is an even natural number:

β1 : add(0, y) → y β4 : even(0) → true
β2 : add(s(x), y) → s(add(x, y)) β5 : even(s(s(x))) → even(x)
β3 : double(x) → add(x, x) ⇐ even(x)� true

Given the term double(s(s(0))) we have, for instance, the following derivation:

double(s(s(0))) →ε,β3 add(s(s(0)), s(s(0))) since even(s(s(0)))→∗R true
with σ = {x 7→ s(s(0))}

→ε,β2 s(add(s(0), s(s(0)))) with σ = {x 7→ s(0), y 7→ s(s(0))}
→1,β2 s(s(add(0, s(s(0))))) with σ = {x 7→ 0, y 7→ s(s(0))}
→1.1,β1 s(s(s(s(0)))) with σ = {y 7→ s(s(0))}

3 Reversible Term Rewriting

In this section, we present a conservative extension of the rewrite relation which becomes
reversible. In the following, we use ⇀R to denote our reversible (forward) term rewrite
relation, and ↽R to denote its application in the reverse (backward) direction. Note that, in

1 Equivalently, one could require terms to be variable disjoint with the variables of the rewrite system,
but we require groundness for simplicity.

N. Nishida, A. Palacios, and G. Vidal 28:5

principle, we do not require↽R=⇀−1
R , i.e., we provide independent (constructive) definitions

for each relation. Nonetheless, we will prove that ↽R =⇀−1
R indeed holds (cf. Theorem 10).

In some approaches to reversible computing, both forward and backward relations should
be deterministic. Here, we will only require deterministic backward steps, while forward
steps might be non-deterministic, as it is often the case in term rewriting. We note that
considering DCTRSs is not enough to make conditional rewriting deterministic. In general,
given a rewrite step s →p,β t with p a position of s, β : l → r ⇐ sn → tn a rule, and σ a
substitution such that s|p = lσ and siσ →∗R tiσ for all i = 1, . . . , n, there are three sources
of non-determinism: the selected position p, the selected rule β, and the substitution σ. The
use of DCTRSs can only make deterministic the last one, but the choice of a position and
the selection of a rule may still be non-deterministic.

Reversible rewriting is then defined on pairs 〈t, π〉, where t is a term and π is a trace:

I Definition 2 (trace). Given a CTRS R, a trace in R is recursively defined as follows:2
the empty list is a trace;
if π, π1, . . . , πn are traces in R, n ≥ 0, there is a rule β : l → r ⇐ sn � tn ∈ R, p is a
position, and σ is a ground substitution, then β(p, σ, π1, . . . , πn) : π is a trace in R.

We refer to each component β(p, σ, π1, . . . , πn) in a trace as a trace term.

Intuitively speaking, a trace term β(p, σ, π1, . . . , πn) stores the position of a reduction step,
a substitution with the bindings that are required for the step to be reversible (e.g., the
bindings for the erased variables, but not only; see below) and the traces associated to the
subcomputations in the condition. Our trace terms have some similarities with proof terms
[26]. However, proof terms do not store the bindings of erased variables (and, to the best of
our knowledge, are only defined for unconditional TRSs).

Our reversible term rewriting relation is only defined on safe pairs. This notion will be
clarified below, after introducing the definition of reversible rewriting.

I Definition 3 (safe pair). Let R be a DCTRS. The pair 〈s, π〉 is safe in R iff, for all trace
terms β(p, σ, πn) in π, σ is a ground substitution with Dom(σ) = (Var(l)\Var(r, sn, tn)) ∪⋃n
i=1 Var(ti)\Var(r, si+1,n) and β : l→ r ⇐ sn � tn ∈ R.

In the following, we often omit R when referring to traces and safe pairs if the underlying
CTRS is clear from the context.

I Definition 4 (reversible rewriting). Let R be a DCTRS. The reversible rewrite relation
⇀R is defined on pairs 〈t, π〉, where t is a ground term and π is a trace in R. The reversible
rewrite relation extends standard rewriting as follows:

〈s, π〉⇀R 〈t, β(p, σ′, π1, . . . , πn) : π〉

iff there exist a position p ∈ Pos(s), a rewrite rule β : l→ r ⇐ sn � tn ∈ R, and a ground
substitution σ such that s|p = lσ, 〈siσ, []〉⇀∗R 〈tiσ, πi〉 for all i = 1, . . . , n, t = s[rσ]p, and
σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪

⋃n

i=1
Var(ti)\Var(r,si+1,n). The reverse relation, ↽R, is then defined

as follows:

〈t, β(p, σ′, π1, . . . , πn) : π〉↽R 〈s, π〉

iff 〈t, β(p, σ′, πn) : π〉 is a safe pair in R, β : l → r ⇐ sn � tn ∈ R and there is a
ground substitution θ such that Dom(θ) = Var(r, sn)\Dom(σ′), t|p = rθ, 〈ti θ∪σ′, πi〉 ↽∗R

2 As it is common, [] denotes the empty list and x : xs is a list with head x and tail xs.

FSCD 2016

28:6 Reversible Term Rewriting

〈si θ∪σ′, []〉 for all i = 1, . . . , n, and s = t[l θ∪σ′]p. Here, we assume that ∪ is the union of
substitutions and that it binds stronger than substitution application, i.e., l θ∪σ′ = l(θ ∪ σ′).
Note that θ ∪ σ′ is well defined since Dom(θ) ∩ Dom(σ′) = ∅ (actually, θ ∪ σ′ = θσ′ = σ′θ

since they are also ground).
We denote the union of both relations ⇀R ∪↽R by
R.

I Example 5. Consider the DCTRS R from Example 1. Given the term double(s(s(0))), we
have, for instance, the following forward derivation:

〈double(s(s(0))), []〉 ⇀R 〈add(s(s(0)), s(s(0))), [β3(ε, id, π)]〉
⇀R · · ·
⇀R 〈s(s(s(s(0)))), [β1(1.1, id), β2(1, id), β2(ε, id), β3(ε, id, π)]〉

where π = [β4(ε, id), β5(ε, id)] since we have the following reduction:

〈even(s(s(0))), []〉⇀R 〈even(0), [β5(ε, id)]〉⇀R 〈true, [β4(ε, id), β5(ε, id)]〉

The reader can easily construct the associated backward derivation:

〈add(s(s(0)), s(s(0))), [β1(1.1, id), β2(1, id), β2(ε, id), β3(ε, id, π)]〉↽∗R 〈double(s(s(0))), []〉

Let us now explain why we need to store σ′ in a step of the form 〈s, π〉⇀R 〈t, β(p, σ′, πn) : π〉.
Given a DCTRS, for each rule l→ r ⇐ sn � tn, the following conditions hold:

3-CTRS: Var(r) ⊆ Var(l, sn, tn).
Determinism: for all i = 1, . . . , n, we have Var(si) ⊆ Var(l, ti−1).

Intuitively, the backward relation ↽R can be seen as equivalent to the forward relation ⇀R
but using a reverse rule of the form r → l ⇐ tn � sn, . . . , t1 � s1. Therefore, in order to
ensure that backward reduction is deterministic, we need the same conditions as above but
on the reverse rewrite rule:

3-CTRS: Var(l) ⊆ Var(r, sn, tn).
Determinism: for all i = 1, . . . , n, Var(ti) ⊆ Var(r, si+1,n).

Since these conditions cannot be guaranteed in general, we store

σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪
⋃n

i=1
Var(ti)\Var(r,si+1,n)

in the trace term so that (r → l ⇐ tn � sn, . . . , t1 � s1)σ′ is deterministic and fulfills
the conditions of a 3-CTRS by construction, i.e., Var(lσ′) ⊆ Var(rσ′, snσ′, tnσ′) and for all
i = 1, . . . , n, Var(tiσ′) ⊆ Var(rσ′, si+1,nσ′); see the proof of Theorem 11 for more details.

I Example 6. Consider, e.g., the following DCTRS:

β1 : f(x, y,m) → s(w)⇐ h(x)� x, g(y, 4)� w

β2 : h(0) → 0 β3 : h(1) → 1 β4 : g(x, y) → x

and the step 〈f(0, 2, 4), []〉 ⇀R 〈s(2), [β1(ε, σ′, π1, π2)]〉 with σ′ = {m 7→ 4, x 7→ 0}, π1 =
[β2(ε, id)] and π2 = [β4(ε, {y 7→ 4})]. The binding of variable m is required to recover the
value of the erased variable m, but the binding of variable x is also needed to perform the sub-
derivation 〈x, π1〉↽R 〈h(x), []〉 when applying a backward step from 〈s(2), [β1(ε, σ′, π1, π2)]〉.
If the binding for x were unknown, this step would not be deterministic. As mentioned above,
an instantiated reverse rule (s(w) → f(x, y,m) ⇐ w � g(y, 4), x � h(x))σ′ = s(w) →
f(0, y, 4)⇐ w � g(y, 4), 0� h(0) would be a DCTRS thanks to σ′.

N. Nishida, A. Palacios, and G. Vidal 28:7

We note that similar conditions could be defined for arbitrary 3-CTRSs. However, the
conditions would be much more involved (e.g., one should first compute the dependencies
between the equations in the conditions), so we prefer to keep the simpler conditions for
DCTRSs, which is still quite a general class of CTRSs.

An easy but essential property of ⇀R is that it is a conservative extension of standard
rewriting in the following sense (we omit its proof since it is straightforward):

I Theorem 7. Let R be a DCTRS. Given ground terms s, t, if s→∗R t, then for any trace π
there exists a trace π′ such that 〈s, π〉⇀∗R 〈t, π′〉.

We note that this is not the case for the backward relation: t ←R s does not imply
〈t, π′〉 ↽R 〈s, π〉 for an arbitrary trace π′.3 This is actually the purpose of our notion of
reversible rewriting: ↽R should not extend ←R but is only aimed at performing exactly
the same steps of the forward computation whose trace was stored but in the reverse order.
Nonetheless, one can still ensure that, for any step t ←R s, there is a trace π′ such that
〈t, π′〉↽R 〈s, π〉 for some trace π (which is an easy consequence of Theorems 7 and 10).

I Example 8. Consider the following simple TRS R = {β : snd(x, y) → y}. Given
the reduction snd(1, 2) →R 2, there are infinitely many reductions for 2 using ←R, e.g.,
2 ←R snd(1, 2), 2 ←R snd(2, 2), 2 ←R snd(3, 2), etc. The relation is also non-terminating:
2 ←R snd(1, 2) ←R snd(1, snd(1, 2)) ←R · · · . In contrast, given a pair 〈2, π〉, we can only
perform a single deterministic and finite reduction (as proved below).

The following result states that every pair which is reachable from an initial pair with an
empty trace is safe, and follows easily by induction on the length of the derivations:

I Proposition 9. Let R be a DCTRS. If 〈s, []〉
∗R 〈t, π〉, then 〈t, π〉 is safe in R.

For the following result, we need some preliminary notions (see, e.g., [26]). For every oriented
CTRS R, we inductively define the TRSs Rk, k ≥ 0, as follows:

R0 = ∅
Rk+1 = {lσ → rσ | l→ r ⇐ sn � tn ∈ R, siσ →∗Rk

tiσ for all i = 1, . . . , n}

Observe that Rk ⊆ Rk+1 for all k ≥ 0. We have →R=
⋃
i≥0 →Ri

. We also have s →R t

iff s →Rk
t for some k ≥ 0. The minimum such k is called the depth of s →R t, and the

maximum depth k of s = s0 →Rk1
· · · →Rkm

sm = t (i.e., k is the maximum of depths
k1, . . . , km) is called the depth of the derivation. If a derivation has depth k and length m,
we write s→m

Rk
t. Analogous notions can naturally be defined for ⇀R, ↽R, and
R.

Now, we can already state the reversibility of ⇀R:

I Theorem 10. Let R be a DCTRS. Given the safe pairs 〈s, π〉 and 〈t, π′〉, for all k,m ≥ 0,
〈s, π〉⇀m

Rk
〈t, π′〉 iff 〈t, π′〉↽m

Rk
〈s, π〉.

Proof. (⇒) We prove the claim by induction on the lexicographic product (k,m) of the
depth k and the length m of the derivation 〈s, π〉 ⇀m

Rk
〈t, π′〉. Since the base case is

trivial, we consider the inductive case (k,m) > (0, 0). Consider a derivation 〈s, π〉 ⇀m−1
Rk

〈s0, π0〉 ⇀Rk
〈t, π′〉 whose associated product is (k,m). By Proposition 9, both 〈s0, π0〉

and 〈t, π′〉 are safe. By the induction hypothesis, since (k,m − 1) < (k,m), we have
〈s0, π0〉 ↽m−1

Rk
〈s, π〉. Consider now the step 〈s0, π0〉 ⇀Rk

〈t, π′〉. Thus, there exist a

3 Here, and in the following, we assume that ←R= (→R)−1.

FSCD 2016

28:8 Reversible Term Rewriting

position p ∈ Pos(s0), a rule β : l → r ⇐ sn � tn ∈ R, and a ground substitution
σ such that s0|p = lσ, 〈siσ, []〉 ⇀∗Rk′

i

〈tiσ, πi〉 for all i = 1, . . . , n, t = s0[rσ]p, σ′ =
σ|̀(Var(l)\Var(r,sn,tn))∪

⋃n

i=1
Var(ti)\Var(r,si+1,n), and π

′ = β(p, σ′, π1, . . . , πn) : π0. By definition
of ⇀Rk

, we have that k′i < k and, thus, (k′i,m1) < (k,m2) for all i = 1, . . . , n and for
all m1,m2. Hence, by the induction hypothesis, we have 〈tiσ, πi〉 ↽∗Rk′

i

〈siσ, []〉 for all
i = 1, . . . , n. Let θ = σ |̀Var(r,sn)\Dom(σ′), so that σ = θ∪σ′ is well defined. Therefore, we have
〈t, π′〉↽Rk

〈s′0, π0〉 with t|p = rθ, β : l→ r ⇐ sn � tn ∈ R and s′0 = t[l θ∪σ′]p = t[lσ]p = s0,
and the claim follows.

(⇐) This direction proceeds in a similar way. We prove the claim by induction on the
lexicographic product (k,m) of the depth k and the length m of the considered derivation.
Since the base case is trivial, let us consider the inductive case (k,m) > (0, 0). Let us
consider a derivation 〈t, π′〉 ↽m−1

Rk
〈s0, π0〉 ↽Rk

〈s, π〉 whose associated product is (k,m).
By Proposition 9, both 〈s0, π0〉 and 〈s, π〉 are safe. By the induction hypothesis, since
(k,m − 1) < (k,m), we have 〈s0, π0〉 ⇀m−1

Rk
〈t, π′〉. Consider now the step 〈s0, π0〉 ↽Rk

〈s, π〉. Then, we have π0 = β(p, σ′, π1, . . . , πn) : π, β : l → r ⇐ sn � tn ∈ R, and there
exists a ground substitution θ with Dom(θ) = Var(r, sn)\Dom(σ′) such that s0|p = rθ,
〈ti θ∪σ′, πi〉 ↽∗Rk′

i

〈si θ∪σ′, []〉 for all i = 1, . . . , n, and s = s0[l θ∪σ′]p. Moreover, since
〈s0, π0〉 is safe, we have that Dom(σ′) = (Var(l)\Var(r, sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1,n)

and, thus, θ ∪ σ′ is well defined. By definition of ↽Rk
, we have that k′i < k and, thus,

(k′i,m1) < (k,m2) for all i = 1, . . . , n and for all m1,m2. Hence, by the induction hypothesis,
we have 〈si θ∪σ′, []〉 ⇀∗Rk′

i

〈ti θ∪σ′, πi〉 for all i = 1, . . . , n. Let σ = θ ∪ σ′, which is well
defined since Dom(θ) ∩ Dom(σ′) = ∅. Then, since s|p = lσ, we can perform the step
〈s, π〉⇀Rk

〈s′0, β(p, σ′, π1, . . . , πn) : π〉 with s′0 = s[rσ]p = s[r θ∪σ′]p; moreover, s[r θ∪σ′]p =
s[rθ]p = s0[rθ]p = s0 since Dom(σ′) ∩ Var(r) = ∅, which concludes the proof. J

The relevance of our backward relation ↽R stems from the fact that it is deterministic
(thus confluent), terminating, and has a constructive definition. In the following, we say
that 〈t, π′〉↽R 〈s, π〉 is a deterministic step if there is no other, different pair 〈s′′, π′′〉 with
〈t, π′〉↽R 〈s′′, π′′〉 and, moreover, the subderivations for the equations in the condition of
the applied rule (if any) are deterministic, too. We say that a derivation 〈t, π′〉↽∗R 〈s, π〉 is
deterministic if each reduction step in the derivation is deterministic.

I Theorem 11. Let R be a DCTRS. Let 〈t, π′〉 be a safe pair with 〈t, π′〉↽∗R 〈s, π〉 for some
term s and trace π. Then 〈t, π′〉↽∗R 〈s, π〉 is deterministic.

Proof. We prove the claim by induction on the lexicographic product (k,m) of the depth
k and the length m of the steps. The case that m = 0 is trivial, and thus we let m > 0.
Assume 〈t, π′〉 ↽m−1

R 〈u, π′′〉. If there is no step using ↽R from 〈u, π′′〉, the claim follows
trivially for all m′ ≤ m. Now, assume there is at least one step issuing from 〈u, π′′〉, e.g.,
〈u, π′′〉↽R 〈s, π〉. For the base case k = 1, the applied rule is unconditional and we prove
that this is the only possible step. By definition, we have π′′ = β(p, σ′) : π, p ∈ Pos(u),
β : l → r ∈ R1, and there exists a ground substitution θ with Dom(θ) = Var(r) such that
u|p = rθ and s = u[l θ∪σ′]p. The only source of nondeterminism may come from choosing
a rule labeled with β and from the computation of the substitution θ. The claim trivially
follows since labels are unique in R and, if there is another ground substitution θ′ with
θ′ = Var(r) and u|p = rθ′, then θ = θ′.

Let us now consider k > 1. By definition, if 〈u, π′′〉 ↽Rk
〈s, π〉, we have π′′ =

β(p, σ′, π1, . . . , πn) : π, β : l → r ⇐ sn � tn ∈ R and there exists a ground substitu-
tion θ with Dom(θ) = Var(r) such that u|p = rθ, 〈ti θ∪σ′, πi〉 ↽∗Rj

〈si θ∪σ′, []〉, j < k,

N. Nishida, A. Palacios, and G. Vidal 28:9

for all i = 1, . . . , n, and s = t[l θ∪σ′]p. By the induction hypothesis, the subderivations
〈ti θ∪σ′, πi〉↽∗Rj

〈si θ∪σ′, []〉 are deterministic, i.e., 〈si θ∪σ′, []〉 is a unique resulting term
obtained by reducing 〈ti θ∪σ′, πi〉. Therefore, the only remaining source of nondeterminism
can come from choosing a rule labeled with β and from the computed substitution θ. On the
one hand, the labels are unique in R. As for θ, we prove that this is indeed the only possible
substitution for the reduction step. Consider the instance of rule l → r ⇐ sn � tn with
σ′: lσ′ → rσ′ ⇐ snσ′ � tnσ′. Since 〈u, π′′〉 is safe, we have that σ′ is a ground substitution
and Dom(σ′) = (Var(l)\Var(r, sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1,n). Then, the following

properties hold:
Var(lσ′) ⊆ Var(rσ′, snσ′, tnσ′), since σ′ is ground and it covers all the variables in
Var(l)\Var(r, sn, tn).
Var(tiσ′) ⊆ Var(rσ′, si+1,nσ′) for all i = 1, . . . , n, since σ′ is ground and it covers all
variables in

⋃n
i=1 Var(ti)\Var(r, si+1,n).

The above properties guarantee that the rule rσ′ → lσ′ ⇐ tnσ
′ � snσ

′, . . . , t1σ
′ � s1σ

′ can
be seen as a rule of a DCTRS and, thus, there exists a deterministic procedure to compute θ,
which completes the proof. J

Therefore, ↽R is deterministic and confluent. Termination is trivially guaranteed for pairs
with a finite trace since the trace’s length strictly decreases with every backward step.

4 Removing Positions from Traces

Once we have a feasible definition of reversible rewriting, there are two refinements that
can be considered: i) reducing the size of the traces and ii) defining a reversibilization
transformation so that standard rewriting becomes reversible in the transformed system.
Regarding the first refinement, one could remove information from the traces by requiring
certain conditions on the considered systems. For instance, requiring injective functions may
help to remove rule labels from trace terms. Also, requiring non-erasing rules may help to
remove the second component of trace terms (i.e., the substitutions). In this work, however,
we deal with a more challenging topic: removing positions from traces. This is useful not only
to reduce the size of the traces but it is also essential to define a reversibilization technique
for DCTRSs (cf. Section 5).4

In the following, rather than restricting the class of considered systems, we aim at
transforming a given DCTRS into one that fulfills some conditions that make storing
positions unnecessary. In the following, given a CTRS R, we say that a term t is basic [11] if
it has the form f(tn) with f ∈ DR a defined function symbol and tn ∈ T (CR,V) constructor
terms. Now, we introduce the following subclass of DCTRSs:

I Definition 12 (basic DCTRS). A DCTRS R is called basic if, for any rule l → r ⇐
sn � tn ∈ R, we have that r, sn and tn are either basic or constructor terms.

In principle, any DCTRS can be transformed into a basic DCTRS by applying a sequence of
flattening transformations. Roughly speaking, flattening involves transforming a term with
nested defined functions like f(g(x)) into a term f(y) and an (oriented) equation g(x)� y,
where y is a fresh variable.

4 We note that defining a transformation with traces that include positions would be a rather difficult task
because positions are dynamic (i.e., they depend on the term being reduced) and thus would require a
complex (and inefficient) program instrumentation.

FSCD 2016

28:10 Reversible Term Rewriting

I Definition 13 (flattening). Let R be a CTRS, R = (l→ r ⇐ sn � tn) ∈ R be a rule and
R′ be a new rule either of the form l→ r ⇐ s1 � t1, . . . , si|p � w, si[w]p � ti, . . . , sn � tn,
for some p ∈ Pos(si), 1 6 i 6 n, or l → r[w]q ⇐ sn � tn, r|q � w, for some q ∈ Pos(r),
where w is a fresh variable.5 Then, a CTRS R′ is obtained from R by a flattening step if
R′ = (R\{R}) ∪ {R′}.

Flattening is trivially complete since any flattening step can be undone by binding the
fresh variable again to the selected subterm and, then, proceeding as in the original system.
Soundness is more subtle though. In this work, we prove the correctness of flattening for
arbitrary DCTRSs w.r.t. innermost rewriting. As usual, the innermost rewrite relation, in
symbols, i→R, is defined as the smallest binary relation satisfying the following: given ground
terms s, t ∈ T (F), we have s i→R t iff there exist a position p in s such that no proper
subterms of s|p are reducible, a rewrite rule l→ r ⇐ sn � tn ∈ R, and a normalized ground
substitution σ such that s|p = lσ, siσ

i→∗R tiσ, for all i = 1, . . . , n, and t = s[rσ]p.

I Theorem 14. Let R be a DCTRS. If R′ is obtained from R by a flattening step, then R′

is a DCTRS and, for all ground terms s, t, we have s i→∗R t iff s
i→∗R′ t.

Therefore, both a DCTRS and its basic version – obtained by applying a sequence of flattening
steps – are equivalent w.r.t. innermost reduction. This justifies our use of basic DCTRSs in
the remainder of this paper.

A nice property of basic DCTRSs is that one can consider reductions only at topmost
positions. Formally, given a DCTRS R, we say that s →p,l→r⇐sn�tn

t is a top reduction
step if p = ε, there is a ground substitution σ with s = lσ, siσ →∗R tiσ for all i = 1, . . . , n,
t = rσ, and all the steps in siσ →∗R tiσ for i = 1, . . . , n are also top reduction steps. We
denote top reductions with ε→ for standard rewriting, and ε

⇀R,
ε
↽R for our reversible rewrite

relations.
The following result basically states that i→ and ε→ are equivalent for basic DCTRSs:

I Theorem 15. Let R be a DCTRS and R′ be a basic DCTRS obtained from R by a sequence
of flattening steps. Given ground terms s, t such that s is basic, we have s i→∗R t iff s

ε→∗R′t.

Therefore, when considering basic DCTRSs and top reductions, storing the reduced positions
in the trace terms becomes redundant since they are always ε. Thus, in practice, one can
consider simpler trace terms without positions, β(σ, π1, . . . , πn), that implicitly represent the
trace term β(ε, σ, π1, . . . , πn).

I Example 16. Consider the following TRS R defining addition and multiplication on
natural numbers, and its associated basic DCTRS R′:

R = { β1 : a(0, y) → y, R′ = { β′1 : a(0, y) → y,

β2 : a(s(x), y) → s(a(x, y)), β′2 : a(s(x), y) → s(z)⇐ a(x, y)� z,

β3 : m(0, y) → 0, β′3 : m(0, y) → 0,
β4 : m(s(x), y) → a(m(x, y), y) } β′4 : m(s(x), y) → a(z, y)⇐ m(x, y)� z }

For instance, given the following reduction in R:

m(s(0), s(0)) i→R a(m(0, s(0)), s(0)) i→R a(0, s(0)) i→R s(0)

we have the following counterpart in R′:

m(s(0), s(0)) ε→R′ a(0, s(0)) ε→R′ s(0) with m(0, s(0)) ε→R′ 0

5 The positions p, q can be required to be different from ε, but this is not strictly necessary.

N. Nishida, A. Palacios, and G. Vidal 28:11

Trivially, all results in Section 3 hold for basic DCTRSs and top reductions starting from
basic terms. The simpler trace terms without positions allow us to introduce appropriate
injectivization and inversion transformations in the next section.

5 Reversibilization

In this section, we aim at compiling the reversible extension of rewriting into the system
rules. Intuitively speaking, given a basic system R, we aim at producing new systems Rf
and Rb such that standard rewriting in Rf , i.e., →Rf

, coincides with the forward reversible
extension ⇀R in the original system, and analogously →Rb

is equivalent to ↽R. Therefore,
Rf can be seen as an injectivization of R, and Rb can be seen as the inversion of Rf .

5.1 Injectivization
Essentially, injectivization in our context amounts to add the traces to the rewrite rules, so
that standard rewriting can be used:

I Definition 17 (injectivization). Let R be a basic DCTRS. We produce a new CTRS I(R)
by replacing each rule β : l→ r ⇐ s1 � t1, . . . , sn � tn of R by a new rule of the form

〈l, ws〉 → 〈r, β(y, wn) : ws〉 ⇐ 〈s1, []〉� 〈t1, w1〉, . . . , 〈sn, []〉� 〈tn, wn〉

in I(R), where {y} = (Var(l)\Var(r, sn, tn) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n)) and both ws and

wn are fresh variables. Here, we assume that the variables of y are in lexicographic order.

Observe that there is a clear correspondence with the notion of reversible rewriting by only
assuming that the reduced positions are always ε and, thus, they are not stored in the trace.
Note also that, rather than storing a substitution, as in β(σ, π1, . . . , πn), we add the variables
of interest to the trace term, β(y, π1, . . . , πn), where y represent the domain of σ.

I Example 18. Consider again the DCTRS R from Example 6, which is already a basic
DCTRS. Then, Rf = I(R) is as follows:6

〈f(x, y,m), ws〉 → 〈s(w), β1(m,x,w1, w2) : ws〉⇐〈h(x), []〉� 〈x,w1〉, 〈g(y, 4), []〉� 〈w,w2〉
〈h(0), ws〉 → 〈0, β2 : ws〉
〈h(1), ws〉 → 〈1, β3 : ws〉

〈g(x, y), ws〉 → 〈x, β4(y) : ws〉

The reversible step 〈f(0, 2, 4), []〉 ε
⇀R 〈s(2), [β1(ε, σ′, π1, π2)]〉 with σ′ = {m 7→ 4, x 7→ 0},

π1 = [β2(ε, id)] and π2 = [β4(ε, {y 7→ 4})], has the following counterpart in Rf :

〈f(0, 2, 4), []〉 ε→Rf
〈s(2), [β1(4, 0, [β2], [β4(4)])]〉 with 〈h(0), []〉 ε→Rf

〈0, [β2]〉 and
〈g(2, 4), []〉 ε→Rf

〈2, [β4(4)]〉

As can be seen in the example above, the trace terms that occur in a reversible rewrite
derivation with a basic DCTRS R and those that occur in a top reduction with I(R) are
similar but not exactly equal. We formalize their relation as follows:

6 We will write just β instead of β() when no argument is required.

FSCD 2016

28:12 Reversible Term Rewriting

I Definition 19. Given a trace π, we define π̂ recursively as follows:

π̂ =
{

[] if π = []
β(tm, π̂1, . . . , π̂n) if π = β({y1 7→ t1, . . . , ym 7→ tm}, π1, . . . , πn)

where we assume that the variables ym are in lexicographic order.

The following result states the correctness of our injectivization transformation:

I Theorem 20. Let R be a basic DCTRS and Rf = I(R) be its injectivization. Then Rf is a
basic DCTRS and, given a basic ground term s, we have 〈s, []〉 ε

⇀∗R〈t, π〉 iff 〈s, []〉 ε→∗Rf
〈t, π̂〉.

5.2 Inversion
In general, function inversion is a difficult and often undecidable problem (see, e.g., [24, 22,
10, 23]). For injectivized systems, though, it becomes straightforward:

IDefinition 21 (inversion). LetR be a basic DCTRS and letRf = I(R) be its injectivization.
Then, the inverse system, Rb = I−1(Rf) is obtained from Rf by transforming every rule

〈l, ws〉 → 〈r, β(y, wn) : ws〉 ⇐ 〈s1, []〉� 〈t1, w1〉, . . . , 〈sn, []〉� 〈tn, wn〉

into a rule of the form

〈r, β(y, wn) : ws〉−1 → 〈l, ws〉−1 ⇐ 〈tn, wn〉−1 � 〈sn, []〉−1, . . . , 〈t1, w1〉−1 � 〈s1, []〉−1

We use a different symbol 〈_,_〉−1 since we may want to use both the forward and the
backward functions in the same system.

I Example 22. Consider the DCTRS Rf from Example 18. Then, its inversion Rb =
I−1(Rf) is defined as follows:

〈s(w), β1(m,x,w1, w2) : ws〉−1 → 〈f(x, y,m), ws〉−1 ⇐ 〈w,w2〉−1 � 〈g(y, 4), []〉−1,
〈x,w1〉−1 � 〈h(x), []〉−1

〈0, β2 : ws〉−1 → 〈h(0), ws〉−1
〈1, β3 : ws〉−1 → 〈h(1), ws〉−1

〈x, β4(y) : ws〉−1 → 〈g(x, y), ws〉−1

The correctness of the inversion transformation is then stated as follows:

I Theorem 23. Let R be a basic DCTRS, Rf = I(R) its injectivization, and Rb = I−1(Rf)
the inversion of Rf . Then, Rb is a basic DCTRS and, given a basic or constructor ground
term t and a trace π with 〈t, π〉 safe, we have 〈t, π〉 ε

↽∗R〈s, []〉 iff 〈t, π̂〉−1 ε→∗Rb
〈s, []〉−1.

5.3 An Improved Reversibilization Procedure
Using the transformations introduced so far, given a DCTRS R, we can produce a basic
DCTRS R′, which can then be injectivized I(R′) and reversed I−1(I(R′)). Although one
can find several applications for I(R′) and I−1(I(R′)), we note that these systems are aimed
at mimicking the reversible relations ⇀R′ and ↽R′ , rather than computing injective and
inverse versions of the functions defined in R′. In other words, I(R′) defines a single function
〈_,_〉 and I−1(I(R′)) a single function 〈_,_〉−1. Now, we refine these transformations so
that one can actually produce injective and inverse versions of the original functions.

N. Nishida, A. Palacios, and G. Vidal 28:13

In principle, one could consider that the injectivization of a rule of the form7

β : f(s0)→ r ⇐ f1(s1)� t1, . . . , fn(sn)� tn

will produce the following rule

fi(s0, ws)→ 〈r, β(y, wn) : ws〉 ⇐ fi1(s1, [])� 〈t1, w1〉 . . . , fin(sn, [])� 〈tn, wn〉

where traces are now added as an additional argument of each function. The following
example, though, illustrates that this is not correct in general.

I Example 24. Consider the following basic DCTRS R:

β1 : f(x, y) → z ⇐ h(y)� w, first(x,w)� z

β2 : h(0) → 0
β3 : first(x, y) → x

together with the following top reduction:

f(2, 1) ε→R 2 with σ = {x 7→ 2, y 7→ 1, w 7→ h(1), z 7→ 2}
where h(y)σ = h(1) ε→∗Rh(1) = wσ and first(x,w)σ = first(2, h(1)) ε→∗R2 = zσ

The improved injectivization above would return the following basic DCTRS:

fi(x, y, ws) → 〈z, β1(w1, w2) : ws〉 ⇐ hi(y, [])� 〈w,w1〉, firsti(x,w, [])� 〈z, w2〉
hi(0, ws) → 〈0, β2 : ws〉

firsti(x, y, ws) → 〈x, β3(y) : ws〉

Unfortunately, the corresponding reduction for fi(2, 1, []) above cannot be done in this system
since hi(1, []) cannot be reduced to 〈hi(1), []〉.

In order to solve the above drawback, one could complete the function definitions with rules
that reduce each irreducible term t to a tuple of the form 〈t, []〉. Although we find it a
promising idea for future work, in this paper we propose a simpler approach. In the following,
we consider a refinement of innermost reduction where only constructor substitutions are
computed. Formally, the constructor reduction relation, c→, is defined as follows: given
ground terms s, t ∈ T (F), we have s c→R t iff there exist a position p in s such that no
proper subterms of s|p are reducible, a rewrite rule l → r ⇐ sn � tn ∈ R, and a ground
constructor substitution σ such that s|p = lσ, siσ

c→∗R tiσ for all i = 1, . . . , n, and t = s[rσ]p.
Furthermore, we also require a further requirement on DCTRSs: we say that R is a c-

DCTRS (a pure-constructor system [20]) if R is a DCTRS and, for any rule l→ r ⇐ sn � tn,
we have that l, sn are basic terms and r, tn are constructor terms. Note that requiring sn to
be basic terms (thus excluding constructor terms) is not a real restriction since any equation
of the form s� t, with s (and t) a constructor term, can be removed by matching s and t,
removing the equation, and applying the matching substitution to the rule (cf. [23]).

I Definition 25 (refined injectivization). Let R be a basic c-DCTRS. We produce a new
CTRS I(R) by replacing each rule β : f(s0) → r ⇐ f1(s1) � t1, . . . , fn(sn) � tn of R by a
new rule of the form

fi(s0)→ 〈r, β(y, wn)〉 ⇐ fi1(s1)� 〈t1, w1〉, . . . , fin(sn)� 〈tn, wn〉

in I(R), where {y} = (Var(l)\Var(r, sn, tn)) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n) and wn are fresh

variables. Here, we assume that the variables of y are in lexicographic order.

7 By abuse, here we let s0, . . . , sn denote sequences of terms of arbitrary length.

FSCD 2016

28:14 Reversible Term Rewriting

Observe that now we do not need to keep a trace in each term, but only a single trace term
since all reductions finish in one step in a basic c-DCTRS. By abuse of notation, we still use
the notation π̂ when π is a trace term instead of a trace.

I Theorem 26. Let R be a basic c-DCTRS and Rf = I(R) be its injectivization. Then Rf
is a basic c-DCTRS and, given a basic ground term f(s) and a constructor ground term t, we
have 〈f(s), []〉 c

⇀R 〈t, π〉 iff fi(s) c→Rf
〈t, π̂〉.

Now, the refined version of the inversion transformation proceeds as follows:

I Definition 27 (refined inversion). Let R be a basic c-DCTRS and Rf = I(R) be its
injectivization. The inverse system Rb = I−1(Rf) is obtained from Rf by replacing each
rule

fi(s0)→ 〈r, β(y, wn)〉 ⇐ fi1(s1)� 〈t1, w1〉, . . . , fin(sn)� 〈tn, wn〉

of Rf by a new rule of the form

f−1(r, β(y, wn))→ 〈s0〉 ⇐ f−1n (tn, wn)� 〈sn〉, . . . , f−11 (t1, w1)� 〈s1〉

in I−1(Rf). Here, we assume that the variables of y are in lexicographic order.

I Example 28. Consider again the basic DCTRS of Example 6 which is a c-DCTRS. The
injectivization transformation I, returns the following c-DCTRS Rf :

fi(x, y,m) → 〈s(w), β1(m,x,w1, w2)〉 ⇐ hi(x)� 〈x,w1〉, gi(y, 4)� 〈w,w2〉
hi(0) → 〈0, β2〉 hi(1) → 〈1, β3〉 gi(x, y) → 〈x, β4(y)〉

Then, inversion with I−1 produces the following c-DCTRS Rb:

f−1(s(w), β1(m,x,w1, w2)) → 〈x, y,m〉 ⇐ g−1(w,w2)� 〈y, 4〉, h−1(x,w1)� 〈x〉
h−1(0, β2) → 〈0〉 h−1(1, β3) → 〈1〉 g−1(x, β4(y)) → 〈x, y〉

Finally, the correctness of the refined inversion transformation is stated as follows:

I Theorem 29. Let R be a basic c-DCTRS, Rf = I(R) its injectivization, and Rb = I−1(Rf)
the inversion of Rf . Then, Rb is a basic c-DCTRS and, given a basic ground term f(s)
and a constructor ground term t with 〈t, π〉 a safe pair, we have 〈t, π〉 c

↽R 〈f(s), []〉 iff
f−1(t, π̂) c→Rb

〈s〉.

5.4 Applications
A potential application of our reversibilization technique is in the context of bidirectional
program transformation (see, e.g., [8, 15] and references therein). This technique applies
when we have a data structure, called the source, which is transformed to another data
structure, called the view. Typically, we have a view function that takes the source and
returns the corresponding view. Here, the bidirectionalization transformation aims at defining
a backward transformation that takes a modified view, and returns the corresponding modified
source. Defining a view function and a backward transformation that form a bidirectional
transformation is not easy, and therefore our reversibilization technique can be useful in this
context. For instance, let us assume that we have a view function, view, that takes a source
and returns the corresponding view, and is defined by means of a c-DCTRS. Then, following

N. Nishida, A. Palacios, and G. Vidal 28:15

our approach, we can produce an injective version, say viewi, and an inverse version view−1.
Now, one could solve the view update problem with the following function:

upd(s, v′)→ s′ ⇐ viewi(s)� 〈v, π〉, view−1(v′, π)� 〈s′〉

where s is the original source, v′ is the updated view, and s′ – the returned value – is the
corresponding updated source.

A more challenging application is the reversibilization of cellular automata [19]. In a
cellular automaton, evolution is determined by some fixed rule (generally, a mathematical
function) that determines the new state of each cell in terms of the current state of the cell
and the states of the cells in its neighborhood. If we consider a rewrite system for defining
this rule, our approach can help us to produce reversible cellular automata from irreversible
ones, an important feature in this field.

As in [18], we can consider a one-dimensional irreversible cellular automaton where each
cell has two neighbours. The cellular automaton can be represented as a (potentially infinite)
array of cells. Consider, e.g., the following function to control the evolution of a cellular
automaton whose cells can only take value � or � (it is known as rule 150):

β1 : f(�,�,�)→ � β2 : f(�,�,�)→ � β3 : f(�,�,�)→ � β4 : f(�,�,�)→ �
β5 : f(�,�,�)→ � β6 : f(�,�,�)→ � β7 : f(�,�,�)→ � β8 : f(�,�,�)→ �

Evolution takes place then by applying simultaneously the above function to every cell and
its neighbours. Following our approach, we can injectivize function f as follows:

fi(�,�,�)→ 〈�, β1〉 fi(�,�,�)→ 〈�, β2〉 fi(�,�,�)→ 〈�, β3〉 fi(�,�,�)→ 〈�, β4〉
fi(�,�,�)→ 〈�, β5〉 fi(�,�,�)→ 〈�, β6〉 fi(�,�,�)→ 〈�, β7〉 fi(�,�,�)→ 〈�, β8〉

We can then consider that cells include a list of rule labels, so that the following evolution:

[�, �, �, �, �]⇒ [�, �, �, �, �]⇒ [�, �, �, �, �]⇒ · · ·

with the original cellular automaton, are now represented as follows:

[〈�, []〉, 〈�, []〉, 〈�, []〉, 〈�, []〉, 〈�, []〉]
⇒ [〈�, [β1]〉, 〈�, [β2]〉, 〈�, [β3]〉, 〈�, [β5]〉, 〈�, [β1]〉]
⇒ [〈�, [β2, β1]〉, 〈�, [β4, β2]〉, 〈�, [β8, β3]〉, 〈�, [β7, β5]〉, 〈�, [β5, β1]〉]
⇒ · · ·

Thus, the new cellular automaton is clearly reversible. With respect to the previous approach
in [18], our reversibilization process is more intuitive (the one proposed in [18] is rather
ad-hoc), does not increase the number of steps (while in [18] 2n+ k steps are required for
each step of the original cellular automaton, where k is a constant and n is the number of
non-empty cells in the cellular automaton), and its correctness is trivial by construction
(correctness is only sketched in [18]). On the other hand, our approach increases the size of
the cellular automaton by a factor that depends in principle on the length of the computation
(but not on the size of the cellular automaton).

A more detailed description of the above applications can be found in [21].

6 Related Work

Regarding reversible computing, one can already find a number of references in the literature
(e.g., [4, 9, 30]). Our work starts with the well-known approach of Landauer [14] which

FSCD 2016

28:16 Reversible Term Rewriting

proposes that saving the history of a computation makes it reversible. This approach to
reversibilization has already been considered in the past and has been applied in different
contexts and computational models, e.g., a probabilistic guarded command language [32], a
low level virtual machine [25], the call-by-name lambda calculus [12, 13], cellular automata
[28, 18], combinatory logic [7], a flowchart language [31], or a functional language [15, 27].

However, to the best of our knowledge, this is the first work that considers a reversible
extension of (conditional) term rewriting. We note, though, that Abramsky [1] introduced
an approach to reversible computation with pattern matching automata, which could also be
represented in terms of standard notions of term rewriting. His approach, though, requires a
condition called biorthogonality (which, in particular, implies injectivity), a condition that
would be overly restrictive in our setting. Roughly speaking, in our approach we achieve a
similar class of systems through injectivization from more general systems.

Another related work are the papers by Matsuda et al [15, 16] which focus on bidirectional
program transformation for functional programs. In [15], functional programs corresponding
to linear and right-treeless8 constructor TRSs are considered. In [16], the previous class is
extended to those corresponding to left-linear right-treeless TRSs. The methods in [15, 16] for
injectivization and inversion consider a more restricted class of systems than those considered
in this paper; on the other hand, they apply a number of analyses to improve the result,
which explains the smaller traces in their approach. Besides being more general, we consider
that our approach gives better insights to understand the need for the requirements of the
program transformations. Finally, [27] introduces a transformation for functional programs
which has some similarities with both the approach of [15] and our improved transformation
in Section 5.3; in contrast, though, [27] also applies the Bennett trick [3] in order to avoid
some unnecessary information.

7 Discussion and Future Work

In this paper, we have introduced a reversible extension of term rewriting. In order to
keep our approach as general as possible, we have initially considered DCTRSs as input
systems, and proved the soundness and reversibility of our extension of rewriting. Then,
in order to introduce a reversibilization transformation for these systems, we have also
presented a transformation from DCTRSs to basic DCTRSs which is correct for innermost
reduction. Finally, for constructor reduction, we are able to further refine our reversibilization
transformations. We have successfully applied our approach in the context of bidirectional
program transformation and the reversibilization of cellular automata.

As for future work, we plan to investigate restricted classes of CTRSs so that we can
further reduce the size of the traces. In particular, we will look for conditions under which
we can remove the variable bindings, the rule label, or even the complete trace. For this
purpose, we will consider non-erasing rules and injective functions, since we think that there
are different contexts where these conditions arise quite naturally.

Acknowledgements. We thank the anonymous reviewers for their useful comments and
suggestions to improve this paper.

8 There are no nested defined symbols in the right-hand sides, and, moreover, any term rooted by a
defined function in the right-hand sides can only take different variables as its proper subterms.

N. Nishida, A. Palacios, and G. Vidal 28:17

References
1 S. Abramsky. A structural approach to reversible computation. Theor. Comput. Sci.,

347(3):441–464, 2005.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
3 C. H. Bennet. Logical reversibility of computation. IBM Journal of Research and Develop-

ment, 17:525–532, 1973.
4 C. H. Bennett. Notes on the history of reversible computation. IBM Journal of Research

and Development, 44(1):270–278, 2000.
5 A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz. Ex-

perimental verification of Landauer’s principle linking information and thermodynamics.
Nature, 483:187–189, 2012.

6 P. Crescenzi and C. H. Papadimitriou. Reversible simulation of space-bounded computa-
tions. Theor. Comput. Sci., 143(1):159–165, 1995.

7 A. Di Pierro, C. Hankin, and H. Wiklicky. Reversible combinatory logic. Mathematical
Structures in Computer Science, 16(4):621–637, 2006.

8 N. Foster, K. Matsuda, and J. Voigtländer. Three complementary approaches to bidirec-
tional programming. In Jeremy Gibbons, editor, Generic and Indexed Programming – In-
ternational Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised Lectures,
volume 7470 of Lecture Notes in Computer Science, pages 1–46. Springer, 2012.

9 M. P. Frank. Introduction to reversible computing: motivation, progress, and challenges.
In Nader Bagherzadeh, Mateo Valero, and Alex Ramírez, editors, Proceedings of the Second
Conference on Computing Frontiers, pages 385–390. ACM, 2005.

10 R. Glück and M. Kawabe. A method for automatic program inversion based on LR(0)
parsing. Fundam. Inform., 66(4):367–395, 2005.

11 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency
Pair Method. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Proc. of IJCAR 2008, volume 5195 of Lecture Notes in Computer Science, pages 364–379.
Springer, 2008.

12 L. Huelsbergen. A logically reversible evaluator for the call-by-name lambda calculus. In
T. Toffoli and M. Biafore, editors, Proc. of PhysComp96, pages 159–167. New England
Complex Systems Institute, 1996.

13 W. E. Kluge. A reversible SE(M)CD machine. In Pieter W. M. Koopman and Chris Clack,
editors, Proc. of the 11th International Workshop on the Implementation of Functional
Languages, IFL’99. Selected Papers, volume 1868 of Lecture Notes in Computer Science,
pages 95–113. Springer, 2000.

14 R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal
of Research and Development, 5:183–191, 1961.

15 K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization trans-
formation based on automatic derivation of view complement functions. In R. Hinze and
N. Ramsey, editors, Proc. of the 12th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2007, pages 47–58. ACM, 2007.

16 K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalizing programs
with duplication through complementary function derivation. Computer Software, 26(2):56–
75, 2009. In Japanese.

17 A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Applicable
Algebra in Engineering, Communication and Computing, 5:213–253, 1994.

18 K. Morita. Reversible simulation of one-dimensional irreversible cellular automata. Theor.
Comput. Sci., 148(1):157–163, 1995.

FSCD 2016

28:18 Reversible Term Rewriting

19 K. Morita. Computation in reversible cellular automata. Int. J. General Systems, 41(6):569–
581, 2012.

20 M. Nagashima, M. Sakai, and T. Sakabe. Determinization of conditional term rewriting
systems. Theor. Comput. Sci., 464:72–89, 2012.

21 N. Nishida, A. Palacios, and G. Vidal. Reversible term rewriting: foundations and
applications. Technical report, DSIC, UPV, 2016. Available from the following URL:
http://users.dsic.upv.es/~gvidal/german/rr16/.

22 N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term rewriting sys-
tems. In Jürgen Giesl, editor, Proceedings of the 16th International Conference on Rewrit-
ing Techniques and Applications (RTA 2005), volume 3467 of Lecture Notes in Computer
Science, pages 264–278. Springer, 2005.

23 N. Nishida and G. Vidal. Program inversion for tail recursive functions. In Manfred
Schmidt-Schauß, editor, Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications (RTA 2011), volume 10 of LIPIcs, pages 283–298. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2011.

24 A. Romanenko. The generation of inverse functions in Refal. In Proc. of IFIP TC2 Work-
shop on Partial Evaluation and Mixed Computation, pp. 427–444, North-Holland, 1988.

25 B. Stoddart, R. Lynas, and F. Zeyda. A virtual machine for supporting reversible prob-
abilistic guarded command languages. Electr. Notes Theor. Comput. Sci., 253(6):33–56,
2010.

26 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

27 M. K. Thomsen and H. B. Axelsen. Interpretation and programming of the reversible func-
tional language RFUN. In Proc. of the 27th International Symposium on Implementation
and Application of Functional Languages (IFL 2015). Springer, 2016. To appear.

28 T. Toffoli. Computation and construction universality of reversible cellular automata. J.
Comput. Syst. Sci., 15(2):213–231, 1977.

29 T. Yamakami. One-way reversible and quantum finite automata with advice. Inf. Comput.,
239:122–148, 2014.

30 T. Yokoyama. Reversible computation and reversible programming languages. Electr. Notes
Theor. Comput. Sci., 253(6):71–81, 2010.

31 T. Yokoyama, H.B. Axelsen, and R. Glück. Fundamentals of reversible flowchart languages.
Theor. Comput. Sci., 611:87–115, 2016.

32 P. Zuliani. Logical reversibility. IBM Journal of Research and Development, 45(6):807–818,
2001.

	Introduction
	Preliminaries
	Reversible Term Rewriting
	Removing Positions from Traces
	Reversibilization
	Injectivization
	Inversion
	An Improved Reversibilization Procedure
	Applications

	Related Work
	Discussion and Future Work

