14 research outputs found

    Domain-specific language models and lexicons for tagging

    Get PDF
    AbstractAccurate and reliable part-of-speech tagging is useful for many Natural Language Processing (NLP) tasks that form the foundation of NLP-based approaches to information retrieval and data mining. In general, large annotated corpora are necessary to achieve desired part-of-speech tagger accuracy. We show that a large annotated general-English corpus is not sufficient for building a part-of-speech tagger model adequate for tagging documents from the medical domain. However, adding a quite small domain-specific corpus to a large general-English one boosts performance to over 92% accuracy from 87% in our studies. We also suggest a number of characteristics to quantify the similarities between a training corpus and the test data. These results give guidance for creating an appropriate corpus for building a part-of-speech tagger model that gives satisfactory accuracy results on a new domain at a relatively small cost

    Corpus Refactoring: a Feasibility Study

    Get PDF
    © 2007 Johnson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    An Anthological Review of Research Utilizing MontyLingua: a Python-Based End-to-End Text Processor

    Get PDF
    MontyLingua, an integral part of ConceptNet which is currently the largest commonsense knowledge base, is an English text processor developed using Python programming language in MIT Media Lab. The main feature of MontyLingua is the coverage for all aspects of English text processing from raw input text to semantic meanings and summary generation, yet each component in MontyLingua is loosely-coupled to each other at the architectural and code level, which enabled individual components to be used independently or substituted. However, there has been no review exploring the role of MontyLingua in recent research work utilizing it. This paper aims to review the use of and roles played by MontyLingua and its components in research work published in 19 articles between October 2004 and August 2006. We had observed a diversified use of MontyLingua in many different areas, both generic and domain-specific. Although the use of text summarizing component had not been observe, we are optimistic that it will have a crucial role in managing the current trend of information overload in future research

    Parts-of-Speech Tagger Errors Do Not Necessarily Degrade Accuracy in Extracting Information from Biomedical Text

    Get PDF
    Background: An ongoing assessment of the literature is difficult with the rapidly increasing volume of research publications and limited effective information extraction tools which identify entity relationships from text. A recent study reported development of Muscorian, a generic text processing tool for extracting protein-protein interactions from text that achieved comparable performance to biomedical-specific text processing tools. This result was unexpected since potential errors from a series of text analysis processes is likely to adversely affect the outcome of the entire process. Most biomedical entity relationship extraction tools have used biomedical-specific parts-of-speech (POS) tagger as errors in POS tagging and are likely to affect subsequent semantic analysis of the text, such as shallow parsing. This study aims to evaluate the parts-of-speech (POS) tagging accuracy and attempts to explore whether a comparable performance is obtained when a generic POS tagger, MontyTagger, was used in place of MedPost, a tagger trained in biomedical text. Results: Our results demonstrated that MontyTagger, Muscorian's POS tagger, has a POS tagging accuracy of 83.1% when tested on biomedical text. Replacing MontyTagger with MedPost did not result in a significant improvement in entity relationship extraction from text; precision of 55.6% from MontyTagger versus 56.8% from MedPost on directional relationships and 86.1% from MontyTagger compared to 81.8% from MedPost on nondirectional relationships. This is unexpected as the potential for poor POS tagging by MontyTagger is likely to affect the outcome of the information extraction. An analysis of POS tagging errors demonstrated that 78.5% of tagging errors are being compensated by shallow parsing. Thus, despite 83.1% tagging accuracy, MontyTagger has a functional tagging accuracy of 94.6%. Conclusions: The POS tagging error does not adversely affect the information extraction task if the errors were resolved in shallow parsing through alternative POS tag use

    Bootstrapping Named Entity Annotation by Means of Active Machine Learning: A Method for Creating Corpora

    Get PDF
    This thesis describes the development and in-depth empirical investigation of a method, called BootMark, for bootstrapping the marking up of named entities in textual documents. The reason for working with documents, as opposed to for instance sentences or phrases, is that the BootMark method is concerned with the creation of corpora. The claim made in the thesis is that BootMark requires a human annotator to manually annotate fewer documents in order to produce a named entity recognizer with a given performance, than would be needed if the documents forming the basis for the recognizer were randomly drawn from the same corpus. The intention is then to use the created named en- tity recognizer as a pre-tagger and thus eventually turn the manual annotation process into one in which the annotator reviews system-suggested annotations rather than creating new ones from scratch. The BootMark method consists of three phases: (1) Manual annotation of a set of documents; (2) Bootstrapping – active machine learning for the purpose of selecting which document to an- notate next; (3) The remaining unannotated documents of the original corpus are marked up using pre-tagging with revision. Five emerging issues are identified, described and empirically investigated in the thesis. Their common denominator is that they all depend on the real- ization of the named entity recognition task, and as such, require the context of a practical setting in order to be properly addressed. The emerging issues are related to: (1) the characteristics of the named entity recognition task and the base learners used in conjunction with it; (2) the constitution of the set of documents annotated by the human annotator in phase one in order to start the bootstrapping process; (3) the active selection of the documents to annotate in phase two; (4) the monitoring and termination of the active learning carried out in phase two, including a new intrinsic stopping criterion for committee-based active learning; and (5) the applicability of the named entity recognizer created during phase two as a pre-tagger in phase three. The outcomes of the empirical investigations concerning the emerging is- sues support the claim made in the thesis. The results also suggest that while the recognizer produced in phases one and two is as useful for pre-tagging as a recognizer created from randomly selected documents, the applicability of the recognizer as a pre-tagger is best investigated by conducting a user study involving real annotators working on a real named entity recognition task
    corecore