11,746 research outputs found

    Lexical Adaptation of Link Grammar to the Biomedical Sublanguage: a Comparative Evaluation of Three Approaches

    Get PDF
    We study the adaptation of Link Grammar Parser to the biomedical sublanguage with a focus on domain terms not found in a general parser lexicon. Using two biomedical corpora, we implement and evaluate three approaches to addressing unknown words: automatic lexicon expansion, the use of morphological clues, and disambiguation using a part-of-speech tagger. We evaluate each approach separately for its effect on parsing performance and consider combinations of these approaches. In addition to a 45% increase in parsing efficiency, we find that the best approach, incorporating information from a domain part-of-speech tagger, offers a statistically signicant 10% relative decrease in error. The adapted parser is available under an open-source license at http://www.it.utu.fi/biolg

    Natural Language Query in the Biochemistry and Molecular Biology Domains Based on Cognition Search™

    Get PDF
    Motivation: With the tremendous growth in scientific literature, it is necessary to improve upon the standard pattern matching style of the available search engines. Semantic NLP may be the solution to this problem. Cognition Search (CSIR) is a natural language technology. It is best used by asking a simple question that might be answered in textual data being queried, such as MEDLINE. CSIR has a large English dictionary and semantic database. Cognition’s semantic map enables the search process to be based on meaning rather than statistical word pattern matching and, therefore, returns more complete and relevant results. The Cognition Search engine uses downward reasoning and synonymy which also improves recall. It improves precision through phrase parsing and word sense disambiguation.
Result: Here we have carried out several projects to "teach" the CSIR lexicon medical, biochemical and molecular biological language and acronyms from curated web-based free sources. Vocabulary from the Alliance for Cell Signaling (AfCS), the Human Genome Nomenclature Consortium (HGNC), the United Medical Language System (UMLS) Meta-thesaurus, and The International Union of Pure and Applied Chemistry (IUPAC) was introduced into the CSIR dictionary and curated. The resulting system was used to interpret MEDLINE abstracts. Meaning-based search of MEDLINE abstracts yields high precision (estimated at >90%), and high recall (estimated at >90%), where synonym information has been encoded. The present implementation can be found at http://MEDLINE.cognition.com. 
&#xa

    Detecting Protein-Protein Interactions in Biomedical Literature Using a Parser

    Full text link
    We describe the task of automatically detecting interactions between proteins in biomedical literature. We use a syntactic parser, a corpus annotated for proteins, and manual decisions as training material. After automatically parsing the GENIA corpus, which is manually annotated for proteins, all syntactic paths between proteins are extracted. These syntactic paths are manually disambiguated between meaningful paths and irrelevant paths. Meaningful paths are paths that express an interaction between the syntactically connected proteins, irrelevant paths are paths that do not convey any interaction. The resource created by these manual decisions is used in two ways. First, words that appear frequently inside a meaningful path are learnt using simple machine learning. Second, these resources are applied to the task of automatically detecting interactions between proteins in biomedical literature

    A comparison of parsing technologies for the biomedical domain

    Get PDF
    This paper reports on a number of experiments which are designed to investigate the extent to which current nlp resources are able to syntactically and semantically analyse biomedical text. We address two tasks: parsing a real corpus with a hand-built widecoverage grammar, producing both syntactic analyses and logical forms; and automatically computing the interpretation of compound nouns where the head is a nominalisation (e.g., hospital arrival means an arrival at hospital, while patient arrival means an arrival of a patient). For the former task we demonstrate that exible and yet constrained `preprocessing ' techniques are crucial to success: these enable us to use part-of-speech tags to overcome inadequate lexical coverage, and to `package up' complex technical expressions prior to parsing so that they are blocked from creating misleading amounts of syntactic complexity. We argue that the xml-processing paradigm is ideally suited for automatically preparing the corpus for parsing. For the latter task, we compute interpretations of the compounds by exploiting surface cues and meaning paraphrases, which in turn are extracted from the parsed corpus. This provides an empirical setting in which we can compare the utility of a comparatively deep parser vs. a shallow one, exploring the trade-o between resolving attachment ambiguities on the one hand and generating errors in the parses on the other. We demonstrate that a model of the meaning of compound nominalisations is achievable with the aid of current broad-coverage parsers

    Text-to-Text Extraction and Verbalization of Biomedical Event Graphs

    Get PDF
    Biomedical events represent complex, graphical, and semantically rich interactions expressed in the scientific literature. Almost all contributions in the event realm orbit around semantic parsing, usually employing discriminative architectures and cumbersome multi-step pipelines limited to a small number of target interaction types. We present the first lightweight framework to solve both event extraction and event verbalization with a unified text-to-text approach, allowing us to fuse all the resources so far designed for different tasks. To this end, we present a new event graph linearization technique and release highly comprehensive event-text paired datasets, covering more than 150 event types from multiple biology subareas (English language). By streamlining parsing and generation to translations, we propose baseline transformer model results according to multiple biomedical text mining benchmarks and NLG metrics. Our extractive models achieve greater state-of-the-art performance than single-task competitors and show promising capabilities for the controlled generation of coherent natural language utterances from structured data
    • ā€¦
    corecore