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Abstract 
 
Motivation: With the tremendous growth in scientific 
literature, it is necessary to improve upon the standard 
pattern matching style of the available search engines. 
Semantic NLP may be the solution to this problem. 
Cognition Search (CSIR) is a natural language technology. 
It is best used by asking a simple question that might be 
answered in textual data being queried, such as MEDLINE. 
CSIR has a large English dictionary and semantic 
database. Cognition’s semantic map enables the search 
process to be based on meaning rather than statistical 
word pattern matching and, therefore, returns more 
complete and relevant results. The Cognition Search engine 
uses downward reasoning and synonymy which also 
improves recall. It improves precision through phrase 
parsing and word sense disambiguation. 
Result: Here we have carried out several projects to 
"teach" the CSIR lexicon medical, biochemical and 
molecular biological language and acronyms from curated 
web-based free sources. Vocabulary from the Alliance for 
Cell Signaling (AfCS), the Human Genome Nomenclature 
Consortium (HGNC), the United Medical Language System 
(UMLS) Meta-thesaurus, and The International Union of 
Pure and Applied Chemistry (IUPAC) was introduced into 
the CSIR dictionary and curated. The resulting system was 
used to interpret MEDLINE abstracts.  Meaning-based 
search of MEDLINE abstracts yields high precision 
(estimated at >90%), and high recall (estimated at >90%), 
where synonym information has been encoded. The present 
implementation can be found at 
http://MEDLINE.cognition.com.    
Contact: 
Elizabeth.goldsmith@UTsouthwestern.edu 
Kathleen.dahlgren@cognition.com
 
Introduction 
 
With the increasing complexity of Biomedical 
literature, several labs and companies have attempted 
to develop better search engines for MEDLINE (1-5). 
A few free sources are visible on the web e.g. Google 
Scholar (http://scholar.google.com/), Highwire press 
(http://highwire.stanford.edu/lists/freeart.dtl) and 
Medscape(http://www.medscape.com/home) whereas 
other relatively commercial sources of this   
 
 
 

 
 
 
information is present at Scopus 
(http://www.scopus.com/scopus/home.url), Ovid 
(http://www.ovid.com/site/index.jsp), and Infotrieve  
(http://www4.infotrieve.com/newMEDLINE/search.a
sp). We think that semantic NLP is require to 
properly access the biomedical literature, a view 
shared with many others(4, 6-13). To our knowledge, 
however Cognition semantic NLP is the only 
technology that has thoroughly unraveled the full 
complexity of ordinary English. The architecture and 
databases of the software are such that multiple 
meanings of ordinary words and synonymy are 
resolved. The goal in search technology is to create 
software that finds all the desired information (full 
recall) without producing undesired information 
(high precision).  Cognition’s Semantic MEDLINE 
has the ability to target and locate specific data that 
are otherwise hidden in masses of information. Its 
comprehensive Semantic Map includes words, 
phrases and idioms. CSIR is also able to select senses 
of ambiguous words, giving much better results than 
pattern matching. 
 
Architecture of CSIR™  
 
CSIR™ is a natural language processing (NLP) 
technology that has been under development for 
several years.  The patented meaning-based 
architecture and methods have been described 
previously (14-16).  The technology contains a broad 
semantic map of English based on word senses, their 
synonyms (6), hypernyms (higher nodes in an 
ontology) (7) and sense contexts.   The CSIR Indexer 
uses its NLP component to build a cognitive model of 
the text in which all of the concepts (word meanings) 
of a document are indexed as well as word strings.   
The NLP component relies on its dictionary, 
semantic map, and morphological and syntactic tags 
(fig.1).  At search time, CSIR interprets the query for 
meaning, and searches for the meaning of the query 
in the concept index.   
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Figure 1:  Architecture of CSIR 

 
 
Since the original descriptions of this technology, 
significant improvements have been introduced, 
including sense disambiguation (8), phrase parsing 
(17), data compression and speed upgrades (18).  The 
morphology and tokenization components were built 
in-house (patent pending).   
The software also uses relatively simple algorithms 
for phrasal parsing and document relevancy to 
improve precision.   Demonstrations of CSIR are 
available at http://medline.cognition.com and 
http://wikipedia.cognition.com. The search engine 
should be used asking a straightforward question that 
might be answered in MEDLINE, such as "Oxidative 
stress in plants," “spectroscopy of amidohydrolases," 
or “Depression in aging.”   Retrieval time on the 17 
million MEDLINE abstracts is sub-second on Xeon 
Dual Core 3.0 GHz computers with 1 GB of RAM.   
 
Methods 
 
Ontology:  
 
To augment the ontology for Biochemistry and 
Molecular Biology, a top ontology was constructed 
by hand, based upon our own domain knowledge.  
Websites of curated biomedical terminology were 
crawled to obtain a complete list of their ontological 
attachments. These were then mapped to our top 
ontology by hand.  
 
Lexical and Concept Thesaurus Augmentation: 
 
Biomedical terminological databases were crawled  
 
 
 
 

 
and the vocabulary (terms, phrases and acronyms) 
extracted, along with their synonyms and ontological  
classes, where available.  All vocabulary was 
checked for frequency in the MEDLINE abstracts 
and any items with fewer than 20 occurrences were 
deleted.   Redundancy with the current dictionary was 
checked automatically, and redundant items curated 
by hand.   Specialized programs were written to 
crawl each website.  Curated terms, synonyms and 
attachments were automatically added to the CSIR 
semantic map.  Acronym spell-outs were used as 
sense contexts for acronym meanings (9).    
 
 
Precision and Relative Recall Test of CSIR vs 
Pubmed.   
 
We formulated 50 queries for the MEDLINE 
abstracts. The total number of CSIR retrievals was 
recorded, and the relevance evaluated for the top 10 
and top 20 retrievals, as assessed by the UT 
Southwestern team.  The same queries were posed to 
PubMed for comparison (in a Boolean format: 
“genetic” AND “interaction” AND “BCL2”).  
Relative recall was assessed by taking as full recall 
the largest number of relevant results found by either 
search engine. The queries used can be seen on the 
E.J. Goldsmith Lab webpage 
(http://hhmi.swmed.edu/Labs/bg/Cognition).   
 
Results 
 
Scale and Scope:  
 
CSIR functions optimally when the semantic map 
“knows” the vocabulary in the documents.  At the 
initiation of this project, a lexical evaluation of 
MEDLINE showed that CSIR was missing 66,000 
tokens (words).  Estimates of the total number of 
Biomedical terms is over a million, a much larger 
number, mostly phrases (10). Before this work, the 
CSIR Lexicon contained about 20,000 medical or 
biological terms (species, cells, anatomy, etc.).  Here 
we added about 85,000 protein names, 35,000 
chemical names, an ontology for Biochemistry and 
Molecular Biology possessing 2,400 nodes, and over 
30,000 biomedical synonym classes.  Together with 
other ongoing lexical augmentations, the detailed 
description of the entire Cognition semantic map is 
present in Table 1. 
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                              Cognition’s Semantic Map 
                  (Based on Computational Linguistic Science) 
 
 
 Word  Stems 
 

506,000 Word stems 
 

Words and Phrases 
 

536,000 Word senses or concepts 
 

Meanings in context 
 

4,000,000 Semantic contexts 
 

Different Word 
Meanings 
 

17,000 Ambiguous word definitions 
 

Complex Word Series 
Meanings  
 

191,000 Phrases 
 

Ontology or Taxonomy 
 

7,000 Nodes & 536,000 Terms 
 

Synonyms 
 

76,000 Thesaural concept groups 
 

 

Table 1: Cognition Dictionary by numbers 

 
 
Ontology for Biochemistry and Molecular Biology   
 
Ontologies need to be established at the desired 
granularity.  We defined a top ontology for the 
Biochemical and Molecular Biology domain that 
serves as a basis for capturing finer, more desired 
ontological nodes. Our top ontology, primarily for 
molecular entities, resembles SEMEDA (7), or 
TAMBIS (11).  The very top of our ontology 
discriminates ‘proteins," laboratory procedures," etc.; 
an intermediate level of protein and gene names was 
inspired by the ontology in the AfCS (eg. "binding 
protein," "g-protein", transcription-factors), and by an 
ontology of terms in the HGNC that categorizes 
proteins and genes. (Table 2) 
 
 
 
Table 2A: Ontology of Biochemical and Molecular 
Biology  
 

A.  Piece of the Top Ontology for 
Biochemistry 
   Macromolecule-node 
 Protein-stuff 
  antibody 
  binding protein 
  enzyme 
              Nucleic-acid 
  Laboratory-procedure 
 electrophoresis 
               Spectroscopy 

B.  Ontology for protein kinases 
 
  protein-kinases 
 protein-histidine-kinases 
 serine-threonine-kinases 
  AGC-kinases 
  STE-kinase 
             Tyrosine-kinase 
                           ACK-kinase 
                           EGFR-kinase 
              Tyrosine-Like-Kinase 
                            MLK-kinase 
                            RAF-kinase 

 
Table 2B: Finer grained Protein Kinases   
ontology. 

 
Introducing new language from existing 
databases:  
 
Web-based sources of biomedical terminology were: 
acronyms from http://medstract.med.tufts.edu (6), the 
molecules and genes defined by the AfCS database 
(19), the Human Genome Nomenclature Consortium 
(20), the UMLS Metathesaurus and the International 
Union of Pure and Applied Chemistry (IUPAC) 
enzyme names.  The acronym database and UMLS 
were selected for their wide coverage.  We selected 
the AfCS and HGNC databases because the curators 
captured natural word usage, and have encoded a 
gross molecular ontology as well as some synonymy.  
The IUPAC database was chosen because the 
ontology has been constructed carefully. Some of the 
larger databases were avoided because we noted 
numerous errors and short and redundant acronyms, 
requiring too much curation. Many biomedical 
acronyms are ambiguous.  Further, since some 
acronyms were added to the semantic map in earlier 
projects, a challenge was to add only new senses 
(21).  We chose to use the database published at 
http://medstract.med.tufts.edu.  We curated 16,256 
acronyms, removing rarely used acronyms (usage 
cutoff of 20), and very redundant acronyms.  This 
resulted in 15,657 acronyms with 16,858 total 
meanings. 
 
We introduced vocabulary from the UMLS 
Metathesaurus.  We built a map from the 
Metathesaurus ontology to our existing ontology, and 
then introduced the UMLS vocabulary into the 
lexicon automatically.  Multi-sense words were 
inspected by a linguist to prevent duplication.  
Synonyms, with the appropriate senses, were 
introduced to the Concept Thesaurus automatically.  
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Normalization included removal of plurals, redundant  
capitalized versions, and re-ordered versions.  
Automatic discovery of additional normalization 
rules, as in Wellner (2005) and Yoshimasa (2008)(22, 
23) would be a further step. This database includes 
both nouns and verbs covering biological sciences 
and medicine, amounting to 88,423 word senses, and 
76,816 synonyms.   
 
We then obtained additional word senses, all nouns, 
from the Alliance for Cell Signaling 
(www.alliance.org) (19). This source is current, 
curated and offers ontological entries, giving 15,661 
new or improved word senses.  The adoption of this 
vocabulary was accomplished through a combination 
of automated tasks and expert curation. Duplicates 
were curated.  Unknown vocabulary was then added 
to the semantic map automatically, including 
ontological attachments and synonyms. Data from the 
HGNC (www.genenames.org) (20) has also been 
partially introduced.  About 30 ontologies of protein 
families in HGNC have been imported, including 
AKAPs, ADAM proteases, bcl, BRCA, channel 
proteins, P450s, tubulins, ubiquitin ligases, 
phosphatases, TNF-receptors, histones, SMADs,  and 
so on.  We also introduced the IUPAC enzyme names 
and EC numbers, over 6,000 names.  These were 
chosen because of the well-thought-out ontology that 
may be accessed with the EC numbers.  A difficulty 
with this augmentation is the lack of natural language 
usage and lack of synonymy.   In a separate project 
we introduced natural language terms by finding 
synonyms for the EC numbers in the UMLS.   
 
Vocabulary growth  
 
 
At the beginning of this project, there were 66,000 
missing tokens (words). At present, we have 
completed the addition and curation of all words with 
a frequency greater than 35 (fig. 2), and there are 
now 5,000 with frequency greater than 20 to add.  
MEDLINE abstracts were also searched to find 
verbs, which were curated to find words (such as 
express, silence, translocate, spin, sandwich, bait, 
prey) that have domain specific-meanings.  This 
project has led to 225 new word senses.  The added 
verb definitions contribute to improved precision, and 
will be useful when full sentence parsing is included 
in CSIR (12). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2 shows the Coverage of MEDLINE 
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Precision and Recall Test:  
   
50 typical queries for MEDLINE were formulated as 
simple questions in the areas of biochemistry, 
molecular biology and medicine. The UT 
Southwestern team tabulated the relevance of the 
retrievals in http://MEDLINE.cognition.com. The 
reader is perhaps the best judge of the performance of 
the search engine. However, we compared 
Cognition’s retrievals with those of Pubmed 
(http://pubmed.com). To make the evaluation 
manageable, we used the “relative recall” technique, 
wherein full recall is estimated as the greatest number 
of retrievals achieved by either search engine. For 
example, one of the queries was "genetic correlates of 
alcoholism".  Of the first twenty CSIR retrievals, 16 
were relevant.  Thus CSIR's precision was 16/20 or 
.8.  The total number of retrievals for CSIR was 
1,436.  To extrapolate the good retrievals, we 
multiplied the precision ratio .8 times 1,436 to yield 
extrapolated recall of 1,149. A similar calculation for 
Pubmed was .3 precision, a total of 44 retrievals, to 
yield extrapolated recall of 13 (Table 3).  
 
Of the two extrapolated recall numbers, CSIR's is 
greater by inspection, so it is taken to be full recall on 
this query.  Then recall for the two search engines on 
this query is calculated: CognitionSearch 1,149/1,149 
or 1, Pubmed 13/1,149 or .01. Precision and recall 
ratios for all 50 queries are averaged to calculate the 
overall precision and recall. 
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Table 3 Precision and Recall: Comparison   
between Cognition and Pubmed. 
 

Cognition vs 
MEDLINE 
search 

Cognition 
good/20 

Cognition 
bad/20 Total Pubmed 

good/20 
Pubmed 
bad/20 Total 

Genetic 
correlates of 
alcoholism 

18 2 1436 6 14 44 

DNA repair and 
aging 17 3 1220 11 9 1265 
Drugs for 
fibromyalgia 17 3 1484 9 11 220 
Genetic 
interactions of 
BCL2 

18 2 876 8 11 19 

Oxidative stress 
in plants 18 2 3122 9 11 3197 
spectroscopy of 
amidohydrolases 17 3 861 7 13 1142 

Benzene induced 
neuropathy 18 2 220 6 1 7 
Birth defects 
from glycol ether 16 4 20 13 7 61 

Depression in 
aging 19 1 13381 7 13 3658 
Symptoms of 
type II diabetes 
mellitus 

18 2 241 7 13 24704 

Menopause and 
depression 18 2 696 11 9 1146 
Treatment for 
bronchiectasis 18 2 2163 6 14 3207 

OCD  and 
anorexia 20 0 176 14 6 247 
Proteolysis in 
SARS virus entry 4 0 4 2 0 2 

Total 280 60 18433 125 127 34080 

 Cognition   MEDLINE   

Precision 0.90   0.50   
Recall (*Assume 
total recall is the 
total of the 
cognition 
retrievals) 

0.99   0.54   

 
Bootstrapping ontological attachments:   
 
Most of the vocabulary derived from the acronym 
database and the UMLS had poor (very general) 
ontological attachments (eg, “amino-acid”).   About 
80,000 of 136,000 protein names were poorly 
attached.  Attachments of well-classified words were 
spread to their synonyms resulting in 20,000 better 
attachments.  A bootstrapping method took substrings 
as triggers; for example, “helix-loop-helix” as a 
substring of “transcription-factor-15-basic-helix-
loop-helix” suggests an attachment to the node 
“helix-loop-helix.” This attachment was then 
assigned to the synonyms “bHLH-EC2-protein” and 
“paraxis”.   
 
Discussion  
 
We think that the natural language approach of CSIR 
has an important role in future access to textual 
information in the Biomedical domain.  This effort is 
our first pass at introducing Biochemical and 
Molecular Biology terms into the CSIR lexicon.  
Other sources of new words  will come from tracking 
user queries, evaluation of MEDLINE, and other 
curated databases. Efforts directed toward database 

integration may provide useful definitions, synonymy 
and ontology in molecular biology (13).  We also 
plan to introduce additional parsing functions (24), 
(12) which should improve the precision of Cognition 
Search.  CSIR works equally well on full-text as on 
abstracts. This work contributes to precise 
interpretation of biomedical texts for purposes of 
search (1, 3, 25), research (4) and data mining (2, 26).  
 
Uses and Applications of CSIR: 
 
It is useful to review which linguistic processes 
produce these improved results. Morphology 
improves recall, so that the user can state a query 
term in one of its morphological variants, and CSIR 
automatically finds all other forms, as in 
phosphorylate and phosphorylation.  Synonymy 
improves recall because one member of a synonym 
class retrieves documents with any of its members, as 
in “CD116,” "GMHCFS receptor alpha subunit," etc.  
Ontological reasoning improves recall as the software 
reasons down from higher-level concepts to lower-
level concepts.  For example, you can query "what 
MAP kinase phosphorylates ATF2" and get 
documents with “ERK” and “p38” which are kinds of 
MAP kinases.  Sense disambiguation improves 
precision because only the documents that contain the 
query terms in the meanings intended by the user are 
retrieved.  Phrase parsing improves both precision 
and recall.  It improves precision by avoiding 
retrievals that happen to contain parts of a phrase in 
various positions, but not as the phrase.  So "RNA", 
"binding" and "protein" might all appear in an 
abstract that has nothing to do with RNA binding 
proteins.  It improves recall because it enables the 
mapping of synonym relations between phrases, and 
between phrases and acronyms, as in "TUBB" and 
"beta-tubulin".  
Biomedical language also possesses ontological 
relationships for proteins, genes, the Tree-of-Life 
animals, diseases, etc. CSIR includes the function of 
downward reasoning in ontologies. Thus, CSIR NLP 
technology can help to solve problems in medicine 
by finding material about specific instances of 
general concepts such as “heart disease medicine”.   
 
Areas for improvement  
 
Precision is lowered when words are difficult to 
disambiguate, such as "Bad", which is an apoptosis 
protein, but at present is recognized as the ordinary 
English "bad". It will be relatively easy to address 
missing terms since we know there are still 5000 
individual terms used in MEDLINE with a frequency 
of 20 or more that we need to define. We will use the 
methods of Tsuruoka (27) for future term 
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recognition, synonymy expansion and evaluation of 
coverage. 
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