4 research outputs found

    Multi-state epidemic processes on complex networks

    Full text link
    Infectious diseases are practically represented by models with multiple states and complex transition rules corresponding to, for example, birth, death, infection, recovery, disease progression, and quarantine. In addition, networks underlying infection events are often much more complex than described by meanfield equations or regular lattices. In models with simple transition rules such as the SIS and SIR models, heterogeneous contact rates are known to decrease epidemic thresholds. We analyze steady states of various multi-state disease propagation models with heterogeneous contact rates. In many models, heterogeneity simply decreases epidemic thresholds. However, in models with competing pathogens and mutation, coexistence of different pathogens for small infection rates requires network-independent conditions in addition to heterogeneity in contact rates. Furthermore, models without spontaneous neighbor-independent state transitions, such as cyclically competing species, do not show heterogeneity effects.Comment: 7 figures, 1 tabl

    Competição cíclica e jogos assimétricos de predador-presa

    Get PDF
    PadrĂ”es cĂ­clicos em populaçÔes biolĂłgicas competitivas tĂȘm ganhado destaque considerĂĄvel em Teoria Evolutiva do Jogos nas Ășltimas dĂ©cadas, uma vez que eles parecem ser caracterĂ­sticas importantes na manutenção da biodiversidade em sistemas com competição. Em contrapartida, uma parte considerĂĄvel das populaçÔes que interagem competitivamente na natureza, nĂŁo parece apresentar padrĂ”es cĂ­clicos de comportamento, como por exemplo as interaçÔes entre predadores e presas (especialmente quando hĂĄ apenas duas espĂ©cies envolvidas). Neste trabalho, investigamos e comparamos modelos em ambos os contextos. Inicialmente, revisamos uma generalização com quatro estratĂ©gias do jogo Pedra-Papel-Tesoura, analisando o papel da intransitividade na manutenção da coexistĂȘncia entre as espĂ©cies, tanto em Campo MĂ©dio quanto em uma rede espacialmente estendida. Em seguida, consideramos o modelo de Lett et al. [1] em que predadores podem atacar colaborativamente presas isoladas ou agrupadas. As vantagens e desvantagens desses comportamentos dependem de uma sĂ©rie de condiçÔes, e a Teoria Evolutiva dos Jogos dispĂ”e de ferramentas Ășteis para estudar tais sistemas, uma vez que ela se propĂ”e a resolver problemas envolvendo conflitos de interesse tanto em sistemas sociais quanto em biologia evolutiva e ecologia. Consideramos uma versĂŁo estocĂĄstica espacial do modelo de Lett et al. [1] atravĂ©s da distribuição das populaçÔes em uma rede quadrada. Comparamos entĂŁo os comportamentos evolutivos das densidades populacionais com os resultados previstos na versĂŁo do modelo em campo mĂ©dio, mostrando que na presença de organização espacial surgem comportamentos mais ricos envolvendo novas transiçÔes de fase. Mostramos tambĂ©m que a coexistĂȘncia entre as estratĂ©gias coletiva e individual, tanto para predadores quanto presas, estĂĄ presente tambĂ©m nas simulaçÔes em rede, sendo uma fase estĂĄvel. AlĂ©m disso, a persistĂȘncia dessa fase se deve a um mecanismo efetivo de dominĂąncia cĂ­clica, similar ĂĄ generalização do jogo Pedra-Papel-Tesoura com quatro estratĂ©gias, revisada na primeira parte do trabalho. Esse resultado demonstra, por uma abordagem nĂŁo usual, que a intransitividade Ă© um mecanismo robusto de manutenção da diversidade.Cyclic patterns in competitive biological populations have been gaining popularity amongst evolutionary game theorists in the last decades, since they appeared to have an important role on biodiversity maintenance in competitive biological systems. On the other hand, a substantial part of competitive populations in nature does not seem to present any cyclic behavior, as is the case of the majority of the interactions between predators and prey (especially when there are just two species involved). Here we investigate and compare models in both contexts. First we analyze a cyclic competition model, which is a generalized version of the Rock- Paper-Scissors game with four strategies, exploring the role of intransitivity on the maintenance of the species coexistence both in a mean field approach as well as in a spatially extended network. Next we study a predator-prey model in which predators may attack isolated or grouped prey in a cooperative, collective way. Whether gregarious behavior is advantageous to each species depends on several conditions and Game Theory has some useful tools to deal with such a problem, since its main purpose lies in dealing with conflicts of interest, even in the context of Evolutionary Biology and Ecology (the Game Theory branch which covers those topics is called Evolutionary Game Theory). We here extend the Lett et al. [1] model to spatially distributed groups and compare the resulting behavior with their mean field predictions for the coevolving densities of predator and prey strategies. We show that the coexistence phase in which both strategies for each group are present is stable because of an effective, cyclic dominance behavior similar to a generalization of the Rock-Paper-Scissors game with four species presented in the first part of this work, a further example of how ubiquitous this mechanism is

    Teaching Physics Innovatively. New Learning Environments and Methods in Physics Education

    Get PDF
    corecore