740 research outputs found

    An Integrity Framework for Image-Based Navigation Systems

    Get PDF
    This work first examines fundamental differences between measurement models established for GPS and those of proposed image-based navigation systems. In contrast to single value per satellite GPS pseudorange measurements, image measurements are inherently angle-based and represent pixel coordinate pairs for each mapped target. Thus, in the image-based case, special consideration must be given to the units of the transformations between the states and measurements, and also to the fact that multiple rows of the observation matrix relate to particular error states. An algorithm is developed to instantiate a framework for image-based integrity analogous to that of GPS RAIM. The algorithm is applied cases where the navigation system is estimating position only and then extended to cases where both position and attitude estimation is required. Detailed analysis demonstrates the impact of angular error on a single pixel pair measurement and comparisons from both estimation scenario results show that, from an integrity perspective, there is significant benefit in having known attitude information. Additional work demonstrates the impact of pixel pair measurement relative geometries on system integrity, showing potential improvement in image-based integrity through screening and adding measurements, when available, to the navigation system solution

    Performance of Receiver Autonomous Integrity Monitoring (RAIM) for Maritime Operations

    Get PDF
    The use of GNSS in the context of maritime applications has evolved during the past. The International Maritime Organization (IMO) has defined and published requirements for those applications. Comparing the requirements on the one hand specified by ICAO and on the other hand by IMO, significant differences get obvious. A major focus is on the evaluation of the performance of the integrity algorithms. Also concept drivers are discussed

    A New GNSS Integrity Monitoring Based on Channels Joint Characterization

    Get PDF
    Many GNSS (Global Navigation Satellites System) applications need high integrity performances. Receiver Autonomous Integrity Monitoring (RAIM), or similar method, is commonly used. Initially developed for aeronautics, RAIM techniques may not be fully adapted for terrestrial navigation, especially in urban environments. Those techniques use basically the pseudoranges to derive an integrity criterion. In this paper, we introduce a new integrity criterion based on the correlation quality of each channel. This quality assessment is computed from the correlation levels for each channel, all based on a single position and speed. Hence, as the so-called Direct Position Estimation (DPE), we exploit the joint behaviour of all channels to detect any incoherence at an upstream step of the processing. This Direct RAIM (D-RAIM) allows detecting possible integrity problems before it can be seen on a classical RAIM scheme that only exploits the outputs of each channel

    Integrity Monitoring Using ARAIM Algorithm in Urban Environment

    Get PDF
    Aviation is one of the earliest application of the Global Navigation Satellite System (GNSS). Since the early days of the Global Positioning System (GPS), satellite navigation has been an essential part of the aviation industry. Being a particular mean of transport, which usually involves a large number of human lives, civil aviation always requires a high level of reliability from the navigation system. Such requirement brings about the concept of integrity, which concerns about the consistency and reliability of a navigation system, is defined as the capability of the system to provide timely warning when it should not be used for navigation. The concept of integrity allows the standardization of guidance systems' performance, with the utmost purpose of keeping safety for every flight. The concept of integrity has gained interests in other GNSS applications as well, especially in those that also require high reliability from the navigation solution, such as Intelligent Transport System (ITS), railways. This leads to the necessity to adapt the integrity monitoring techniques, in particular the Receiver Autonomous Integrity Monitoring (RAIM) algorithms, to use in working conditions other than the typical airport areas, such as urban environment. As a matter of fact, adaptation of RAIM algorithms to urban environment requires a throughout analysis of the environmental difference of the working condition as well as the requirement of the intended applications. This thesis focuses on developing a Kalman filter-based Advanced RAIM (ARAIM) algorithm for urban environment, which is an adaptation of the conventional ARAIM algorithm for civil aviation. ARAIM algorithm is considered the next generation of RAIM, aiming at providing higher integrity performance for more stringent phase of flight. The first step is to survey the necessary changes to adapt ARAIM algorithm to urban scenario. Experimental study highlights the prerequisite of finding a noise model to represents the signal noise level in urban area. After a suitable noise model was found after a comparative study, the KF-based ARAIM algorithm was developed. This method evaluates the separation of state correction using different subsets of measurement to detect abnormalities as well as potential faulty satellites for exclusion. The proposed method was also validated using simulation and real data. Performance analysis results show that the proposed algorithm can effectively follows the changes of signal quality which is expected to occur frequently when moving in urban environment, confirming its suitability for integrity monitoring in urban environment

    Airborne Advanced Reconfigurable Computer System (ARCS)

    Get PDF
    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility

    Etude de la Performance du Contrôle Autonome d'Intégrité pour les Approches à Guidage Vertical

    Get PDF
    L'Organisation de l'Aviation Civile Internationale (OACI) a reconnu la navigation par satellite, Global Navigation Satellite System (GNSS), comme un élément clé des systèmes CNS/ATM (Communications, Navigation, and Surveillance / Air Traffic Management) et comme une base sur laquelle les Etats peuvent s'appuyer afin de délivrer des services de navigation aérienne performants. Mais l'utilisation des systèmes de navigation par satellites pour des applications de type aviation civile ne va pas sans répondre à des exigences en terme de précision, de continuité, d'intégrité et de disponibilité. Ces exigences opérationnelles liées aux différentes phases de vol requièrent pour les systèmes GNSS l'appui de moyens d'augmentation tels ceux utilisant des stations de surveillance sol pour vérifier la validité des signaux satellitaires et calculer des corrections ou ceux fonctionnant de manière autonome, tel le RAIM (Receiver Autonomous Integrity Monitoring). Ce dernier moyen est particulièrement intéressant car il engendre des coûts de mise en oeuvre réduits et il constitue à l'heure actuelle un moyen simple et efficace d'effectuer des approches de non précision. La prochaine mise en place du système de navigation européen Galileo ainsi que la modernisation du système historique américain GPS vont entrainer une nette amélioration, à la fois en terme de nombre et de qualité, des mesures satellitaires disponibles, laissant entrevoir la possible utilisation du RAIM pour des approches à guidage vertical, très intéressantes du point de vue opérationnel. Les différentes notions liées aux exigences de l'aviation civile sont définies dans le chapitre 2, notamment les différents critères de performance. Chaque phase de vol, et plus particulièrement chaque catégorie d'approche, y est également décrite ainsi que les niveaux de performance associés. Plusieurs types d'erreurs sont susceptibles d'affecter les mesures GNSS. Parmi elles il convient de distinguer les erreurs systématiques ou nominales des perturbations liées à une défaillance du système de navigation. Ces dernières peuvent être dues soit à un problème matériel survenant au niveau d'un des satellites ou du récepteur, soit d'une perturbation de l'environnement de propagation des signaux GNSS. Ces aspects sont adressés dans le chapitre 3 à l'issu duquel un modèle complet de mesure de pseudo distance GNSS est proposé. Les algorithmes de contrôle d'intégrité ont été développés pour détecter ces anomalies et exclure les mesures erronées de la solution de navigation. Il s'agit de méthodes uniquement basées sur la redondance des mesures satellite, éventuellement enrichies de celles d'autres capteurs, devant déterminer si les conditions sont réunies pour occasionner une erreur de position dépassant une limite spécifiée. Devant répondre à des exigences relatives aux performances décrites dans le chapitre 2, le choix du type d'algorithme de contrôle d'intégrité est laissé à l'utilisateur. Le chapitre 4 étudie plusieurs de ces méthodes et propose des innovations.l'algorithme de surveillance doivent être réexaminées. En effet, elles pourraient avoir une plus petite amplitude et des taux d'occurrence qui ne sont pas clairement définie pour le moment. C'est dans ce contexte que la Direction Générale de l'Aviation Civile a initié cette thèse dont l'objectif est d'évaluer le potentiel des algorithmes RAIM pour les approches à guidage vertical. On tachera de savoir dans quelle mesure l'augmentation du nombre de satellites et de l'amélioration de qualité de mesures de pseudodistance pourraient elles permettre l'utilisation de RAIM les approches à guidage vertical. Cette thèse est organisée de la manière suivante. Tout d'abord, le chapitre 2 présente les exigences de l'aviation civile quant à l'utilisation du GNSS. Cette section inclut une description des différentes phases de vol et plus particulièrement des phases d'approche. Elle introduit les concepts RNAV et RNP et définit également les critères de performance requis par l'OACI pour chaque les phases de vol. Finalement, les termes de détectionet d'exclusion de faute, plus spécifiques au contrôle autonome d'intégrité, sont définis. Le chapitre 3 a pour objectif de donner un modèle complet des mesures GNSS en adressant aussi bien le mode nominal et le mode défectueux, en tenant compte des pannes satellite et de l'effet des interférences. Le chapitre 4 a pour but d'étudier differents algorithmes RAIM mais certains aspects généraux comme l'estimation de la position d'utilisateur ou le calcul du plus petit biais sur une mesure de pseudo distance entrainant une erreur de positionnement sont d'abord présentés. La manière dont les exigences aviation civile et le modèle d'erreur sont interprétés afin de constituer les paramètres d'entrée des algorithmes RAIM est discutée au chapitre 5. Le chapitre 6 présente des résultats des simulations qui ont été effectuées pour évaluer la performance RAIM pour les approches à guidage vertical. Cette évaluation a été réalisée grâce à des simulations Matlab. Finalement, le chapitre 7 résume les principaux résultats de ce travail de doctorat et propose quelques pistes de reflexion quant à de futurs travaux. ABSTRACT : The International Civil Aviation Organization (ICAO) has recognized the Global Navigation Satellite System (GNSS) as a key element of the Communications, Navigation, and Surveillance / Air Traffic Management (CNS/ATM) systems as well as a foundation upon which States can deliver improved aeronautical navigation services. But civil aviation requirements can be very stringent and up to now, the bare systems cannot alone be used as a means of navigation. Therefore, in order to ensure the levels required in terms of accuracy, integrity, continuity of service and availability, ICAO standards define different architectures to augment the basic constellations. Some of them use control stations to monitor satellite signals and provide corrections, others only use measurement redundancy. This study focuses on this last type of augmentation system and more particularly on Receiver Autonomous Integrity Monitoring (RAIM) techniques and performance. RAIM is currently a simple and efficient solution to check the integrity of GNSS down to Non Precision Approaches. But the future introduction of new satellite constellations such as the European satellite navigation system Galileo or modernized Global Positioning System (GPS) will imply great improvements in the number as well as the quality of available measurements. Thus, more demanding phases of flight such as APproaches with Vertical guidance could be targeted using RAIM to provide integrity monitoring. This would result in some interesting safety, operational and environmental benefits. This Ph.D. evaluates the potential capacity of RAIM algorithms to support approach and landing phases of flight with vertical guidance. A thorough bibliographic study of civil aviation requirements is first presented; some candidate LPV200 signal in space performance requirements not yet included in the ICAO standards are also provided. To evaluate GNSS positioning performance, pseudorange measurements have to be modeled as precisely as possible and especially the different errors that affect them. The main sources of error are signal propagation delays caused by the ionosphere and the troposphere, space vehicle clock error, satellite position estimation error, multipath, receiver errors which main source is code tracking loop noise. Thus, these errors can be due to the space segment, the control segment or the user segment. Systematic errors are gathered in the fault free case measurement model; unusual errors, that may cause a dangerous positioning failure and that may have to be detected, are gathered in the faulty case measurement model. Finally, a complete model of pseudo range measurements, including interference effects and satellite failures, is given. A special attention is put on the User Equivalent Range Error (UERE) variance computation. Indeed, among all input parameters of RAIM availability simulator, UERE has, by far, the most significant impact on the estimated availability. Three distinct classes of RAIM algorithms are studied in this thesis. The Least Square Residual method in which the sum of the squares of the pseudorange residuals plays the rôle of the basic observable is first recalled. The Maximum Solution Separation method which is based on the observation of the separation between the position estimate generated by a fullset filter (using all the satellite measurements) and the position estimate generated by each one of the subset filters (each using all but one of the satellite measurements) is then discussed and an improved way of computing the associated protection level is proposed. Finally, a new promising method based on the Generalized Likelihood Ratio test is presented and several implementations are described. The way these different methods are implemented to take into account both civil aviation requirements and threat model is then detailed. In particular some methods to obtain the inner probability values that RAIM algorithms need to use are presented. Indeed, high level requirements interpretation for RAIM design is not clearly standardized. Finally simulations results are presented. They permit to evaluate RAIM ability to provide integrity monitoring for approaches with vertical guidance operations considering various scenarios. The main contributions of this thesis are a detailed computation of user equivalent range error variance, an analysis of the effect of interferences on pseudorange measurement, an adaptation of LSR RAIM algorithm to nominal biases, an improvement of MSS protection levels computation, the implementation of GLR algorithm as a RAIM including the computation of an analytical expression of the threshold that satisfies the false alarm probability and the prediction of the probability of missed detection, design of a sequential GLR algorithm to detect step plus ramp failure and an analysis of the amplitude of smallest single biases that lead to a positioning failure. Least Squared Residual, Maximum Solution Separation and constrained Generalized Likelihood Ratio RAIM availabilities have been computed for APVI and LPV200 approaches using both GPS L1/L5 and Galileo E1/E5b pseudorange measurements. It appears that both APV I and LPV200 (VAL=35m) operations are available using GPS/Galileo + RAIM to provide integrity as an availability of 100 % has been obtained for the detection function of the three studied algorithms. An availability of 100 % has also been obtained for the LSR exclusion function. On the contrary, LSR RAIM FDE availabilities seem not sufficient to have Galileo + RAIM or GPS +RAIM as a sole means of navigation for vertically guided approaches

    Integrity monitoring applied to the reception of GNSS signals in urban environments

    Get PDF
    L’intégrité des signaux GNSS est définie comme la mesure de la confiance qui peut être placée dans l’exactitude des informations fournies par le système de navigation. Bien que le concept d’intégrité GNSS a été initialement développé dans le cadre de l’aviation civile comme une des exigences standardisées par l’Organisation de l’Aviation Civile Internationale (OACI) pour l’utilisation du GNSS dans les systèmes de Communication, Navigation, et Surveillance / Contrôle du Trafic Aérien (CNS/ATM), un large éventail d’applications non aéronautiques ont également besoin de navigation par satellite fiable avec un niveau d’intégrité garanti. Beaucoup de ces applications se situent en environnement urbain. Le contrôle d’intégrité GNSS est un élément clé des applications de sécurité de la vie (SoL), telle que l’aviation, et des applications exigeant une fiabilité critique comme le télépéage basé sur l’utilisation du GNSS, pour lesquels des erreurs de positionnement peuvent avoir des conséquences juridiques ou économiques. Chacune de ces applications a ses propres exigences et contraintes, de sorte que la technique de contrôle d’intégrité la plus appropriée varie d’une application à l’autre. Cette thèse traite des systèmes de télépéage utilisant GNSS en environnement urbain. Les systèmes de navigation par satellite sont l’une des technologies que l’UE recommande pour le Service Européen de Télépéage Electronique (EETS). Ils sont déjà en cours d’adoption: des systèmes de télépéage pour le transport poids lourd utilisant GPS comme technologie principale sont opérationnels en Allemagne et en Slovaquie, et un système similaire est envisagé en France à partir de 2013. À l’heure actuelle, le contrôle d’intégrité GPS s’appuie sur des systèmes d´augmentation (GBAS, SBAS, ABAS) conçus pour répondre aux exigences de l’OACI pour les opérations aviation civile. C´est la raison pour laquelle cette thèse débute par une présentation du concept d’intégrité en aviation civile afin de comprendre les performances et contraintes des systèmes hérités. La thèse se poursuit par une analyse approfondie des systèmes de télépéage et de navigation GNSS en milieu urbain qui permets de dériver les techniques de contrôle d’intégrité GNSS les plus adaptées. Les algorithmes autonomes de type RAIM ont été choisis en raison de leur souplesse et leur capacité d´adaptabilité aux environnements urbains. Par la suite, le modèle de mesure de pseudodistances est élaboré. Ce modèle traduit les imprécisions des modèles de correction des erreurs d’horloge et d’ephemeride, des retards ionosphériques et troposphériques, ainsi que le bruit thermique récepteur et les erreurs dues aux multitrajets. Les exigences d’intégrité GNSS pour l’application télépéage sont ensuite dérivées à partir de la relation entre les erreurs de positionnement et leur effets dans la facturation finale. Deux algorithmes RAIM sont alors proposés pour l’application péage routier. Le premier est l’algorithme basé sur les résidus de la solution des moindres carrés pondérés (RAIM WLSR), largement utilisé dans l’aviation civile. Seulement, un des principaux défis de l’utilisation des algorithmes RAIM classiques en milieux urbains est un taux élevé d’indisponibilité causé par la mauvaise géométrie entre le récepteur et les satellites. C’est pour cela que un nouvel algorithme RAIM est proposé. Cet algorithme, basé sur le RAIM WLSR, est conçu de sorte à maximiser l’occurrence de fournir un positionnement intègre dans un contexte télépéage. Les performances des deux algorithmes RAIM proposés et des systèmes de télépéage associés sont analysés par simulation dans différents environnements ruraux et urbains. Dans tous les cas, la disponibilité du nouvel RAIM est supérieure à celle du RAIM WLSR. ABSTRACT : Global Navigation Satellite Systems (GNSS) integrity is defined as a measure of the trust that can be placed in the correctness of the information supplied by the navigation system. Although the concept of GNSS integrity has been originally developed in the civil aviation framework as part of the International Civil Aviation Organization (ICAO) requirements for using GNSS in the Communications, Navigation, and Surveillance / Air Traffic Management (CNS/ATM) system, a wide range of non-aviation applications need reliable GNSS navigation with integrity, many of them in urban environments. GNSS integrity monitoring is a key component in Safety of Life (SoL) applications such as aviation, and in the so-called liability critical applications like GNSS-based electronic toll collection, in which positioning errors may have negative legal or economic consequences. At present, GPS integrity monitoring relies on different augmentation systems (GBAS, SBAS, ABAS) that have been conceived to meet the ICAO requirements in civil aviation operations. For this reason, the use of integrity monitoring techniques and systems inherited from civil aviation in non-aviation applications needs to be analyzed, especially in urban environments, which are frequently more challenging than typical aviation environments. Each application has its own requirements and constraints, so the most suitable integrity monitoring technique varies from one application to another. This work focuses on Electronic Toll Collection (ETC) systems based on GNSS in urban environments. Satellite navigation is one of the technologies the directive 2004/52/EC recommends for the European Electronic Toll Service (EETS), and it is already being adopted: toll systems for freight transport that use GPS as primary technology are operational in Germany and Slovakia, and France envisages to establish a similar system from 2013. This dissertation begins presenting first the concept of integrity in civil aviation in order to understand the objectives and constraints of existing GNSS integrity monitoring systems. A thorough analysis of GNSS-based ETC systems and of GNSS navigation in urban environments is done afterwards with the aim of identifying the most suitable road toll schemes, GNSS receiver configurations and integrity monitoring mechanisms. Receiver autonomous integrity monitoring (RAIM) is chosen among other integrity monitoring systems due to its design flexibility and adaptability to urban environments. A nominal pseudorange measurement model suitable for integrity-driven applications in urban environments has been calculated dividing the total pseudorange error into five independent error sources which can be modelled independently: broadcasted satellite clock corrections and ephemeris errors, ionospheric delay, tropospheric delay, receiver thermal noise (plus interferences) and multipath. In this work the fault model that includes all non-nominal errors consists only of major service failures. Afterwards, the GNSS integrity requirements are derived from the relationship between positioning failures and toll charging errors. Two RAIM algorithms are studied. The first of them is the Weighted Least Squares Residual (WLSR) RAIM, widely used in civil aviation and usually set as the reference against which other RAIM techniques are compared. One of the main challenges of RAIM algorithms in urban environments is the high unavailability rate because of the bad user/satellite geometry. For this reason a new RAIM based on the WLSR is proposed, with the objective of providing a trade-off between the false alarm probability and the RAIM availability in order to maximize the probability that the RAIM declares valid a fault-free position. Finally, simulations have been carried out to study the performance of the different RAIM and ETC systems in rural and urban environments. In all cases, the availability obtained with the novel RAIM improve those of the standard WLSR RAIM

    Integration of ARAIM technique for integrity performance prediction, procedures development and pre-flight operations

    Get PDF
    Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is a new Aircraft Based Augmentation System (ABAS) technique, firstly presented in the two reports of the GNSS Evolutionary Architecture Study (GEAS). The ARAIM technique offers the opportunity to enable GNSS receivers to serve as a primary means of navigation, worldwide, for precision approach down to LPV-200 operation, while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS). Previous work analysed ARAIM performance, clearly showing the potential of this new architectures to provide the Required Navigation Performance down to LPV 200 approach procedures. However, almost all of the studies have been performed with respect to fixed points on a grid on the Earth’s surface, with full view of the sky, evaluating ARAIM performance from a geometrical point of view and using nominal performance in simulated scenarios which last several days. Though, the operational configuration was not examined; attitude changes from manoeuvres, obscuration by the aircraft body and shadowing from the surrounding environment could all affect the incoming signal from the GNSS constellations, leading to configurations that could adversely affect the real performance. In this research, ARAIM performances in simulated operational configurations are presented. Four different algorithms were developed that integrate the ARAIM technique for performance prediction analysis. These algorithms could usefully be implemented: • In the design of instrument approach procedures. The algorithms could be used to improve the procedure of the development of new instrument approaches, reducing time, effort and costs. • In the aircraft Flight Management Systems. The algorithms could support the pilots in the pre-flight briefing, highlighting possible integrity outage in advance and allowing them to select a different approach or making them aware of the need to utilise additional positioning systems. Increased awareness and better pre-flight planning could ultimately improve the safety of flights and contribute to the safe introduction of GNSS as a viable positioning method for instrument approach. The results showed that the aircraft attitude and the surrounding environment affect the performance of the ARAIM algorithm; each satellite lost generates a peak in the performance parameters that depends on the total number of satellites in view, their relative geometry and on the number of satellites lost at the same time. The main outcome of this research is the identification that the ideal scenario would be to have a tri-constellation system that provides at the same time high redundancy, reliability and increased safety margin

    Contrôle d intégrité appliqué à la réception des signaux GNSS en environnement urbain

    Get PDF
    L intégrité des signaux GNSS est définie comme la mesure de la confiance qui peut être placée dans l exactitude des informations fournies par le système de navigation. Bien que le concept d intégrité GNSS a été initialement développé dans le cadre de l aviation civile comme une des exigences standardisées par l Organisation de l Aviation Civile Internationale (OACI) pour l utilisation du GNSS dans les systèmes de Communication, Navigation, et Surveillance / Contrôle du Trafic Aérien (CNS/ATM), un large éventail d applications non aéronautiques ont également besoin de navigation par satellite fiable avec un niveau d intégrité garanti. Beaucoup de ces applications se situent en environnement urbain. Le contrôle d intégrité GNSS est un élément clé des applications de sécurité de la vie (SoL), telle que l aviation, et des applications exigeant une fiabilité critique comme le télépéage basé sur l utilisation du GNSS, pour lesquels des erreurs de positionnement peuvent avoir des conséquences juridiques ou économiques. Chacune de ces applications a ses propres exigences et contraintes, de sorte que la technique de contrôle d intégrité la plus appropriée varie d une application à l autre. Cette thèse traite des systèmes de télépéage utilisant GNSS en environnement urbain. Les systèmes de navigation par satellite sont l une des technologies que l UE recommande pour le Service Européen de Télépéage Electronique (EETS). Ils sont déjà en cours d adoption: des systèmes de télépéage pour le transport poids lourd utilisant GPS comme technologie principale sont opérationnels en Allemagne et en Slovaquie, et un système similaire est envisagé en France à partir de 2013. À l heure actuelle, le contrôle d intégrité GPS s appuie sur des systèmes d augmentation (GBAS, SBAS, ABAS) conçus pour répondre aux exigences de l OACI pour les opérations aviation civile. C est la raison pour laquelle cette thèse débute par une présentation du concept d intégrité en aviation civile afin de comprendre les performances et contraintes des systèmes hérités. La thèse se poursuit par une analyse approfondie des systèmes de télépéage et de navigation GNSS en milieu urbain qui permets de dériver les techniques de contrôle d intégrité GNSS les plus adaptées. Les algorithmes autonomes de type RAIM ont été choisis en raison de leur souplesse et leur capacité d adaptabilité aux environnements urbains. Par la suite, le modèle de mesure de pseudodistances est élaboré. Ce modèle traduit les imprécisions des modèles de correction des erreurs d horloge et d ephemeride, des retards ionosphériques et troposphériques, ainsi que le bruit thermique récepteur et les erreurs dues aux multitrajets. Les exigences d intégrité GNSS pour l application télépéage sont ensuite dérivées à partir de la relation entre les erreurs de positionnement et leur effets dans la facturation finale. Deux algorithmes RAIM sont alors proposés pour l application péage routier. Le premier est l algorithme basé sur les résidus de la solution des moindres carrés pondérés (RAIM WLSR), largement utilisé dans l aviation civile. Seulement, un des principaux défis de l utilisation des algorithmes RAIM classiques en milieux urbains est un taux élevé d indisponibilité causé par la mauvaise géométrie entre le récepteur et les satellites. C est pour cela que un nouvel algorithme RAIM est proposé. Cet algorithme, basé sur le RAIM WLSR, est conçu de sorte à maximiser l occurrence de fournir un positionnement intègre dans un contexte télépéage. Les performances des deux algorithmes RAIM proposés et des systèmes de télépéage associés sont analysés par simulation dans différents environnements ruraux et urbains. Dans tous les cas, la disponibilité du nouvel RAIM est supérieure à celle du RAIM WLSR.Global Navigation Satellite Systems (GNSS) integrity is defined as a measure of the trust that can be placed in the correctness of the information supplied by the navigation system. Although the concept of GNSS integrity has been originally developed in the civil aviation framework as part of the International Civil Aviation Organization (ICAO) requirements for using GNSS in the Communications, Navigation, and Surveillance / Air Traffic Management (CNS/ATM) system, a wide range of non-aviation applications need reliable GNSS navigation with integrity, many of them in urban environments. GNSS integrity monitoring is a key component in Safety of Life (SoL) applications such as aviation, and in the so-called liability critical applications like GNSS-based electronic toll collection, in which positioning errors may have negative legal or economic consequences. At present, GPS integrity monitoring relies on different augmentation systems (GBAS, SBAS, ABAS) that have been conceived to meet the ICAO requirements in civil aviation operations. For this reason, the use of integrity monitoring techniques and systems inherited from civil aviation in non-aviation applications needs to be analyzed, especially in urban environments, which are frequently more challenging than typical aviation environments. Each application has its own requirements and constraints, so the most suitable integrity monitoring technique varies from one application to another. This work focuses on Electronic Toll Collection (ETC) systems based on GNSS in urban environments. Satellite navigation is one of the technologies the directive 2004/52/EC recommends for the European Electronic Toll Service (EETS), and it is already being adopted: toll systems for freight transport that use GPS as primary technology are operational in Germany and Slovakia, and France envisages to establish a similar system from 2013. This dissertation begins presenting first the concept of integrity in civil aviation in order to understand the objectives and constraints of existing GNSS integrity monitoring systems. A thorough analysis of GNSS-based ETC systems and of GNSS navigation in urban environments is done afterwards with the aim of identifying the most suitable road toll schemes, GNSS receiver configurations and integrity monitoring mechanisms. Receiver autonomous integrity monitoring (RAIM) is chosen among other integrity monitoring systems due to its design flexibility and adaptability to urban environments. A nominal pseudorange measurement model suitable for integrity-driven applications in urban environments has been calculated dividing the total pseudorange error into five independent error sources which can be modelled independently: broadcasted satellite clock corrections and ephemeris errors, ionospheric delay, tropospheric delay, receiver thermal noise (plus interferences) and multipath. In this work the fault model that includes all non-nominal errors consists only of major service failures. Afterwards, the GNSS integrity requirements are derived from the relationship between positioning failures and toll charging errors. Two RAIM algorithms are studied. The first of them is the Weighted Least Squares Residual (WLSR) RAIM, widely used in civil aviation and usually set as the reference against which other RAIM techniques are compared. One of the main challenges of RAIM algorithms in urban environments is the high unavailability rate because of the bad user/satellite geometry. For this reason a new RAIM based on the WLSR is proposed, with the objective of providing a trade-off between the false alarm probability and the RAIM availability in order to maximize the probability that the RAIM declares valid a fault-free position. Finally, simulations have been carried out to study the performance of the different RAIM and ETC systems in rural and urban environments. In all cases, the availability obtained with the novel RAIM improve those of the standard WLSR RAIM.TOULOUSE-INP (315552154) / SudocSudocFranceF
    • …
    corecore