12 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Markov Decision Processes with Multiple Long-run Average Objectives

    Get PDF
    We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k limit-average functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the case of one limit-average function, both randomization and memory are necessary for strategies even for epsilon-approximation, and that finite-memory randomized strategies are sufficient for achieving Pareto optimal values. Under the satisfaction objective, in contrast to the case of one limit-average function, infinite memory is necessary for strategies achieving a specific value (i.e. randomized finite-memory strategies are not sufficient), whereas memoryless randomized strategies are sufficient for epsilon-approximation, for all epsilon>0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be epsilon-approximated in time polynomial in the size of the MDP and 1/epsilon, and exponential in the number of limit-average functions, for all epsilon>0. Our analysis also reveals flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, corrects the flaws, and allows us to obtain improved results

    Unifying Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes

    Get PDF
    We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.Comment: Extended journal version of the LICS'15 pape

    IST Austria Technical Report

    Get PDF
    We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee). Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem

    IST Austria Technical Report

    Get PDF
    We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee). Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem

    Power aware data and memory management for dynamic applications

    Get PDF
    In recent years, the semiconductor industry has turned its focus towards heterogeneous multiprocessor platforms. They are an economically viable solution for coping with the growing setup and manufacturing cost of silicon systems. Furthermore, their inherent flexibility perfectly supports the emerging market of interactive, mobile data and content services. The platform’s performance and energy depend largely on how well the data-dominated services are mapped on the memory subsystem. A crucial aspect thereby is how efficient data is transferred between the different memory layers. Several compilation techniques have been developed to optimally use the available bandwidth. Unfortunately, they do not take the interaction between multiple threads into account and do not deal with the dynamic behaviour of these novel applications. The main limitations of current techniques are outlined and an approach for dealing with them is introduced

    Power-efficient data management for dynamic applications

    Get PDF
    In recent years, the semiconductor industry has turned its focus towards heterogeneous multi-processor platforms. They are an economically viable solution for coping with the growing setup and manufacturing cost of silicon systems. Furthermore, their inherent flexibility also perfectly supports the emerging market of interactive, mobile data and content services. The platform's performance and energy depend largely on how well the data-dominated services are mapped on the memory subsystem. A crucial aspect thereby is how efficient data is transferred between the different memory layers. Several compilation techniques have been developed to optimally use the available bandwidth. Unfortunately, they do not take the interaction between multiple threads running on the different processors into account, only locally optimize the bandwidth nor deal with the dynamic behavior of these applications. The contributions of this chapter are to outline the main limitations of current techniques and to introduce an approach for dealing with the dynamic multi-threaded of our application domain

    Multi-Objective Iterative Learning Control: An Advanced ILC Approach for Application Diversity.

    Full text link
    While ILC has been applied to repetitive applications in manufacturing, chemical processing, and robotics, several key assumptions limit the extension of ILC to various applications. Conventional ILC focuses on improving the performance of a single metric, such as tracking performance through iterative updates of the time domain control input. The application range is limited to systems that satisfy the assumption of iteration invariance of the plant, reference signal, initial conditions, and disturbances. We aim to relax this assumption to gain significant advantages. More specifically we focus on relaxing the strict reference tracking requirement to address multiple performance metrics and define the stability bounds across temporal and spatial domains. The aim of this research is expanding the application space of ILC towards non-traditional applications. Chapter III presents an initial framework to provide the foundation for the multi-objective ILC. This framework is validated by simulation and experimental tests with a wheeled mobile robot. Chapter IV extends the initial framework from the temporal domain to the spatial domain. The initial framework is generalized to address four classifications of performance objectives. Stability and performance analysis for each classification is provided. Simulation results on a high-resolution additive manufacturing system validate the extended framework. For the generalized framework, we present a distributed approach in which additional objectives are considered separately. Chapter V evaluates the difference between this distributed approach, and a centralized approach in which the objectives are combined into a single matrix depending on the classification. Chapter VI extends the multi-objective ILC to incorporate a region-based tracking problem in which reference uncertainty is addressed through the development of a bounded region. A multi-objective region-to-region ILC is developed and validated by a simulation of a surveillance problem with an UAV and multiple unattended ground sensors. Comparisons with point-to-point ILC, region-to-region ILC, and multi-objective region-based ILC demonstrate the performance flexibility that can be achieved when leveraging the regions. This dissertation provides new approaches for relaxing the classical assumption of iteration invariant reference tracking. New stability and convergence analysis is provided, resulting in a design methodology for multi-objective ILC. These approaches are validated by simulation and experimental results.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120875/1/ingyulim_1.pd

    Improving the Efficiency of Energy Harvesting Embedded System

    Get PDF
    In the past decade, mobile embedded systems, such as cell phones and tablets have infiltrated and dramatically transformed our life. The computation power, storage capacity and data communication speed of mobile devices have increases tremendously, and they have been used for more critical applications with intensive computation/communication. As a result, the battery lifetime becomes increasingly important and tends to be one of the key considerations for the consumers. Researches have been carried out to improve the efficiency of the lithium ion battery, which is a specific member in the more general Electrical Energy Storage (EES) family and is widely used in mobile systems, as well as the efficiency of other electrical energy storage systems such as supercapacitor, lead acid battery, and nickel–hydrogen battery etc. Previous studies show that hybrid electrical energy storage (HEES), which is a mixture of different EES technologies, gives the best performance. On the other hand, the Energy Harvesting (EH) technique has the potential to solve the problem once and for all by providing green and semi-permanent supply of energy to the embedded systems. However, the harvesting power must submit to the uncertainty of the environment and the variation of the weather. A stable and consistent power supply cannot always be guaranteed. The limited lifetime of the EES system and the unstableness of the EH system can be overcome by combining these two together to an energy harvesting embedded system and making them work cooperatively. In an energy harvesting embedded systems, if the harvested power is sufficient for the workload, extra power can be stored in the EES element; if the harvested power is short, the energy stored in the EES bank can be used to support the load demand. How much energy can be stored in the charging phase and how long the EES bank lifetime will be are affected by many factors including the efficiency of the energy harvesting module, the input/output voltage of the DC-DC converters, the status of the EES elements, and the characteristics of the workload. In this thesis, when the harvesting energy is abundant, our goal is to store as much surplus energy as possible in the EES bank under the variation of the harvesting power and the workload power. We investigate the impact of workload scheduling and Dynamic Voltage and Frequency Scaling (DVFS) of the embedded system on the energy efficiency of the EES bank in the charging phase. We propose a fast heuristic algorithm to minimize the energy overhead on the DC-DC converter while satisfying the timing constraints of the embedded workload and maximizing the energy stored in the HEES system. The proposed algorithm improves the efficiency of charging and discharging in an energy harvesting embedded system. On the other hand, when the harvesting rate is low, workload power consumption is supplied by the EES bank. In this case, we try to minimize the energy consumption on the embedded system to extend its EES bank life. In this thesis, we consider the scenario when workload has uncertainties and is running on a heterogeneous multi-core system. The workload variation is represented by the selection of conditional branches which activate or deactivate a set of instructions belonging to a task. We employ both task scheduling and DVFS techniques for energy optimization. Our scheduling algorithm considers the statistical information of the workload to minimize the mean power consumption of the application while satisfying a hard deadline constraint. The proposed DVFS algorithm has pseudo linear complexity and achieves comparable energy reduction as the solutions found by mathematical programming. Due to its capability of slack reclaiming, our DVFS technique is less sensitive to small change in hardware or workload and works more robustly than other techniques without slack reclaiming
    corecore