
Unifying Two Views on Multiple Mean-Payo� Objectives
in Markov Decision Processes

Krishnendu Chatterjee and Zuzana Komarkova and Jan Kretinsky

Technical Report No. IST-2015-318-v1+1
Deposited at 12 Jan 2015 13:48
http://repository.ist.ac.at/318/1/main.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Unifying Two Views on Multiple Mean-Payoff
Objectives in Markov Decision Processes?

Krishnendu Chatterjee1, Zuzana Komárková2, and Jan Křet́ınský1

1 IST Austria
2 Masaryk University, Brno, Czech Republic

Abstract. We consider Markov decision processes (MDPs) with multi-
ple limit-average (or mean-payoff) objectives. There have been two dif-
ferent views: (i) the expectation semantics, where the goal is to optimize
the expected mean-payoff objective, and (ii) the satisfaction semantics,
where the goal is to maximize the probability of runs such that the
mean-payoff value stays above a given vector. We consider the problem
where the goal is to optimize the expectation under the constraint that
the satisfaction semantics is ensured, and thus consider a generalization
that unifies the existing semantics. Our problem captures the notion of
optimization with respect to strategies that are risk-averse (i.e., ensures
certain probabilistic guarantee). Our main results are algorithms for the
decision problem which are always polynomial in the size of the MDP. We
also show that an approximation of the Pareto-curve can be computed in
time polynomial in the size of the MDP, and the approximation factor,
but exponential in the number of dimensions. Finally, we present a com-
plete characterization of the strategy complexity (in terms of memory
bounds and randomization) required to solve our problem.

1 Introduction

MDPs and mean-payoff objectives. The standard models for dynamic stochas-
tic systems with both nondeterministic and probabilistic behaviors are Markov
decision processes (MDPs) [How60,Put94,FV97]. An MDP consists of a finite
state space, and in every state a controller can choose among several actions
(the nondeterministic choices), and given the current state and the chosen action
the system evolves stochastically according to a probabilistic transition function.
Every transition in an MDP is associated with a reward (or cost), and the basic
problem is to obtain a strategy (or policy) that resolves the choice of actions in
order to optimize the rewards obtained over the run of the system. An objec-
tive is a function that given a sequence of rewards over the run of the system
combines them to a single value. A classical and one of the most well-studied
objective in context of MDPs is the limit-average (or mean-payoff) objective
that assigns to every run the average of the rewards over the run.

? Preliminary report

Single vs multiple objectives. MDPs with single mean-payoff objectives have
been widely studied in the literature (see, e.g., [Put94,FV97]), with many ap-
plications ranging from computational biology, to analysis of security protocols,
randomized algorithms, or robot planning, to name a few [BK08,KNP02,DEKM98,KGFP09].
In verification of probabilistic systems, MDPs are widely used such as for con-
current probabilistic systems [CY95,Var85], probabilistic systems operating in
open environments [Seg95,dA97], and applied in diverse domains [BK08,KNP02].
However, in several application domains, there is not a single optimization goal,
but multiple, potentially dependent and conflicting goals. For example, in de-
signing a computer system, the goal is to maximize average performance while
minimizing average power consumption, or in an inventory management system,
the goal is to optimize several potentially dependent costs for maintaining each
kind of product. These motivate the study of MDPs with multiple mean-payoff
objectives, that has also been applied in several problems such as dynamic power
management [FKP12].

Two views. There exist two views in the study of MDPs with mean-payoff
objectives [BBC+14]. The traditional and classical view is the expectation se-
mantics, where the goal is to maximize (or minimize) the expectation of the
mean-payoff objective. There are numerous applications of MDPs with expecta-
tion semantics, such as in inventory control, planning, and performance evalua-
tion [Put94,FV97]. The alternative semantics is called the satisfaction semantics,
which given a mean-payoff value threshold sat and a probability threshold pr
asks for a strategy to ensure that the probability of runs such that the mean-
payoff value is at least sat is at least pr . In case of n reward functions, there
are two possible interpretations. Let sat and pr be two vectors of thresholds
of dimension k, and 0 ≤ pr ≤ 1 be a single threshold. The first interpretation
(namely, the conjunction interpretation) requires the satisfaction semantics in
each dimension 1 ≤ i ≤ n with thresholds sati and pri, respectively, (where vi
is the i-th component of vector v). The second interpretation (namely, the joint
interpretation) requires the satisfaction semantics with probabilistic threshold
value pr and the desired set of runs are runs where the mean-payoff value vector
is at least sat. The distinction of the two views (expectation vs satisfaction)
and their applicability in analysis of problems related to stochastic reactive sys-
tems has been discussed in details in [BBC+14]. While the joint interpretation
of satisfaction has already been introduced [BBC+14], here we consider also the
conjunctive interpretation, which was not considered in [BBC+14].

Our problem. In this work we consider a new problem that unifies the two
different semantics. Intuitively, the problem we consider asks to optimize the ex-
pectation while ensuring the satisfaction semantics. Formally, consider an MDP
with n reward functions, a probability threshold vector pr (or threshold pr for
joint interpretation), and a mean-payoff value threshold vector sat. We consider
the set of satisfaction strategies that ensure the satisfaction semantics. Then
the optimization of the expectation is considered with respect to the satisfac-
tion strategies. Note that if pr is 0, then the satisfaction strategies is the set
of all strategies and we obtain the traditional expectation semantics as a spe-

2

cial case. We also consider important special cases of our problem, depending
on whether there is a single reward (mono-reward) or multiple rewards (multi-
reward), and whether the probability threshold pr = 1 (qualitative criteria)
or the general case (quantitative criteria). Specifically, we consider four cases:
(1) Mono-qual: we have a single reward function and qualitative satisfaction
semantics; (2) Mono-quant: we have a single reward function and quantita-
tive satisfaction semantics; (3) Multi-qual: we have multiple reward functions
and qualitative satisfaction semantics; (4) Multi-quant: we have multiple reward
functions and quantitative satisfaction semantics. Note that for multi-qual case
the two interpretations (conjunction and joint) of the satisfaction semantics co-
incide, whereas in the multi-quan problem (which is the most general problem)
we consider both the conjunction as well as the joint interpretations.

Motivation. The motivation to study the problem we consider is twofold. First,
it presents a unifying approach that combines the two existing semantics for
MDPs. Second, it allows us to consider the problem of optimization along with
risk aversion. A risk-averse strategy must ensure certain probabilistic guarantee
on the payoff function. The notion of risk aversion is captured by the satisfaction
semantics, and thus the problem we consider captures the notion of optimiza-
tion under risk-averse strategies that provide probabilistic guarantee. The notion
of strong risk-aversion where the probability is treated as an adversary is con-
sidered in [BFRR14]; whereas we consider probabilistic (both qualitative and
quantitative) guarantee for risk aversion. We now illustrate our problem with
several examples.

Illustrative examples:

– For simple risk aversion, consider a single reward function modelling invest-
ment. Positive reward stands for profit, negative for loss. We aim at maxi-
mizing the expected long-run average while guaranteeing that it is positive
with at least 95%. This is an instance of mono-quant with pr = 0.95, sat = 0.

– For more dimensions, consider the example [Put94, Problems 6.1, 8.17]. A
vendor assigns to customers either a low or a high rank. Further, there is a
decision vendor makes each year to send them a catalogue or not. Depending
on their rank and on receiving a catalogue, they spend different amounts
and also can change their rank. The aim is to maximize the expected profit
provided the catalogue is not sent too often. This is an instance of multi-
qual. Further, we can extend this example to only require that the catalogue
is not sent too often with 95% probability, but 5% best customers may still
receive many catalogues (instance of multi-quant).

– The following is again an instance of multi-quant. A gratis service for dowload-
ing is offered as well as a premium one. For each we model the throughput
as rewards r1, r2. Expected throughput 1Mbps is guaranteed from the gratis
service. For a premium service, not only we have a higher expectation of
10Mbps, but also 95% of the connections are guaranteed to run on at least
5Mbps. In order to keep this guarantee, we may need to temporarily hire
resources from a cloud, whose cost is modelled as a reward r3. We now want
to maximize the expectation of p2 · r2 − p3 · r3 where p2 is the price per Mb

3

at which the premium service is sold and p3 is the price at which additional
servers can be hired.

The basic computational questions. In MDPs with multiple mean-payoff
objectives, different strategies may produce incomparable solutions. Thus, there
is no “best” solution in general. Informally, the set of achievable solutions is the
set of all vectors v such that there is a strategy that ensures the satisfaction
semantics and that the expected mean-payoff value vector under the strategy
is at least v. The “trade-offs” among the goals represented by the individual
mean-payoff objectives are formally captured by the Pareto curve, which con-
sists of all maximal tuples (with respect to componentwise ordering) that are
not strictly dominated by any achievable solution. Pareto optimality has been
studied in cooperative game theory [Owe95] and in multi-criterion optimization
and decision making in both economics and engineering [Kos88,YC03,SCK04].

We study the following fundamental questions related to the properties of
strategies and algorithmic aspects in MDPs:

– Strategy complexity: What type of strategies is sufficient (and necessary) for
achievable solutions?

– Algorithmic complexity: What is the complexity to decide whether a given
vector represents an achievable solution, and if the answer is yes, then com-
pute a witness strategy?

– Pareto-curve computation: Is it possible to compute an approximation of the
Pareto curve?

Our contributions. We provide comprehensive answers to the above questions.
The main highlights of our contributions are:

– Strategy complexity. It is known that for both expectation and satisfaction
semantics with single reward deterministic memoryless1 strategies are suffi-
cient. We show this carries over in the mono-qual case only. In contrast, for
mono-quant both randomization and memory is necessary, and we establish
that the memory size is dependent on the MDP; the result also applies to the
expectation problem of [BBC+14], where no lower bound was given. How-
ever, we also show that only a restricted form of randomization (so-called
deterministic update) is necessary even for multi-quant, thus improving the
result for the satisfaction problem of [BBC+14]. A complete picture of the
strategy complexity, and improvement over previous results is given in Ta-
ble 1 and Remark 2 on p. 24.

– Algorithmic complexity. We present algorithms for deciding whether a given
vector is an achievable solution, and all our algorithms are polynomial in
the size of the MDP. Moreover, they are polynomial even in the number of
dimensions, except for multi-quant with conjunction interpretation where it
is exponential.

1 A strategy is memoryless if it is independent of the history, but depends only on the
current state. A strategy that is not deterministic is called randomized

4

– Pareto-curve computation. We show that in all cases with multiple rewards
an ε-approximation of the Pareto curve can be achieved in time polyno-
mial in the size of the MDP, exponential in the number of dimensions, and
polynomial in 1

ε , for ε > 0.

Technical contributions. In the study of MDPs (with single or multiple re-
wards), the solution approach is often by characterizing the solution as a set of
linear constraints. Similar to the previous works [CMH06,EKVY08,FKN+11,BBC+14]
we also obtain our results by showing that the set of achievable solutions can be
represented by a set of linear constraints, and from the linear constraints witness
strategies for achievable solutions can be constructed. However, while previous
work on the satisfaction semantics [BBC+14,RRS14] reduces the problem to
calling linear programming for each maximal end-component and another linear
program putting partial results together, we unify the solution approaches for
expectation and satisfaction and provide one complete linear program for the
whole problem. This in turn allows us to optimize the expectation while guaran-
teeing satisfaction. Further, this approach immediately yields a linear program
where both conjunction and joint interpretations are combined, and we can op-
timize any linear combination of expectations. For details, see Remark 1. The
technical device to obtain one linear program is to split the standard variables
into several, depending on which subsets of constraints they help to achieve. This
causes technical complications that have to be dealt with methods of conditional
probability.

Related work. The study of Markov decision processes with multiple expec-
tation objectives has been initiated in the area of applied probability theory,
where it is known as constrained MDPs [Put94,Alt99]. The attention in the
study of constrained MDPs has been focused mainly to restricted classes of
MDPs, such as unichain MDPs where all states are visited infinitely often un-
der any strategy. Such restriction guarantees the existence of memoryless opti-
mal strategies. The more general problem of MDPs with multiple mean-payoff
objectives was first considered in [Cha07] and a complete picture was pre-
sented in [BBC+14]. The expectation and satisfaction semantics was considered
in [BBC+14], and our work unifies the two different semantics for MDPs. For
general MDPs, [CMH06,CFW13] studied MDPs with multiple discounted re-
ward functions. MDPs with multiple qualitative ω-regular specifications were
studied in [EKVY08]. It was shown that the Pareto curve can be approximated
in polynomial time; the algorithm reduces the problem to MDPs with mul-
tiple reachability specifications, which can be solved by multi-objective linear
programming [PY00]. In [FKN+11], the results of [EKVY08] were extended to
combine ω-regular and expected total reward objectives. The problem of multi-
ple percentile queries (conjunctive satisfaction) has been considered for various
objectives, such as mean-payoff, limsup, liminf, shortest path in [RRS14]. How-
ever, [RRS14] does not consider optimizing the expectation, whereas we consider
maximizing expectation along with satisfaction semantics. The notion of risks
has been considered in MDPs with discounted objectives [WL99], where the goal
is to maximize (resp., minimize) the probability (risk) that the expected total

5

discounted reward (resp., cost) is above (resp., below) a threshold. The notion of
strong risk aversion, where for risk the probabilistic choices are treated as an ad-
versary was considered in [BFRR14]. In [BFRR14] the problem was considered
for single reward for mean-payoff and shortest path. In contrast, we consider risk
aversion with probabilistic guarantee, for multiple reward functions. Moreover,
since [BFRR14] generalizes mean-payoff games, no polynomial-time solution is
known, whereas in our case, we present polynomial-time algorithms for the sin-
gle reward case and in almost all cases of multiple rewards (see the second item
of our contributions).

2 Preliminaries

2.1 Basic definitions

We mostly follow the basic definition of [BBC+14] with only minor deviations.
We use N,Q,R to denote the sets of positive integers, rational and real numbers,
respectively. For n ∈ N, we denote [n] = {1, . . . , n}. Given two vectors v,w ∈ Rk,
where k ∈ N, we write v ≥ w iff vi ≥ wi for all 1 ≤ i ≤ k. The set of all
distributions over a countable set X is denoted by dist(X). Further, d ∈ dist(X)
is Dirac if d(x) = 1 for some x ∈ X.

Markov chains. A Markov chain is a tupleM = (L,P, µ) where L is a countable
set of locations, P : L → dist(L) is a probabilistic transition function, and
µ ∈ dist(L) is the initial probability distribution.

A run in M is an infinite sequence ω = `1`2 · · · of locations, a path in
M is a finite prefix of a run. Each path w in M determines the set Cone(w)
consisting of all runs that start with w. To M we associate the probability
space (Runs,F ,P), where Runs is the set of all runs in M , F is the σ-field
generated by all Cone(w), and P is the unique probability measure such that

P(Cone(`1, . . . , `k)) = µ(`1) ·
∏k−1
i=1 P (`i)(`i+1).

Markov decision processes. A Markov decision process (MDP) is a tuple
G = (S,A,Act , δ, ŝ) where S is a finite set of states, A is a finite set of actions,
Act : S → 2A \ {∅} assigns to each state s the set Act(s) of actions enabled at s
so that {Act(s) | s ∈ S} is a partitioning of A, δ : A→ dist(S) is a probabilistic
transition function that given a state s and an action a ∈ Act(s) enabled at
s gives a probability distribution over the successor states, and ŝ is the initial
state. Note that we consider that every action is enabled in exactly one state.

A run in G is an infinite alternating sequence of states and actions ω =
s1a1s2a2 · · · such that for all i ≥ 1, ai ∈ Act(si) and δ(ai)(si+1) > 0. We denote
by RunsG the set of all runs in G. A path of length k in G is a finite prefix
w = s1a1 · · · ak−1sk of a run in G.

Strategies and plays. Intuitively, a strategy in an MDP G is a “recipe” to
choose actions. Usually, a strategy is formally defined as a function σ : (SA)∗S →
dist(A) that given a finite path w, representing the history of a play, gives a
probability distribution over the actions enabled in the last state. In this paper,
we adopt a somewhat different (though equivalent—see [BBC+14, Section 6])

6

definition, which is more convenient for our setting. Let M be a countable set of
memory elements. A strategy is a triple σ = (σu, σn, α), where σu : A×S×M→
dist(M) and σn : S×M→ dist(A) are memory update and next move functions,
respectively, and α is an initial distribution on memory elements. We require
that for all (s,m) ∈ S × M, the distribution σn(s,m) assigns a positive value
only to actions enabled at s.

A play of G determined by a strategy σ is a Markov chain Gσ where the set
of locations is S×M×A, the initial distribution µ is zero except for µ(ŝ,m, a) =
α(m) · σn(ŝ,m)(a), and

P (s,m, a)(s′,m′, a′) = δ(a)(s′) · σu(a, s′,m)(m′) · σn(s′,m′)(a′)

Hence, Gσ starts in a location chosen randomly according to α and σn. In a
current location (s,m, a), the next action to be performed is a, hence the prob-
ability of entering s′ is δ(a)(s′). The probability of updating the memory to
m′ is σu(a, s′,m)(m′), and the probability of selecting a′ as the next action is
σn(s′,m′)(a′). Note that these choices are independent, and thus obtain the
product above. The induced probability measure is denoted by Pσ and “al-
most surely” or “almost all runs” refers to happening with probability 1 ac-
cording to this measure. The respective expected value of a random variable X
is Eσ[f] =

∫
Runs

f dPσ. For t ∈ N, random variables St, At return s, a, respec-
tively, where (s,m, a) is the t-th location on the run.

Strategy types. In general, a strategy may use infinite memory, and both σu
and σn may randomize. The strategy is

– deterministic-update, if α is Dirac and the memory update function gives a
Dirac distribution for every argument;

– deterministic, if it is deterministic-update and the next move function gives
a Dirac distribution for every argument.

A stochastic-update strategy is a strategy that is not necessarily deterministic-
update and randomized strategy is a strategy that is not necessarily determin-
istic. We also classify the strategies according to the size of memory they use.
Important subclasses are memoryless strategies, in which M is a singleton, n-
memory strategies, in which M has exactly n elements, and finite-memory strate-
gies, in which M is finite.

End components. A set T ∪ B with ∅ 6= T ⊆ S and B ⊆
⋃
t∈T Act(t) is an

end component of G if (1) for all a ∈ B, whenever δ(a)(s′) > 0 then s′ ∈ T ; and
(2) for all s, t ∈ T there is a path ω = s1a1 . . . ak−1sk such that s1 = s, sk = t,
and all states and actions that appear in ω belong to T and B, respectively. An
end component T ∪B is a maximal end component (MEC) if it is maximal with
respect to subset ordering. Given an MDP, the set of MECs is denoted by MEC.

For a finite-memory strategy σ, a bottom strongly connected component (BSCC)
of Gσ is a subset of locations W ⊆ S ×M×A such that (i) for all `1 ∈ W and
`2 ∈ S ×M×A, if there is a path from `1 to `2 then `2 ∈ W , and (ii) for all
`1, `2 ∈ W we have a path from `1 to `2. Every BSCC W determines a unique
end component {s | (s,m, a) ∈W}∪{a | (s,m, a) ∈W} of G, and we sometimes
do not strictly distinguish between W and its associated end component.

7

2.2 Problem statement

In order to define our problem, we first briefly recall how long-run average can
be defined. Let G = (S,A,Act , δ, ŝ) be an MDP, n ∈ N and r : A → Qn an
n-dimensional reward function. Since the random variable given by the limit-
average function limT→∞

1
T

∑T
t=1 r(At) may be undefined for some runs, we

consider maximizing the respective pointwise limit inferior:

lrinf(r) = lim inf
T→∞

1

T

T∑
t=1

r(At)

i.e. lrinf(r)(ω)i = lim infT→∞
1
T

∑T
t=1 r(At(ω))i for each i ∈ [n]. Similarly, we

could define lrsup(r) = lim supT→∞
1
T

∑T
t=1 r(At). However, maximizing limit

superior is less interesting, see [BBC+14].
This paper is concerned with the following tasks:

Realizability (multi-quant-conjunctive): Given an MDP, n ∈ N, r : A→
Qn, exp ∈ Rn, sat ∈ Rn,pr ∈ [0, 1]n, decide whether there is a strategy σ
such that ∀i ∈ [n]

• Eσ[lrinf(r)i] ≥ expi. (EXP)

• Pσ[lrinf(r)i ≥ sati] ≥ pri, (conjunctive-SAT)

Witness strategy synthesis: If realizable, construct a strategy satisfying
the requirements.

ε-witness strategy synthesis: If realizable, construct a strategy satisfying
the requirements with exp− ε · 1 and sat− ε · 1.

We are also interested in (multi-quant-joint) a variant of (multi-quant-
conjunctive) where (conjunctive-SAT) is replaced by

Pσ[lrinf(r) ≥ sat] ≥ pr (joint-SAT)

for pr ∈ [0, 1]. Further, we consider the following special cases:

(multi-qual) pr = 1
(mono-quant) n = 1
(mono-qual) n = 1,pr = 1

The relationship between the problems is depicted in Fig. 1.

2.3 Example

Example 1 (running). We illustrate (multi-quant-conjunctive) with an
MDP of Fig. 2 with n = 2, rewards as depicted and exp = (1.1, 0.5), sat =
(0.5, 0.5),pr = (0.8, 0.8). Observe that rewards of actions ` and r are irrelevant
as these action can almost surely be taken only finitely many times.

8

(multi-quant-conjunctive) (multi-quant-joint)

(multi-qual) (mono-quant)

(mono-qual)

Fig. 1: Relationship of the defined problems with lower problems being special-
izations of the higher ones

s

u v w

`

0.5

a, r(a) = (4, 0)

0.5
r

b, r(b) = (1, 0)

c, r(c) = (0, 0)

d, r(d) = (0, 1)

e, r(e) = (0, 0)

Fig. 2: An MDP with two-dimensional rewards

The problem is realizable and the witness strategy has the following proper-
ties. Firstly, due to pr, with at least 0.6 runs have to jointly exceed the value
thresholds (0.5, 0.5). This is only possible in the right MEC by playing each b
and d half of the time and switching between them with a decreasing frequency,
so that the frequency of c, e is in the limit 0. Secondly, with 0.2 we reach the
left MEC and play a. Thirdly, with 0.2 we reach again the right MEC but only
play d with frequency 1. In order to play these three kinds of runs, in the first
step in s we take ` with probability 0.4 and r with 0.6, and if we return back
to s we play r with probability 1. If we reach the MEC on the right, we toss a
biased coin and with 0.25 we go to w and play the third kind of runs, and with
0.75 play the first kind of runs.

Observe that although both the expectation and value threshold for the sec-
ond reward are 0.5, the only solution is not to play all runs with this rewards,
but some with a lower one and some with a higher one. Also note that each of the
three types of runs must be present in any witness strategy. Most importantly,
in the MEC state w we have to play in two different ways, depending on which
subset of value thresholds we intend to satisfy.

9

3 Our solution

In this section, we briefly recall the solution of a previously considered problem
and show our solution to the general (multi-quant-conjunctive) realizability
problem, along with an overview of the correctness proof. For (multi-quant-
joint) and a detailed analysis of the special cases and the respective complexities,
see Section 4.

3.1 Previous results

In [BBC+14], a solution to a special case with only the (EXP) constraint has
been given. The existence of a witnessing strategy was shown equivalent to the
existence of a solution of the linear program in Fig. 3.

Requiring all variables ya, ys, xa for a ∈ A, s ∈ S be non-negative, the program is the
following:

1. transient flow: for s ∈ S

1s0(s) +
∑
a∈A

ya · δ(a, s) =
∑

a∈Act(s)

ya + ys

2. almost-sure switching to recurrent behaviour:∑
s∈C∈MEC

ys = 1

3. probability of switching in a MEC is the frequency of using its actions: for C ∈ MEC∑
s∈C

ys =
∑
a∈C

xa

4. recurrent flow: for s ∈ S ∑
a∈A

xa · δ(a, s) =
∑

a∈Act(s)

xa

5. expected rewards: ∑
a∈A

xa · r ≥ exp

Fig. 3: Linear program of [BBC+14] for (EXP)

Intuitively, xa is the expected frequency of using a on the long run; Equation
4 thus expresses the flow in MECs and Equation 5 the expected long run reward.
Variables ya are the expected number of using a until we switch to the recurrent
behaviour in MECs and ys is the probability of this switch upon reaching s;
Equation 1 thus expresses the flow before switching. To relate these variables,

10

Equation 3 states that the probability to switch within a given MEC is the
same whether viewed from the transient or recurrent flow perspective. Actually,
one could eliminate variables ys and use directly xa in Equation 1 and leave out
Equation 3 completely, in the spirit of [Put94]. However, the form with explicit ys
is sometimes more convenient. Finally, Equation 2 states that switching happens
almost surely. Note that summing Equation 1 over all s ∈ S yields

∑
s∈S ys = 1.

Since ys can be shown to equal 0 for state s not in MEC, Equation 2 is redundant.
Further, apart from considering (EXP) separately, [BBC+14] also considers

the constraint (joint-SAT) separately. While the former was solved using the
linear program above, the latter required a reduction to one linear program per
each MEC and another one to combine the results. We shall provide one linear
program for the general problems, thus unifying the results.

3.2 Our general solution

There are two main tricks to incorporate the satisfaction semantics. The first
one is to ensure that a flow exceeds the value threshold:

Solution to (multi-qual) When the additional constraint (SAT) is added so
that almost all runs satisfy lrinf(r) ≥ sat, then the linear program of Fig. 3 shall
be extended with the following additional equation:

6. almost-sure satisfaction: for C ∈ MEC∑
a∈C

xa · r(a) ≥
∑
a∈C

xa · sat

Note that xa represents the absolute frequency of playing a (not relative
within the MEC). Intuitively, Equation 6 thus requires in each MEC the average
reward be at least sat. Here we rely on the non-trivial fact proved later, that in
a MEC, actions can be played on almost all runs with the given frequencies for
any flow.

The second trick ensures that each conjunct in the satisfaction constraint can
be handled separately and the probability threshold checked.

Solution to (multi-quant) When each value threshold sati comes with a non-
trivial probability threshold pri, some runs may and some may not have the
long-run reward exceeding sati. In order to speak about each group, we split
the set of runs for each reward into parts which do and which do not exceed the
threshold.

Technically, we keep Equations 1–5 as well as 6, but split xa into xa,N for
N ⊆ [n], where N describes the subset of exceeded thresholds; similarly for ys.
The linear program L then takes the form displayed in Fig. 4.

Intuitively, only the runs in the appropriate “N-class” are required in Equa-
tion 6 to have rewards exceeding the threshold. However, only the appropriate
“N-classes” are considered for surpassing the probabilistic threshold in Equa-
tion 7.

11

Requiring all variables ya, ys,N , xa,N for a ∈ A, s ∈ S,N ⊆ [n] be non-negative, the
program is the following:

1. transient flow: for s ∈ S

1s0(s) +
∑
a∈A

ya · δ(a, s) =
∑

a∈Act(s)

ya +
∑
N⊆[n]

ys,N

2. almost-sure switching to recurrent behaviour:∑
s∈C∈MEC
N⊆[n]

ys,N = 1

3. probability of switching in a MEC is the frequency of using its actions: for
C ∈ MEC, N ⊆ [n] ∑

s∈C

ys,N =
∑
a∈C

xa,N

4. recurrent flow: for s ∈ S,N ⊆ [n]∑
a∈A

xa,N · δ(a, s) =
∑

a∈Act(s)

xa,N

5. expected rewards: ∑
a∈A,
N⊆[n]

xa,N · r(a) ≥ exp

6. commitment to satisfaction: for C ∈ MEC, N ⊆ [n], i ∈ N∑
a∈C

xa,N · r(a)i ≥
∑
a∈C

xa,N · sati

7. satisfaction: for i ∈ [n] ∑
a∈A,

N⊆[n]:i∈N

xa,N ≥ pri

Fig. 4: Linear program L for (multi-quant-conjunctive)

12

Theorem 1. Given a realizability problem, the respective system L satisfies the
following:

1. The system L is constructible and solvable in time polynomial in the size of
G and exponential in n.

2. Every witness strategy induces a solution to L.
3. Every solution to L effectively induces a witness strategy.

Example 2 (running). The linear program L for Example 1 is depicted in full
in Appendix ??. Here we spell out only several points: Equation 1 for state s

1 + 0.5y` = y` + yr + ys,∅ + ys,{1} + ys,{2} + ys,{1,2} (1)

expresses the Kirchhoff’s law for the flow through the initial state. Equation 6
for the MEC C = {v, w, a, b, c, d}, N = {1, 2}, i = 1

xb,{1,2} · 1 ≥ (xb,{1,2} + xc,{1,2} + xd,{1,2} + xe,{1,2}) · 0.5 (2)

expresses that runs ending up in C and satisfying both satisfiability thresholds
have to use action b at least half of the time. The same holds for d and thus
actions c, e must be played with zero frequency on these runs. Equation 7 for
i = 1 sums up the use of all action on runs that have committed to exceed the
probability threshold either for the first reward, or for the first and the second
reward.

3.3 Proof overview

The first point follows immediately from the syntax of L and the existence of
a polynomial algorithm for linear programming [Kar84].

The second point is proven in Appendix A. The proof method roughly follows
that of [BBC+14, Proposition 4.5]. Given a winning strategy σ, we construct
values for variables so that a valid solution is obtained. The technical details can
be found in Section 3.5 and Appendix A.

The proof of [BBC+14] sets the values of xa to be the expected frequency of
using a by σ, i.e.

freqσ(a) := lim
T→∞

1

T

T∑
t=1

Pσ[At = a]

Since this Cesaro limit may not be defined, a suitable value f(a) between the
limit inferior and superior has to be taken. In contrast to the approach of
[BBC+14], we need to distinguish among runs exceeding various subsets of the
value thresholds sati, i ∈ [n]. For N ⊆ [n], we call a run N -good if lrinf(r)i ≥
sati for exactly i ∈ N . Now instead of examining frequencies f(a) of each action
a, we examine frequencies fN (a) of action a on N-good runs separately, for each
N .

13

Example 3 (running). The strategy of Example 1 induces the following x-
values. For instance, action a is played with a frequency 1 on runs of measure
0.2, hence xa,{1} = 0.2 and xa,∅ = xa,{2} = xa,{1,2} = 0. Action d is played with
frequency 0.5 on runs of measure 0.6 exceeding both value thresholds, and with
frequency 1 on runs of measure 0.2 exceeding only the second value thresholds.
Consequently, xd,{1,2} = 0.3 and xd,{2} = 0.2 whereas xd,∅ = xd,{1} = 0.

Values for y-variables are derived from the expected number of using actions
during the “transient” behavior of the strategy. Since the expectation may be
infinite in general, an equivalent strategy is constructed, which is memoryless in
the transient part, but switches to the recurrent behaviour in the same way. Then
the expectations are finite and the result of [EKVY08] yields values satisfying
the transient flow equation. Further, similarly as for x-values, instead of simply
switching to recurrent behaviour in a particular MEC, we consider switching in
a MEC and the set N for which the following recurrent behaviour is N -good.

Example 4 (running). The strategy of Example 1 plays in s for the first time
` with probability 0.4 and r with 0.6, and next time r with probability 1. This is
equivalent to a memoryless strategy playing ` with 1/3 and r with 2/3. Indeed,
both ensure reaching the left MEC with 0.2 and the right one with 0.8. Therefore,
we the expected number of playing r is

yr =
2

3
+

1

6
· 2

3
+

(
1

6

)2

· 2

3
+ · · · = 5

6

The values yu,{1} = 0.2, yv,{1,2} = 0.6, yv,{2} = 0.2 are given by the probability
measures of each “kind” (see Ex. 1) of runs.

The third point is proven in Appendix B. Given a solution to L, we construct
a winning strategy σ, which has a particular structure. The technical details
can be found in Section 3.6 and Appendix B. The general pattern follows the
proof method of [BBC+14, Proposition 4.5], but there are several important
differences.

First, a strategy is designed to behave in a MEC so that the frequencies
of actions match the x-values. The structure of the proof differs here and we
focus on underpinning the following key principle. Even if the flow described
by x-variables has several disconnected components within the MEC, and thus
actions connecting them must not be played with positive frequency, there are
still strategies that on almost all runs play actions of all components with ex-
actly the given frequencies. The trick is to play the “connecting” actions with
an increasingly negligible frequency. As a result, the strategy induces only one
BSCC, which simplifies matters and allows us to prove that stochastic update is
not necessary. Therefore, the deterministic update is sufficient, in particular also
for (joint-SAT), which improves the strategy complexity known from [BBC+14].

Second, the construction of the recurrent part of the strategy as well as
switching to it has to reflect again the different parts of L for different N ,
resulting in N -good behaviours.

14

Example 5 (running). A solution with xb,{1,2} = 0.3, xd,{1,2} = 0.3 induces
two disconnected flows. Each is an isolated loop, yet we can play a strategy that
plays both actions exactly half of the time. We discuss this in Section 3.6 where
we investigate the construction of the strategy from the solution in more details,
necessary for later complexity discussion.

3.4 Important aspects of our approach and its consequences

Remark 1. We now explain some important conceptual aspects of our result. The
previous proof idea from [BBC+14] is as follows: (1) The problem for expecta-
tion semantics is solved by a linear program. (2) The problem for satisfaction
semantics is solved as follows: each MEC is considered, solved separately using
a linear program, and then a reachability problem is solved using a different
linear program. In comparison, our proof has two conceptual steps. Since our
goal is to optimize the expectation (which intuitively requires a linear program),
the first step is to come up with a single linear program for the satisfaction
semantics. The second step is to come up with a linear program that unifies the
linear program for expectation semantics and the linear program for satisfaction
semantics, and presents a solution to our problem.

Since our solution captures all the frequencies and percentiles within one
linear program, we can work with all the flows at once. This has several conse-
quences:

– While all the hard constraints are given as a part of the problem, we can
easily find maximal solution with respect to e.g. weighted reward expecta-
tion, i.e. w · lrinf(r), as it can be expressed as w ·

∑
a,N xa,N · r(a), where w

is the vector of weights for each reward dimension. This is also relevant for
the construction of the Pareto curve.

– We can easily express constraints for multiple and joint constraints Pσ
[∧

ki
lrinf(rki) ≥ pr

]
by adding a copy of Equation 7 for arbitrary subsets N of constraints.

– The number of variables used in the linear program immediately yields an
upper bound on the computational complexity of various subclasses of the
general problem. Several polynomial bounds are proven in Section 4.

3.5 Technical proof of Theorem 1, item 2

We prove that every witness strategy % induces a solution to L. We start with
constructing values for variables xa. In general, the frequencies freq%(a) of the
actions may not be well defined, because the defining limits may not exist. Fur-
ther, it may be unavoidable to have different frequencies for several sets of runs
of positive measure. There are two tricks to overcome this difficulty. Firstly, we
partition the runs into several classes depending on which parts of the objective
they achieve. Secondly, within each class we pick suitable values lying between
lrinf(r) and lrsup(r) of these runs.

Formally, for N ⊆ [n], let

ΩN = {ω ∈ Runs | ∀i ∈ N : lrinf(r)i(ω) ≥ sat(i)∧∀i /∈ N : lrinf(r)i(ω) < sat(i)}

15

Then ΩN for N ⊆ [n] form a paritioning of Runs. We define fN (a), lying between

lim infT→∞
1
T

∑T
t=1 P%[At = a | ΩN] and lim supT→∞

1
T

∑T
t=1 P%[At = a | ΩN], which

can be safely substituted for xa,N in L. Since every infinite sequence contains
an infinite convergent subsequence, there is an increasing sequence of indices,
T0, T1, . . ., such that the following limit exists for each action a ∈ A

fN (a) := lim
`→∞

1

T`

T∑̀
t=1

P%[At = a | ΩN] · P%[ΩN]

We set xa,N := fN (a) for all a ∈ A and N ⊆ [n] (where xa,N = 0 whenever
P%[ΩN] = 0). In Appendix A, we prove Equation 4–7 are satisfied.

Now we set the values for yχ, χ ∈ A ∪ S × 2[n], One could obtain the values
yχ using the methods of [Put94, Theorem 9.3.8], which requires the machinery
of deviation matrices. Instead, we can first simplify the behaviour of % in the
transient part to memoryless using [BBC+14] and then obtain yχ directly, like
in [EKVY08], as expected numbers of taking actions. To this end, for a state s
we define ♦s to be the set of runs that contain s.

Similarly to [BBC+14, Proposition 4.2 and 4.5], we modify the MDP G into
another MDP Ḡ as follows: For each s ∈ S,N ⊆ [n], we add a new absorbing
state fs,N . The only available action for fs,N leads to a loop transition back to
fs,N with probability 1. We also add a new action, as,N , to every s ∈ S for each
N ⊆ [n]. The distribution associated with as,N assigns probability 1 to fs,N .
Finally, we remove all unreachable states. The construction of [BBC+14] is the
same but only a single value is used for N .

Claim 1. There is a strategy %̄ in Ḡ such that for every C ∈ MEC and N ⊆ [n],∑
s∈C

P%̄[♦fs,N] = P%[ΩC ∩ΩN]

By [EKVY08, Theorem 3.2], there are values yχ satisfying the following:

– Equation 1 is satisfied. Further, summing up Equation 1 for each s yields
Equation 2.

– ys,N ≥
∑
s∈C P%̄[♦fs,N]. By Claim 6 for each C ∈ MEC we thus have∑

s∈C
ys,N ≥ P%[ΩC ∩ΩN]

and summing up over all C and N we have∑
N⊆[n]

∑
s∈S

ys,N ≥
∑
N⊆[n]

P%[ΩN]

where the first term is 1 by Equation 2, the second term is 1 by partitioning
of Runs, hence they are actually equal and thus∑

s∈C
ys,N = P%[ΩC ∩ΩN] =

∑
a∈C

xa,N

where the last equality follows by Claim 5, yielding Equation 3.

16

– There is a memoryless strategy %̂ such that P%̂[♦fs,N] = P%̄[♦fs,N]. The value
ya is the expected number of taking a by %̂ (for actions a preserved in Ḡ)
and ys,N = P%̂[♦fs,N]. By [EKVY08, Lemma 3.3] all ya and ys,N are indeed
finite values.

and prove that they satisfy Equations 1–3 of L when the values fN (a) are
assigned to xa,N .

3.6 Technical proof of Theorem 1, item 3: Description of a witness
strategy induced by a solution to L

Every solution to L effectively induces a witness strategy.. Here we investigate
the construction of the strategy from the solution in more details. This will be
necessary for establishing the complexity bounds in Section 4.

We start with the recurrent part. We prove that even if the flow of Equation
4 is “disconnected” we may still play the actions with the exact frequencies xa,N
on almost all runs (here N ⊆ [n] is fixed for now).

Firstly, we construct a strategy for each “strongly connected” part of the so-
lution xa,N and connect the parts, thus averaging the frequencies. This happens
at a cost of small error used for transiting between the strongly connected parts.

Claim 2. In a strongly connected MDP, for every ε > 0 there is a strategy ζε
such that almost all runs ω satisfy that freqζε(a)(ω) is positive for all a ∈ A and

freqζε(a)(ω) > xa,N/
∑
a

xa,N − ε

Secondly, we eliminate this error as we let the transiting happen with mass
vanishing over time.

Claim 3. In a strongly connected MDP, let ξi be a sequence of strategies with
each freqξi constant for almost all conforming runs and positive, such that
limi→∞ freqξi is well defined. Then there is a strategy ξ with

freqξ = lim
i→∞

freqξi

which is constant on almost all runs.

In any MEC, we can now define the strategy ξN such that almost all runs ω
satisfy for each a ∈ A

freqξN (a)(ω) = xa/
∑
a

xa

using Claim 3 taking ξi to be ζ1/i from Claim 2. Note that as a consequence, all
actions and states in a MEC are visited infinitely often. This will be later useful
for the strategy complexity analysis.

The reward of ξN is for almost all runs

lrinf(r)(ω) =
∑
a

(
x̄a,N · r(a)

)
/
∑
a

x̄a,N

17

This property of the strategy holds for almost all runs, which is a stronger state-
ment than in [BBC+14] and we need it to combine the satisfaction requirements.
Finally, note that the strategy uses infinite memory, but only needs a counter
and to know the current state.

We now consider the transient part of the solution that plays ξN ’s with
various probabilities. Let “switch to ξN in C” denote the event that a strategy
updates its memory, while in C, into such element that it starts playing exactly
as ξN . We can stich all ξN ’s together as follows:

Claim 4. Given strategies {ξN}, a non-negative solution ya, ys,N to Equation
1 and 3 induces a strategy σ such that for every MEC C

Pσ[switch to ξN in C] =
∑

a∈C∩A
x̄a,N

In Appendix B we prove this is indeed a witness strategy.

4 Computational and strategy complexity

In this section, we discuss the solutions to all other introduced problems as well
as their algorithmic and strategy complexities.

4.1 Computational complexity

(multi-quant-conjunctive) As we have seen, there are O(|G| ·n) ·2n variables
in the linear program L. By Theorem 1, the upper bound on the computational
time complexity is polynomial in the number of variables in system L. Hence, the
realizability problem can be decided in time polynomial in |G| and exponential
in n.

(multi-quant-joint) In order to decide this problem, the only subset of runs
to exceed the probability threshold is the set of runs with all long-run rewards
exceeding their thresholds, i.e. Ω[n] (introduced in Section A). The remaining
runs need not be partitioned and can be all considered to belong to Ω∅ with-
out violating any constraint. Intuitively, each xa,∅ now stands for the original
sum

∑
N⊆[n]:N 6=[n] xa,N ; similarly for y-variables. Consequently, the only rele-

vant variables of L are those indexed by N taking values [n] or ∅. The remaining
variables can be left out of the system. Since there are now O(|G| · n) variables,
the problem as well as its special cases can be decided in polynomial time.

(multi-qual) is a qualitative specialization of (multi-quant) with pr = 1 as
well as of (joint) with pr = 1. Since Pσ

[
Runs \Ω[n]

]
= 0 for any winning σ, the

only relevant index N is [n].

18

(mono-quant) is a scalar specialization of (multi-quant) with n = 1 as well
as of (joint) with n = 1. Hence the only relevant indices N are [n] = {1} and ∅.

(mono-qual) is both a scalar specialization of (multi-qual) with n = 1 and
a qualitative specialization of (mono-quant) with pr = 1. Hence the only
relevant index N is [n] = {1}, thus the index can be removed completely.

Theorem 2. The (multi-quant-joint) realizability problem (and thus also all
its special cases) can be decided in time polynomial in |G| and n.

4.2 Strategy complexity

First, we recall the structure of winning strategies generated from L. In the
first phase, a memoryless strategy is applied to reach MECs and switch to the
recurrent strategies ξN . When the switch takes place, the following two pieces of
information are remembered: (1) the binary decision to stay in the current MEC
C forever, and (2) the set N ⊆ [n], such that all the produced runs belong to
ΩN . Each recurrent strategy ξN is then an infinite-memory strategy, where the
memory is simply a counter. The counter determines which memoryless strategy
is played.

Due to [BBC+14, Section 5], infinite memory is indeed necessary for (joint-
SAT) with pr = 1, hence also for (multi-qual).

Further, in our setting where expectation and satisfaction are combined,
randomization and memory is necessary even for single reward function (and
even for ε-winning strategies).

Example 6. Randomization and memory is necessary for (mono-quant) with
sat = 1, exp = 3,pr = 0.55 and the MDP and r depicted in Fig. 5. We have to
remain in MEC {s, a} with probability p ∈ [0.1, 2/3], hence we need a randomized
decision. Further, memoryless strategy would either never leave {s, a} or would
leave it eventually almost surely. The argument holds for ε-winning strategies as
well since 1 < 2 < 3 < 0.5 · 0 + 0.5 · 10.

s

t

u

a, r(a) = 2

0.5

0.5

b

c, r(c) = 0

d, r(c) = 10

Fig. 5: An MDP with a one-dimensional reward, where randomization and mem-
ory is necessary

19

Example 7. In general, even ε-optimal strategies may require randomization
and memory with at least n memory elements. Consider an MDP with a single
state s and self-loop ai with reward ri(aj) equal to 1 for i = j and 0 otherwise,
for each i ∈ [n]. Fig. 6 illustrates the case of n = 3. Further, let sat = 1 and
pr = 1/n. The only way to ε-satisfy the constraints is that for each i, 1/n runs
take only ai, but for a negligible portion of time. Since these constraints are
mutually incompatible for a single run, n different decisions have to be taken at
s, showing the memory requirements. Moreover, as different decisions have to be
made at some point with a single history, randomization is necessary.

s

a1, r(a1) = (1, 0, 0)

a2, r(a1) = (0, 1, 0)

a3, r(a1) = (0, 0, 1)

Fig. 6: An MDP where n-memory is necessary, depicted for n = 3

As one of the main results, we prove that stochastic update at the moment
of switching is not necessary, which improves also the result of [BBC+14].

Lemma 1. Deterministic update is sufficient for witnessing strategies. More-
over, finite memory is sufficient before switching to ξN ’s.

Proof (Proof idea). The stochastic decision during the switching in MEC C can
be done as a deterministic update after a “toss”, a random choice between two
actions in C in one of the states of C. Such a toss does not affect the long-run
reward as it is only performed finitely many times.

More interestingly, in MECs where no toss is possible, we can remember
which states were visited how many times and choose respective probability of
leaving or staying in C.

Proof. Let σ be a strategy induced by L as decribed above. We modify it into a
strategy % with the same distribution of the long-run rewards. The only stochas-
tic update that σ performs is in a MEC, switching to ξN with probability pN
for each N . We modify σ into % in each MEC C separately.

Tossing-MEC case We first assume that there are toss, a, b ∈ C with a, b ∈
Act(toss). Whenever σ should perform a step in s and possibly make a stochastic-
update, say to m1 with probability p1 and m2 with probability p2, % performs
a “toss” instead. A (p1, p2)-toss is reaching toss with probability 1 (using a
memoryless strategy) and taking a, b with probabilities p1, p2, respectively. A

20

deterministic update is made based on the result, in order to remember the
result of the toss. After the toss, % returns back to s with probability 1 (again
using a memoryless strategy). Now that it already remembers the (p1, p2)-toss,
it changes the memory accordingly, by a deterministic update.

In general, since the stochastic-update probabilities depend on the action
chosen and the state to be entered, we have to perform the toss for each combi-
nation before returning to s. Further, whenever there are more possible results
for the memory update (various N), then we can use binary encoding of the
choices, say with k bits, and repeat the toss with the appropriate probabilities
k-times before returning to s.

This can be clearly implemented using a finite memory. Indeed, since there
are finitely many states in a MEC and the strategy σ is memoryless, there are
only finitely many combinations of tosses to make and remeber till the next
simulated update of σ.

Tossfree-MEC case It remains to handle the case when for each state s ∈ C
there is only one action a ∈ Act(s) ∩C. Then all strategies staying in C behave
the same here, call this memoryless deterministic strategy γ. Therefore, the only
stochastic update that matters is to stay in C or not. The MEC C is left via
each action a with the probability

leavea :=

∞∑
t=1

Pσ[At = a | St ∈ C, St+1 /∈ C]

and let {a | leavea > 0} = {a1, . . . , a`} be the leaving actions. The strategy
% upon entering C performs the following. Subsequently for each i ∈ [`], it
first leaves C via a1 with probability leavea1 (see below how), then via a2 with

probability
leavea2

1−leavea1
, and so on via ai with probability

leaveai

1−
∑i−1
j=1 leaveaj

After the last attempt with a`, if we are still in C, we update the memory to
stay in C forever (playing γ).

Leaving C via a with probability leave can be done as follows. Let rate =∑
s/∈C δ(a)(s) be the probability to actually leave C when taking a once. Then

to achieve the overall probability leave of leaving we can reach s with a ∈ Act(s)
and play a with probability 1 and repeat this bleave/ratec-times and finally reach
s once more and play a with probability leave/rate−bleave/ratec and the action
staying in C with the remaining probability.

In order to implement the strategy in MECs of this second type, for each
action it is sufficient to have a counter up to d1/pe, where p is the minimal
probability in the MDP. ut

Observe that the latter case of the proof is important for satisfaction objec-
tives. It has not been considered in [BBC+14], where deterministic update is
shown sufficient only for the expectation objective.

21

As a consequence of % of Lemma 1 needing only finite memory, we obtain
several corollaries. Firstly, infinite memory is only required for winning strategies:

Lemma 2. Deterministic-update with finite memory is sufficient for ε-witnessing
strategies.

Proof. After switching, the memoryless strategy ζε can be played instead of the
strategy playing the sequence of ζε for decreasing ε according to the infinite
counter. ut

Secondly, infinite memory is only required for multiple rewards.

Lemma 3. Deterministic-update strategies with finite memory are sufficient for
(mono-quant).

Proof. After switching in C, we can play the following memoryless strategy. In
C, there can be several components of the flow. We pick any with the largest
long-run reward. ut

Further, the construction in the toss-less case gives us a hint for lower bound
on memory. We show that for deterministic update witness strategies memory
with size dependent on the MDP is needed even for (mono-quant).

Example 8. Memory dependent on the size of transition probabilities is neces-
sary for deterministic-update ε-witnessing strategies for (mono-quant). To this
end, let us consider the same realizability problem as in Example 6, but with a
slightly modified MDP, depicted in Fig. 7. Again, we have to remain in MEC
{s, a} with probability p ∈ [0.1, 2/3] (for ε-witnessing strategies close to these
values). Let ` > 0 denote the minimal probability with which any (ε-)witnessing
strategy has to leave the MEC and all (ε-)witnessing strategies have to stay in
the MEC with positive probability. We show that at least d `δ e-memory is neces-
sary. Observe that this setting also applies to the (EXP) setting of [BBC+14],
e.g. exp = (0.5, 0.5) and the MDP in Fig. 8. Therefore, we provide a lower bound
also for this simpler case (no lower bound is provided in [BBC+14]).

For a contradiction, assume there are less than d `δ e memory elements. Then

by the pigeon-hole principle, in the first d `δ −1e visits of s, some memory element
m appears twice. Note that due to the deterministic updating, each run generates
the same play, in particular the same sequence of memory elements. Let p be
the probability to eventually leave s provided we are in s with memory m.

If m = 0 then the probability to leave s at the start is less d `δ − 2e · δ < `, a

contradiction. Indeed, we have at most d `δ − 2e tries to leave s before obtaining
memory m and with every try we leave s with probability δ; we conclude by the
union bound.

Let m > 0. Due to the deterministic updates, all runs staying in s use memory
m infinitely often. Since m > 0, there is a finite number n of steps such that
(1) during these steps the overall probability to leave s is at least m/2 and (2)
we are using m again. Consequently, the probability of runs staying in s is 0, a
contradiction.

22

s

t

u

a, r(a) = 2
δ
2

δ
2

1− δ

b

c, r(c) = 0

d, r(c) = 10

Fig. 7: An MDP with a one-dimensional reward, where memory with size depen-
dent on transition probabilities is necessary for deterministic-update strategies

s t

a, r(a) = (1, 0)

δ

1− δ

b
c, r(c) = (0, 1)

Fig. 8: An MDP family where n-memory is not sufficient for deterministic-update
strategies even for (EXP) studied in [BBC+14]

We can even bound the memory with a fixed number in the single-reward
case. However, for quantitative satisfaction, we require stochastic update.

Lemma 4. Stochastic-update 2-memory strategies are sufficient for (mono-
quant).

Proof. As in the previous lemma, we can achieve optimal value in each MEC
using a memoryless strategy. The strategy σ of Section 3.6, which reaches the
MECs and stays in them with given probability, is memoryless up to the point
of switch. ut

Lemma 5. Deterministic memoryless strategies are sufficient for (mono-qual).

Proof. For each MEC, there is a value, which is the maximal long-run reward.
This is achievable for all runs in the MEC and using a memoryless strategy ξ.
We prune the MDP to remove MECs with values below the threshold sat. The
optimal strategy maximizes the expected long-run (single-dimensional) reward.
Such a strategy can be picked memoryless [Put94]. Intuitively, in this case each
MEC is either stayed at almost surely or left almost surely if the value of the
outgoing action is higher. ut

We summarize the upper and lower bounds on the strategy complexity.

Theorem 3. The bounds on the complexity of the witnessing strategies are as
shown in Table 1.

23

Table 1: Complexity results for each of the discussed cases. Upper and lower
bounds can be found in the upper and the lower lines, respectively. Results
without reference are induced by the specialization/generalization relation de-
picted in Fig. 1.
Here “inf.” means infinite memory consisting of a counter together with a finite
memory [Section 3.6]

.

Case Computational c. Witness strategy complexity ε-witness strategy complexity

(multi-quant-conj.) poly(|G|, 2n) [Thm.1] det.-up. [Lem.1] inf. det.-up. fin.[Lem.2]
? rand. inf. rand. n-mem., for det.-up. G-mem.

(multi-quant-joint) poly(|G|, n) [Thm.2] det.-up. inf. det.-up. fin.
rand. inf. rand. n-mem., for det.-up. G-mem.

(multi-qual) poly(|G|, n) det.-up. inf. det.-up. fin.
rand. inf. [BBC+14, Sec.5] rand. n-mem. [Ex.7]

(mono-quant) poly(|G|, n) stoch.-up. 2-mem. [Lem.4], stoch.-up. 2-mem., det.-up. fin.
det.-up. fin. [Lem.3]

rand. mem., for det.-up. G-mem. rand. [Ex.6] mem. [Ex.6],
for det.-up. G-mem. [Ex.8]

(mono-qual) poly(|G|, n) det. memoryless [Lem.5] det. memoryless

Remark 2. While [BBC+14] shows that deterministic update is sufficient for
(EXP), it makes no such a statement for (SAT) (both are special cases of (multi-
quant-joint)). This was possible since the tossfree-MEC case of Lemma 1 is not
relevant for (EXP), where the MEC is either almost surely left or almost surely
stayed at. Our result thus improves the upper bound for (SAT).

Further, while [BBC+14] shows that pure memoryless strategies are not suf-
ficient for ε-witnessing (SAT) and without a proof for (EXP), our Example 8
shows both randomization and memory of size dependent on the MDP is neces-
sary for (EXP).

4.3 Pareto curve approximation

Theorem 4. For ε > 0, an ε-approximation of the Pareto curve for (multi-
quant-conjunctive) can be constructed in time polynomial in |G| and 1

ε and
exponential in n, moreover, for (multi-quant-joint) in time polynomial in |G|,
1
ε , and n.

Proof. We replace exp in Equation 5 of L by a vector v of variables. Maximizing
with respect to v is a multi-objective linear program. By [PY00], we can ε-
approximate the Pareto curve in time polynomial in the size of the program, 1

ε ,
and the dimension of v.

5 Conclusion

We have provided a unifying solution framework to the expectation and satis-
faction optimization of Markov decision processes with multiple rewards. This

24

allows us to synthesize optimal and ε-optimal risk-averse strategies. The joint
interpretation, which unifies the two views of [BBC+14] can be solved in poly-
nomial time. For the conjunctive interpretation (and its combination with the
joint one), we have provided an algorithm working in time polynomial in the size
of MDP, but exponential in the number of different rewards. While this is not a
severe limitation for practical purposes, the complexity of this problem remains
an interesting open question.

References

[Alt99] E. Altman, Constrained Markov Decision Processes (Stochastic Modeling).
Chapman & Hall/CRC, 1999.

[BBC+14] T. Brázdil, V. Brožek, K. Chatterjee, V. Forejt, and A. Kučera, “Two
views on multiple mean-payoff objectives in markov decision processes,”
Logical Methods in Computer Science, vol. 10, no. 1, 2014. [Online].
Available: http://dx.doi.org/10.2168/LMCS-10(1:13)2014

[BFRR14] V. Bruyère, E. Filiot, M. Randour, and J. Raskin, “Meet your expectations
with guarantees: Beyond worst-case synthesis in quantitative games,” in
STACS’14, 2014, pp. 199–213.

[BK08] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press, 2008.
[CFW13] K. Chatterjee, V. Forejt, and D. Wojtczak, “Multi-objective discounted

reward verification in graphs and mdps,” in LPAR’13, 2013, pp. 228–242.
[Cha07] K. Chatterjee, “Markov decision processes with multiple long-run average

objectives,” in FSTTCS, ser. Lecture Notes in Computer Science, V. Arvind
and S. Prasad, Eds., vol. 4855. Springer, 2007, pp. 473–484.

[CMH06] K. Chatterjee, R. Majumdar, and T. A. Henzinger, “Markov decision pro-
cesses with multiple objectives,” in STACS, ser. Lecture Notes in Computer
Science, B. Durand and W. Thomas, Eds., vol. 3884. Springer, 2006, pp.
325–336.

[CY95] C. Courcoubetis and M. Yannakakis, “The complexity of probabilistic ver-
ification,” Journal of the ACM, vol. 42, no. 4, pp. 857–907, 1995.

[CY98] ——, “Markov decision processes and regular events,” Automatic Control,
IEEE Transactions on, vol. 43, no. 10, pp. 1399–1418, Oct. 1998.

[dA97] L. de Alfaro, “Formal verification of probabilistic systems,” Ph.D. disserta-
tion, Stanford University, 1997.

[DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence anal-
ysis: probabilistic models of proteins and nucleic acids. Cambridge Univ.
Press, 1998.

[EKVY08] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis, “Multi-
objective model checking of Markov decision processes,” LMCS, vol. 4, no. 4,
pp. 1–21, 2008.

[FKN+11] V. Forejt, M. Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Quan-
titative multi-objective verification for probabilistic systems,” in TACAS,
ser. Lecture Notes in Computer Science, P. A. Abdulla and K. R. M. Leino,
Eds., vol. 6605. Springer, 2011, pp. 112–127.

[FKP12] V. Forejt, M. Z. Kwiatkowska, and D. Parker, “Pareto curves for proba-
bilistic model checking,” in ATVA’12, 2012, pp. 317–332.

[FV97] J. Filar and K. Vrieze, Competitive Markov Decision Processes. Springer-
Verlag, 1997.

25

[How60] H. Howard, Dynamic Programming and Markov Processes. MIT Press,
1960.

[Kar84] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”
in Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1984, Washington, DC, USA,
R. A. DeMillo, Ed. ACM, 1984, pp. 302–311. [Online]. Available:
http://doi.acm.org/10.1145/800057.808695

[KGFP09] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic sym-
bolic model checker,” in TOOLS’ 02. LNCS 2324, Springer, 2002, pp.
200–204.

[Kos88] J. Koski, “Multicriteria truss optimization,” in Multicriteria Optimization
in Engineering and in the Sciences, W. Stadler, Ed. Plenum Press, 1988.

[Owe95] G. Owen, Game Theory. Academic Press, 1995.
[Put94] M. L. Puterman, Markov Decision Processes. J. Wiley and Sons, 1994.
[PY00] C. H. Papadimitriou and M. Yannakakis, “On the approximability of trade-

offs and optimal access of web sources,” in FOCS. IEEE Computer Society,
2000, pp. 86–92.

[Roy88] H. Royden, Real analysis, 3rd ed. Prentice Hall, 12 Feb. 1988.
[RRS14] M. Randour, J. Raskin, and O. Sankur, “Percentile queries in multi-

dimensional markov decision processes,” CoRR, vol. abs/1410.4801, 2014.
[SCK04] R. Szymanek, F. Catthoor, and K. Kuchcinski, “Time-energy design space

exploration for multi-layer memory architectures,” in DATE. IEEE Com-
puter Society, 2004, pp. 318–323.

[Seg95] R. Segala, “Modeling and verification of randomized distributed real-time
systems,” Ph.D. dissertation, MIT, 1995, technical Report MIT/LCS/TR-
676.

[Var85] M. Vardi, “Automatic verification of probabilistic concurrent finite state
programs,” in Proc. FOCS’85. IEEE Computer Society Press, 1985, pp.
327–338.

[WL99] C. Wu and Y. Lin, “Minimizing risk models in Markov decision processes
with policies depending on target values,” Journal of Mathematical Analysis
and Applications, vol. 231, no. 1, pp. 47–67, 1999.

[YC03] P. Yang and F. Catthoor, “Pareto-optimization-based run-time task
scheduling for embedded systems,” in CODES+ISSS, R. Gupta, Y. Naka-
mura, A. Orailoglu, and P. H. Chou, Eds. ACM, 2003, pp. 120–125.

26

A Proof part 1: Witness strategy induces solution to L

Let % be a strategy such that ∀i ∈ [n]

– Pσ[lrinf(r)i ≥ sat(i)] ≥ pri
– Eσ[lrinf(r)i] ≥ expi

We construct a solution to the system L.

A.1 Recurrent behaviour and Equations 4–7

We start with constructing values for variables xa.
In general, the frequencies freq%(a) of the actions may not be well defined,

because the defining limits may not exist. Further, it may be unavoidable to
have different frequencies for several sets of runs of positive measure. There are
two tricks to overcome this difficulty. Firstly, we partition the runs into several
classes depending on which parts of the objective they achieve. Secondly, within
each class we pick suitable values lying between lrinf(r) and lrsup(r) of these
runs.

For N ⊆ [n], let

ΩN = {ω ∈ Runs | ∀i ∈ N : lrinf(r)(ω)i ≥ sati ∧ ∀i /∈ N : lrinf(r)(ω)i < sati}

Then ΩN for N ⊆ [n] form a paritioning of Runs. We define fN (a), lying between

lim infT→∞
1
T

∑T
t=1 P%[At = a | ΩN] and lim supT→∞

1
T

∑T
t=1 P%[At = a | ΩN], which

can be safely substituted for xa,N in L. Since every infinite sequence contains
an infinite convergent subsequence, there is an increasing sequence of indices,
T0, T1, . . ., such that the following limit exists for each action a ∈ A

fN (a) := lim
`→∞

1

T`

T∑̀
t=1

P%[At = a | ΩN] · P%[ΩN]

We set xa,N := fN (a) for all a ∈ A and N ⊆ [n] (where xa,N = 0 whenever
P%[ΩN] = 0). We show that (in)equations 4–7 of L are satisfied.

Equation 4 For t ∈ N, let

ΩN |t = {σ[1] · · ·σ[t]ρ | σ ∈ ΩN}

denote the (cylinders generated by) projection of ΩN to first t steps. Then

ΩN |1 ⊇ ΩN |2 ⊇ · · · ⊇ ΩN (3)

lim
t→∞

P%
[
ΩN |t \ΩN

]
= 0 (4)

For all s ∈ S and N ⊆ [n], we have∑
a∈A

fN (a) · δ(a)(s) =
∑

a∈Act(s)

fN (a)

27

trivialy for P%[ΩN] = 0, and whenever P%[ΩN] > 0 we have

1

P%[ΩN]

∑
a∈A

fN (a) · δ(a)(s)

=
∑
a∈A

lim
`→∞

1

T`

T∑̀
t=1

P%[At = a | ΩN] · δ(a)(s) (definition of fN)

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈A

P%[At = a | ΩN] · δ(a)(s) (linearity of the limit)

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈A

(
P%[At = a | ΩN] · P%[ΩN]

P%
[
ΩN |t

]+
P%
[
At = a | ΩN |t \ΩN

]
·

(
1− P%[ΩN]

P%
[
ΩN |t

])) · δ(a)(s) (by 4)

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈A

P%
[
At = a | ΩN |t

]
· δ(a)(s) (by 3)

= lim
`→∞

1

T`

T∑̀
t=1

P%
[
St+1 = s | ΩN |t

]
(definition of δ)

= lim
`→∞

1

T`

T∑̀
t=1

P%
[
St+1 = s | ΩN |t+1

]
·
P%
[
ΩN |t+1

]
P%
[
ΩN |t

] +

P%
[
St+1 = s | ΩN |t \ΩN |t+1

]
·

(
1−

P%
[
ΩN |t+1

]
P%
[
ΩN |t

]) (by 3)

= lim
`→∞

1

T`

T∑̀
t=1

P%
[
St+1 = s | ΩN |t+1

]
(by 4)

= lim
`→∞

1

T`

T∑̀
t=1

P%
[
St = s | ΩN |t

]
(reindexing and Cesaro limit)

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈Act(s)

P%
[
At = a | ΩN |t

]
(s must be followed by a ∈ Act(s))

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈Act(s)

P%[At = a | ΩN] (as above by 3 and 4)

=
∑

a∈Act(s)

lim
`→∞

1

T`

T∑̀
t=1

P%[At = a | ΩN] (linearity of the limit)

=
1

P%[ΩN]

∑
a∈Act(s)

fN (a) . (definition of fN)

28

Equation 5 For all i ∈ [n], we have∑
N⊆[n]

∑
a∈A

xa,N · ri(a) ≥ E%s0 [lrinf(ri)] ≥ expi (5)

where the first inequality follows from:∑
N⊆[n]

∑
a∈A

xa,N · ri(a)

=
∑
N⊆[n]

P%[ΩN]>0

∑
a∈A

fN (a) · ri(a) (definition of xa,N)

=
∑
N⊆[n]

P%[ΩN]>0

∑
a∈A

ri(a) · lim
`→∞

1

T`

T∑̀
t=1

P%[At = a | ΩN] · P%[ΩN] (definition of fN)

=
∑
N⊆[n]

P%[ΩN]>0

P%[ΩN] · lim
`→∞

1

T`

T∑̀
t=1

∑
a∈A

ri(a) · P%[At = a | ΩN]

(linearity of the limit)

≥
∑
N⊆[n]

P%[ΩN]>0

P%[ΩN] · lim inf
T→∞

1

T

T∑
t=1

∑
a∈A

ri(a) · P%[At = a | ΩN]

(definition of lim inf)

=
∑
N⊆[n]

P%[ΩN]>0

P%[ΩN] · lim inf
T→∞

1

T

T∑
t=1

E%s0 [ri(At) | ΩN]

(definition of the expectation)

≥
∑
N⊆[n]

P%[ΩN]>0

P%[ΩN] · E%s0 [lrinf(ri) | ΩN] (Fatou’s lemma)

= E%s0 [lrinf(ri)] (ΩN ’s partition Runs)

Although Fatou’s lemma (see, e.g. [Roy88, Chapter 4, Section 3]) requires the
function ri(At) be nonnegative, we can replace it with the nonnegative function
ri(At)−mina∈A ri(a) and add the subtracted constant afterwards.

Equation 6 For C ∈ MEC, let

ΩC = {ρ ∈ Runs | ∃n0 : ∀n > n0 : ρ[n] ∈ C}

denote the set of runs with a suffix in C. Since almost every run eventually
remains in a MEC, e.g. [CY98, Proposition 3.1], {ΩC | C ∈ MEC} partitions

29

Runs. For the same reason, actions not in MECs are almost surely taken only
finitely many times and thus

xa,N = 0 for a /∈
⋃

MEC, N ⊆ [n] (6)

For all C ∈ MEC, N ⊆ [n], i ∈ N∑
a∈C

xa,N · ri(a) ≥
∑
a∈C

xa,N · sati

follows trivialy for P%[ΩN] = 0, and whenever P%[ΩN] > 0 we have∑
a∈C

xa,N · ri(a)

≥ lim inf
T→∞

1

T

T∑
t=1

∑
a∈C

ri(a) · P%[At = a | ΩN] · P%[ΩN]

(as above by def. of xa,N , fN , linearity of lim, def. of lim inf)

= lim inf
T→∞

1

T

T∑
t=1

∑
a∈C

(
ri(a) · P%[At = a | ΩN ∩ΩC] · P

%[ΩN ∩ΩC]

P%[ΩN]
+

ri(a) · P%[At = a | ΩN \ΩC] · P
%[ΩN \ΩC]

P%[ΩN]

)
· P%[ΩN]

(partitioning of Runs)

= lim inf
T→∞

1

T

T∑
t=1

∑
a∈C

ri(a) · P%[At = a | ΩN ∩ΩC] · P%[ΩN ∩ΩC]

(lim
T→∞

P%[At = a | ΩN \ΩC] = 0 for a ∈ C)

≥ P%[ΩN ∩ΩC] · E%s0 [lrinf(ri) | ΩN ∩ΩC]
(as above by def. of expectation and Fatou’s lemma)

≥ P%[ΩN ∩ΩC] · sati (by definition of ΩN and i ∈ N)

It remains to prove the following:

Claim 5. For N ⊆ [n] and C ∈ MEC, we have
∑
a∈C xa,N = P%[ΩN ∩ΩC].

Proof. ∑
a∈C

xa,N

= lim inf
T→∞

1

T

T∑
t=1

∑
a∈C

P%[At = a | ΩN ∩ΩC] · P%[ΩN ∩ΩC]

(as above with factor ri(a) left out)

= P%[ΩN ∩ΩC] · lim inf
T→∞

1

T

T∑
t=1

∑
a∈C

P%[At = a | ΩN ∩ΩC]

(linearity of the limit)

30

= P%[ΩN ∩ΩC] · lim inf
T→∞

1

T

T∑
t=1

P%[At ∈ C | ΩN ∩ΩC]

(taking two different action at time t are disjoint events)

= P%[ΩN ∩ΩC] (At ∈ C for all but finitely many t on ΩC)

ut

Equation 7 For every i ∈ [n], by assumption on the strategy %∑
N⊆[n]:i∈N

P%[ΩN] = P%[ω ∈ Runs | lrinf(r)i(ω) ≥ sat(i)] ≥ pri

and the first term equals∑
N⊆[n]:i∈N

∑
a∈A

xa,N =
∑

N⊆[n]:i∈N

∑
C∈MEC

∑
a∈C

xa,N = (by (6))

=
∑

N⊆[n]:i∈N

∑
C∈MEC

P%[ΩN ∩ΩC] (by Claim 5)

=
∑

N⊆[n]:i∈N

P%[ΩN] (ΩC ’s partition Runs)

A.2 Transient behaviour and Equations 1–3

Now we set the values for yχ, χ ∈ A ∪ (S × 2[n]), and prove that they satisfy
Equations 1–3 of L when the values fN (a) are assigned to xa,N . One could obtain
the values yχ using the methods of [Put94, Theorem 9.3.8], which requires the
machinery of deviation matrices. Instead, we can first simplify the behaviour
of % in the transient part to memoryless using [BBC+14] and then obtain yχ
directly, like in [EKVY08], as expected numbers of taking actions. To this end,
for a state s we define ♦s to be the set of runs that contain s.

Similarly to [BBC+14, Proposition 4.2 and 4.5], we modify the MDP G into
another MDP Ḡ as follows: For each s ∈ S,N ⊆ [n], we add a new absorbing
state fs,N . The only available action for fs,N leads back to fs,N with probability
1. We also add a new action, as,N , to every s ∈ S for each N ⊆ [n]. The
distribution associated with as,N assigns probability 1 to fs,N . Finally, we remove
all unreachable states. The construction of [BBC+14] is the same but only a
single value is used for N .

Claim 6. There is a strategy %̄ in Ḡ such that for every C ∈ MEC and N ⊆ [n],∑
s∈C

P%̄[♦fs,N] = P%[ΩC ∩ΩN]

31

Proof. First, we consider an MDP G′ created from G in the same way as Ḡ, but
instead of fs,N for each s ∈ S,N ⊆ [n], we only have a single fs; similarly for
actions as. As in [BBC+14, Lemma 4.6], we obtain a strategy %′ in G′ such that∑
s∈C P%̄[♦fs] = P%[ΩC]. We modify %′ into %̄. It behaves as %′, but instead of

taking action as with probability p, we take each action as,N with probability

p · P
%[ΩC∩ΩN]
P%[ΩC] . (For P%[ΩC] = 0, it is defined arbitrarily.) Then

∑
s∈C

P%̄[♦fs,N] =
∑
s∈C

P%[ΩC ∩ΩN]

P%[ΩC]
· P%

′
[♦fs] = P%[ΩC ∩ΩN]

ut

By [EKVY08, Theorem 3.2], there are values yχ satisfying the following:

– Equation 1 is satisfied. Further, summing up Equation 1 for each s yields
Equation 2.

– ys,N ≥
∑
s∈C P%̄[♦fs,N]. By Claim 6 for each C ∈ MEC we thus have∑

s∈C
ys,N ≥ P%[ΩC ∩ΩN]

and summing up over all C and N we have∑
N⊆[n]

∑
s∈S

ys,N ≥
∑
N⊆[n]

P%[ΩN]

where the first term is 1 by Equation 2, the second term is 1 by partitioning
of Runs, hence they are actually equal and thus∑

s∈C
ys,N = P%[ΩC ∩ΩN] =

∑
a∈C

xa,N

where the last equality follows by Claim 5, yielding Equation 3.
– There is a memoryless strategy %̂ such that P%̂[♦fs,N] = P%̄[♦fs,N]. The value
ya is the expected number of taking a by %̂ (for actions a preserved in Ḡ)
and ys,N = P%̂[♦fs,N]. By [EKVY08, Lemma 3.3] all ya and ys,N are indeed
finite values.

B Proof part 2: Solution to L induces witness strategy

In this section, we prove that a solution to the system L induces a witness
strategy in the MDP.

We use Pσs to denote Pσ corresponding to MDP where the initial state is set
to s; similarly for freqσs . Whenever we say “for almost all runs conforming to σ”
we mean “for every initial state s and all runs, but some with Pσs -measure 0”.

32

B.1 Recurrent behaviour

We start with the recurrent part. To this end, we consider strongly connected
MDP and Equation 4 only, for simplicity, with only one fixed N . The crucial
observation we set out to prove is that even if the flow of Equation 4 is “discon-
nected” we may still play the actions with the exact frequencies xa,N on almost
all runs.

Proposition 1. In a strongly connected MDP, a non-negative solution x̄a to
Equation 4. induces a strategy such that almost all conforming runs ω satisfy

freqω(a) = x̄a/
∑
a

x̄a

Proof. Firstly, we construct a strategy for each “strongly connected” part of the
solution x̄a. Secondly, we connect the parts and thus average the frequencies.
This happens at a cost of small error used for transiting between the strongly
connected parts. Thirdly, we eliminate this error as we let the transiting happen
with mass vanishing over time.

Lemma 6. A non-negative solution x̄a to Equation 4. induces a memoryless
strategy ζ such that for every BSCCs D of Gζ , a ∈ D ∩ A, and almost all
conforming runs ω in D

freqω(a) = x̄a/
∑

a∈D∩A
x̄a

Proof. By Lemma 4.3 of [BBC+14], we get a (memoryless) strategy ζ such that

freqζd(a) = x̄a/
∑
a∈D∩A x̄a for any d ∈ D ∩ S. Moreover, for any d ∈ D by the

ergodic theorem, freqω(a) is the same for Pζd-almost all runs ω, hence equal to

freqζd(a). ut

Lemma 7. In a strongly connected MDP, for every ε > 0 there is a strategy ξε
such that almost all conforming runs ω satisfy that freqω is positive and

freqω(a) > x̄a/
∑
a

x̄a − ε

Proof. We obtain ξε by a suitable perturbation of the strategy ζ from previous
lemma in such a way that all actions get positive probabilities and the frequencies
of actions change only slightly, similarly as in [BBC+14, Proposition 5.1, Part
2]. There exists an arbitrarily small (strictly) positive solution x′a of Equations
4. Indeed, it suffices to consider a strategy τ which always takes the uniform
distribution over the actions in every state and then assign freqτ (a)/M to xa for
sufficiently large M . As the system of Equations 4. is linear and homogeneous,
assigning x̄a + x′a to xa also solves this system and Lemma 6 gives us a strategy

33

ξε satisfying freqξε(a) = (x̄a+x′a)/X where X =
∑
a′∈A x̄a′+x

′
a′ . We may safely

assume that
∑
a′∈A x

′
a′ ≤

ε·(
∑
a∈A x̄a)2

x̄a−ε·(
∑
a∈A x̄a) . Thus, we obtain

freqω(a) > x̄a/
∑
s,a

x̄a − ε (7)

by the following sequence of (in)equalities.

freqω(a)

=
x̄a + x′a∑

a′∈A x̄a′ + x′a′
(by Lemma 6)

>
x̄a∑

a′∈A x̄a′ + x′a′
(by x′a > 0)

≥ x̄a∑
a′∈A x̄a′ +

ε·(
∑
a∈A x̄a)2

x̄a−ε·(
∑
a∈A x̄a)

(by
∑
a′∈A x

′
a′ ≤

ε·(
∑
a∈A x̄a)2

x̄a−ε·(
∑
a∈A x̄a)

)

=
x̄a · (x̄a − ε · (

∑
a∈A x̄a))∑

a′∈A x̄a′ · (x̄a − ε · (
∑
a∈A x̄a)) + ε · (

∑
a∈A x̄a)2

(rearranging)

=
x̄a · (x̄a − ε · (

∑
a∈A x̄a))∑

a′∈A x̄a′ · x̄a
(rearranging)

=
x̄a − ε · (

∑
a∈A x̄a)∑

a′∈A x̄a′
(rearranging)

=
x̄a∑

a′∈A x̄a′
− ε (rearranging)

Concerning the complexity of computing ξε, note that the binary representa-
tion of every coefficient in L has only polynomial length. As x̄a’s are obtained
as a solution of (a part of) L, standard results from linear programming im-
ply that each x̄a has a binary representation computable in polynomial time.
The numbers x′a are also obtained by solving a part of L and restricted by∣∣∑

a′∈A x
′
a′

∣∣ ≤ ε·(
∑
a∈A x̄a)2

x̄a−ε·(
∑
a∈A x̄a) which allows to compute a binary representation

of x′a in polynomial time. The strategy ξε assigns to each action only small
arithmetic expressions over x̄a and x′a. Hence, ξε is computable in polynomial
time. ut

Lemma 8. In a strongly connected MDP, let ξi be a sequence of strategies
with each freqξi constant for almost all conforming runs and positive, such that
limi→∞ freqξi is well defined. Then there is a strategy ξ with

freqξ = lim
i→∞

freqξi

which is constant on almost all runs.

Proof. The proof folows the computation of [BBC+14, Proposition 5.1, Part
“Moreover”]. Given a ∈ A, let Ia : A→ {0, 1} be a function given by Ia(a) = 1

34

and Ia(b) = 0 for all b 6= a. Let us consider instead of ξi its subsequence ξj such

that Pξjs
[
lrinf(Ia) ≥ freqξ(a)− 2−j−1

]
= 1. Existence of such a subsequence is

ensured by freqξ = limi→∞ freqξi . Note that for every j ∈ N there is κj ∈ N such
that for all a ∈ A and s ∈ S we get

Pξjs

[
inf
T≥κj

1

T

T∑
t=0

Ia(At) ≥ freqξ(a)− 2−j

]
≥ 1− 2−j .

Now let us consider a sequence n0, n1, . . . of numbers where nj ≥ κj and∑
k<j nj

nj
≤ 2−j and

κj+1

nj
≤ 2−j . We define ξ to behave as ξ1 for the first n1

steps, then as ξ2 for the next n2 steps, then as ξ3 for the next n3 steps, etc. In
general, denoting by Nj the sum

∑
k<j nk, the strategy ξ behaves as ξj between

the Nj ’th step (inclusive) and Nj+1’th step (non-inclusive).
Let us give some intuition behind ξ. The numbers in the sequence n0, n1, . . .

grow rapidly so that after ξj is simulated for nj steps, the part of the history when
ξk for k < j were simulated becomes relatively small and has only minor impact

on the current average reward (this is ensured by the condition
∑
k<j nk
nj

≤ 2−j).

This gives us that almost every run has infinitely many prefixes on which the
average reward w.r.t. Ia is arbitrarily close to freqξ(a) infinitely often. To get
that freqξ(a) is also the limit-average reward, one only needs to be careful when
the strategy ξ ends behaving as ξj and starts behaving as ξj+1, because then
up to the κj+1 steps we have no guarantee that the average reward is close to

freqξ(a). This part is taken care of by picking nj so large that the contribution
(to the average reward) of the nj steps according to ξj prevails over fluctuations
introduced by the first κj+1 steps according to ξj+1 (this is ensured by the
condition

κj+1

nj
≤ 2−j).

Let us now prove the correctness of the definition of ξ formally. We prove
that almost all runs ω of Gξ satisfy

lim inf
T→∞

1

T

T∑
t=0

Ia(At(ω)) ≥ lim
j→∞

freqξj (a).

Denote by Ej the set of all runs ω = s0a0s1a1 . . . of Gξ such that for some
κj ≤ d ≤ nj we have

1

d

Nj+d∑
j=Nj

Ia(ak) < lim
j→∞

freqξj (a)− 2−j .

We have Pξ[Ej] ≤ 2−j and thus
∑∞
j=1 Pξ[Ej] = 1

2 < ∞. By Borel-Cantelli
lemma [Roy88], almost surely only finitely many of Ej take place. Thus, almost
every run ω = s0a0s1a1 . . . of Gξ satisfies the following: there is ` such that for
all j ≥ ` and all κj ≤ d ≤ ni we have that

1

d

Nj+d∑
k=Nj

Ia(ak) ≥ freqξ(a)− 2−j .

35

Consider T ∈ N such that Nj ≤ T < Nj+1 where j > `. We need the following
inequality

1

T

T∑
t=0

Ia(at) ≥ (freqξ(a)− 2−j)(1− 2j−i) (8)

which can be proved as follows. First, note that

1

T

T∑
t=0

Ia(at) ≥ 1

T

Nj−1∑
t=Nj−1

Ia(at) +
1

T

T∑
t=Nj

Ia(at)

and that

1

T

Nj−1∑
t=Nj−1

Ia(at) =
1

nj

Nj−1∑
t=Nj−1

Ia(at) ·
nj
T
≥ (freqξ(a)− 2−j)

nj
T

which gives

1

T

T∑
t=0

Ia(at) ≥ (freqξ(a)− 2−j)
nj
T

+
1

T

T∑
t=Nj

Ia(at). (9)

Now, we distinguish two cases. First, if T −Ni ≤ κj+1, then

nj
T
≥ nj
Nj−1 + nj + κj+1

= 1− Nj−1 + κj+1

Nj−1 + nj + κj+1
≥ (1− 21−j)

and thus, by Equation (9),

1

T

T∑
t=0

Ia(at) ≥ (freqξ(a)− 2−j)(1− 21−j).

Second, if T −Ni ≥ κj+1, then

1

T

T∑
t=Nj+1

Ia(at) =
1

T −Nj

T∑
t=Nj+1

Ia(at) ·
T −Nj
T

≥ (freqξ(a)− 2−j−1)

(
1− Nj−1 + nj

T

)
≥ (freqξ(a)− 2−j−1)

(
1− 2−j − nj

T

)
and thus, by Equation (9),

1

T

T∑
t=0

Ia(at) ≥ (freqξ(a)− 2−j)
nj
T

+ (freqξ(a)− 2−j−1)
(

1− 2−j − nj
T

)
≥ (freqξ(a)− 2−j)

(nj
T

+
(

1− 2−j − nj
T

))
36

≥ (freqξ(a)− 2−j)(1− 2−j)

which finishes the proof of Equation (8).

Since the sum in Equation (8) converges to freqξ(a) as j (and thus also T)
goes to ∞, we obtain

lim inf
T→∞

1

T

T∑
t=0

Ia(at) ≥ freqξ(a).

ut

The strategy of the proposition is now constructed by Lemma 8 taking ξi to
be ξ1/i from Lemma 7. ut

Now we know that strategies within an end component can be merged into
a strategy with frequencies corresponding to the solution of Equation 4 for each
fixed N . Note that it uses infinite memory, but only needs a counter and to know
the current state. Let ξN denote this strategy.

The reward of ξN is almost surely

lr(r)(ω) =
∑
a

x̄a · r(a)/
∑
a

x̄a

When the MDP is not strongly connected, we obtain such ξN in each MEC C
and the respective reward of almost all runs in C is thus

EξNC [lr(r)] :=
∑

a∈C∩A
x̄a,N · r(a)/

∑
a∈C∩A

x̄a,N (10)

B.2 Transient behaviour

We now consider the transient part of the solution that plays ξN ’s with various
probabilities.

Proposition 2. Given {ξN}, a non-negative solution ȳa, ȳs,N to equation 1.
induces a strategy σ with

Pσ[switch to ξN in s] = ȳs,N

Proof (Proof idea). Instead of switching in si to the recurrent behaviour ξ as
in [BBC+14, Proposition 4.2, Step 1], we branch this decision and switch to ξN
with proportion pN :=

ȳsi,N∑
N⊆[n] ȳsi,N

. In other words, instead of switching in si

to ξ with probability p :=
x̄si

yC−
∑i−1
j=1 x̄sj

we switch to ξN with probability p · pN
(where xsi , yC are summations over all N of the original ones). ut

37

Proof. For every MEC C of G, we denote by yC the number
∑
s∈C

∑
N⊆[n] ȳs,N .

According to the Lemma 4.4. of [BBC+14] we have a stochastic-update strategy
ζ which stays eventually in each MEC C with probability yC .

Then the strategy σ̄ works as follows. For a run initiated in s0, the strategy
σ̄ plays according to ζ until a BSCC of Gζ is reached. This means that every
possible continuation of the path stays in the current MEC C of G. Assume
that C has states s1, . . . , sk. We denote by x̄s,N the sum

∑
a∈Act(s) x̄a,N . At this

point, the strategy σ̄ changes its behavior as follows: First, the strategy σ̄ strives
to reach s1 with probability one. Upon reaching s1, it chooses randomly with
probability

x̄s1,N
yC

to behave as ξN forever, or otherwise to follow on to s2. If the
strategy σ̄ chooses to go on to s2, it strives to reach s2 with probability one. Upon
reaching s2, the strategy σ̄ chooses (randomly, with probability

x̄s2,N
yC−

∑
N⊆[n] x̄s1,N

)

to behave as ξN forever, or to follow on to s3, and so, till sk. That is, the
probability of switching to ξN in si is

x̄si,N

yC−
∑i−1
j=1

∑
N⊆[n] x̄sj,N

.

Since ζ stays in a MEC C with probability yC , the probability that the
strategy σ̄ switches to ξN in si is equal to x̄si,N .

Same as in [BBC+14] we can transform the part of σ̄ before switching to ξN
to a memoryless strategy and thus get strategy σ. ut

Corollary 1. Given {ξN}, a non-negative solution ȳs,N , x̄a,N to Equations 1
and 3 induces a strategy σ with

Pσ[switch to ξN in C] =
∑

a∈C∩A
x̄a,N

for every MEC C.

Proposition 3. A solution to the system L induces a witness strategy.

Proof. Consider the strategy σ of Corollary 1. We evaluate the strategy σ as
follows:

Eσ[lrinf(r)] =
∑
N⊆[n]

∑
C∈MEC

Pσ[switch to ξN in C] · EξNC [lr(r)]

(by Equation 2,
∑
N⊆[n]

Pσ[switch to ξN] = 1)

=
∑
N⊆[n]

∑
C∈MEC

(∑
a∈C∩A

x̄a,N

)
· EξNC lr(r) (by Corollary 1)

=
∑
N⊆[n]

∑
C∈MEC

(∑
a∈C∩A

x̄a,N

)
·
(∑
a∈C∩A

x̄a,N · r(a)/
∑

a∈C∩A
x̄a,N

)
(by (10))

=
∑
N⊆[n]

∑
a∈A

x̄a,N · r(a)

≥ exp (by Equation 5)

38

and for each i

Pσ[lr(r)i ≥ sat(i)] =
∑
N⊆[n]

∑
C∈MEC

Pσ[switch to ξN in C] · 1EξNC [lr(r)i]≥sati

≥
∑

i∈N⊆[n]

∑
C∈MEC

Pσ[switch to ξN in C] · 1EξNC [lr(r)i]≥sati

=
∑

i∈N⊆[n]

∑
C∈MEC

Pσ[switch to ξN in C] (see below)

=
∑

i∈N⊆[n]

∑
C∈MEC

∑
a∈C∩A

x̄a,N

=
∑

i∈N⊆[n]

∑
a∈A

x̄a,N

≥ pr(i) (by Equation 7)

where for each i and N ⊆ [n] with i ∈ N and MEC C, we have

EξNC lr(r)i =
∑

a∈C∩A
x̄a,N · r(a)

/ ∑
a∈C∩A

x̄a,N

≥
∑

a∈C∩A
x̄a,N · sati/

∑
a∈C∩A

x̄a,N (by Equation 6)

= sati

ut

39

