13,804 research outputs found

    Increasing the density of available pareto optimal solutions

    Get PDF
    The set of available multi-objective optimization algorithms continues to grow. This fact can be partially attributed to their widespread use and applicability. However this increase also suggests several issues remain to be addressed satisfactorily. One such issue is the diversity and the number of solutions available to the decision maker (DM). Even for algorithms very well suited for a particular problem, it is difficult - mainly due to the computational cost - to use a population large enough to ensure the likelihood of obtaining a solution close to the DMs preferences. In this paper we present a novel methodology that produces additional Pareto optimal solutions from a Pareto optimal set obtained at the end run of any multi-objective optimization algorithm. This method, which we refer to as Pareto estimation, is tested against a set of 2 and 3-objective test problems and a 3-objective portfolio optimization problem to illustrate its’ utility for a real-world problem

    A test problem for visual investigation of high-dimensional multi-objective search

    Get PDF
    An inherent problem in multiobjective optimization is that the visual observation of solution vectors with four or more objectives is infeasible, which brings major difficulties for algorithmic design, examination, and development. This paper presents a test problem, called the Rectangle problem, to aid the visual investigation of high-dimensional multiobjective search. Key features of the Rectangle problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-variable decision space and 2) are similar (in the sense of Euclidean geometry) to their images in the four-dimensional objective space. In this case, it is easy to examine the behavior of objective vectors in terms of both convergence and diversity, by observing their proximity to the optimal rectangle and their distribution in the rectangle, respectively, in the decision space. Fifteen algorithms are investigated. Underperformance of Pareto-based algorithms as well as most state-of-the-art many-objective algorithms indicates that the proposed problem not only is a good tool to help visually understand the behavior of multiobjective search in a high-dimensional objective space but also can be used as a challenging benchmark function to test algorithms' ability in balancing the convergence and diversity of solutions

    Generalized decomposition and cross entropy methods for many-objective optimization

    Get PDF
    Decomposition-based algorithms for multi-objective optimization problems have increased in popularity in the past decade. Although their convergence to the Pareto optimal front (PF) is in several instances superior to that of Pareto-based algorithms, the problem of selecting a way to distribute or guide these solutions in a high-dimensional space has not been explored. In this work, we introduce a novel concept which we call generalized decomposition. Generalized decomposition provides a framework with which the decision maker (DM) can guide the underlying evolutionary algorithm toward specific regions of interest or the entire Pareto front with the desired distribution of Pareto optimal solutions. Additionally, it is shown that generalized decomposition simplifies many-objective problems by unifying the three performance objectives of multi-objective evolutionary algorithms – convergence to the PF, evenly distributed Pareto optimal solutions and coverage of the entire front – to only one, that of convergence. A framework, established on generalized decomposition, and an estimation of distribution algorithm (EDA) based on low-order statistics, namely the cross-entropy method (CE), is created to illustrate the benefits of the proposed concept for many objective problems. This choice of EDA also enables the test of the hypothesis that low-order statistics based EDAs can have comparable performance to more elaborate EDAs

    Methods for many-objective optimization: an analysis

    Get PDF
    Decomposition-based methods are often cited as the solution to problems related with many-objective optimization. Decomposition-based methods employ a scalarizing function to reduce a many-objective problem into a set of single objective problems, which upon solution yields a good approximation of the set of optimal solutions. This set is commonly referred to as Pareto front. In this work we explore the implications of using decomposition-based methods over Pareto-based methods from a probabilistic point of view. Namely, we investigate whether there is an advantage of using a decomposition-based method, for example using the Chebyshev scalarizing function, over Paretobased methods

    Evolutionary multiobjective optimization of the multi-location transshipment problem

    Full text link
    We consider a multi-location inventory system where inventory choices at each location are centrally coordinated. Lateral transshipments are allowed as recourse actions within the same echelon in the inventory system to reduce costs and improve service level. However, this transshipment process usually causes undesirable lead times. In this paper, we propose a multiobjective model of the multi-location transshipment problem which addresses optimizing three conflicting objectives: (1) minimizing the aggregate expected cost, (2) maximizing the expected fill rate, and (3) minimizing the expected transshipment lead times. We apply an evolutionary multiobjective optimization approach using the strength Pareto evolutionary algorithm (SPEA2), to approximate the optimal Pareto front. Simulation with a wide choice of model parameters shows the different trades-off between the conflicting objectives

    Bi-Objective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models

    Full text link
    Nonnegative matrix factorization (NMF) is a powerful class of feature extraction techniques that has been successfully applied in many fields, namely in signal and image processing. Current NMF techniques have been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. In this paper, we propose to revisit the NMF as a multi-objective problem, in particular a bi-objective one, where the objective functions defined in both input and feature spaces are taken into account. By taking the advantage of the sum-weighted method from the literature of multi-objective optimization, the proposed bi-objective NMF determines a set of nondominated, Pareto optimal, solutions instead of a single optimal decomposition. Moreover, the corresponding Pareto front is studied and approximated. Experimental results on unmixing real hyperspectral images confirm the efficiency of the proposed bi-objective NMF compared with the state-of-the-art methods
    corecore