3,304 research outputs found

    Identification of stable models via nonparametric prediction error methods

    Full text link
    A new Bayesian approach to linear system identification has been proposed in a series of recent papers. The main idea is to frame linear system identification as predictor estimation in an infinite dimensional space, with the aid of regularization/Bayesian techniques. This approach guarantees the identification of stable predictors based on the prediction error minimization. Unluckily, the stability of the predictors does not guarantee the stability of the impulse response of the system. In this paper we propose and compare various techniques to address this issue. Simulations results comparing these techniques will be provided.Comment: number of pages = 6, number of figures =

    Towards Efficient Maximum Likelihood Estimation of LPV-SS Models

    Full text link
    How to efficiently identify multiple-input multiple-output (MIMO) linear parameter-varying (LPV) discrete-time state-space (SS) models with affine dependence on the scheduling variable still remains an open question, as identification methods proposed in the literature suffer heavily from the curse of dimensionality and/or depend on over-restrictive approximations of the measured signal behaviors. However, obtaining an SS model of the targeted system is crucial for many LPV control synthesis methods, as these synthesis tools are almost exclusively formulated for the aforementioned representation of the system dynamics. Therefore, in this paper, we tackle the problem by combining state-of-the-art LPV input-output (IO) identification methods with an LPV-IO to LPV-SS realization scheme and a maximum likelihood refinement step. The resulting modular LPV-SS identification approach achieves statical efficiency with a relatively low computational load. The method contains the following three steps: 1) estimation of the Markov coefficient sequence of the underlying system using correlation analysis or Bayesian impulse response estimation, then 2) LPV-SS realization of the estimated coefficients by using a basis reduced Ho-Kalman method, and 3) refinement of the LPV-SS model estimate from a maximum-likelihood point of view by a gradient-based or an expectation-maximization optimization methodology. The effectiveness of the full identification scheme is demonstrated by a Monte Carlo study where our proposed method is compared to existing schemes for identifying a MIMO LPV system

    Bessel Functions in Mass Action. Modeling of Memories and Remembrances

    Full text link
    Data from experimental observations of a class of neurological processes (Freeman K-sets) present functional distribution reproducing Bessel function behavior. We model such processes with couples of damped/amplified oscillators which provide time dependent representation of Bessel equation. The root loci of poles and zeros conform to solutions of K-sets. Some light is shed on the problem of filling the gap between the cellular level dynamics and the brain functional activity. Breakdown of time-reversal symmetry is related with the cortex thermodynamic features. This provides a possible mechanism to deduce lifetime of recorded memory.Comment: 16 pages, 9 figures, Physics Letters A, 2015 in pres

    Impulse response identification in DSGE models

    Get PDF
    Dynamic stochastic general equilibrium (DSGE) models have become a widely used tool for policymakers. This paper modifies the global identification theory used for structural vector autoregressions, and applies it to DSGE models. We use this theory to check whether a DSGE model structure allows for unique estimates of structural shocks and their dynamic effects. The potential cost of a lack of identification for policy oriented models along that specific dimension is huge, as the same model can generate a number of contrasting yet theoretically and empirically justifiable recommendations. The problem and methodology are illustrated using a simple New Keynesian business cycle model.

    The New Keynesian Monetary Model: Does it Show the Comovement Between Output and Inflation in the U.S.?

    Get PDF
    Published as article in: Journal of Economic Dynamics and Control (2008), 32(May), pp. 1466-1488.comovement, VAR forecast errors, optimal policy, NKM model

    An empirical Bayes approach to identification of modules in dynamic networks

    Full text link
    We present a new method of identifying a specific module in a dynamic network, possibly with feedback loops. Assuming known topology, we express the dynamics by an acyclic network composed of two blocks where the first block accounts for the relation between the known reference signals and the input to the target module, while the second block contains the target module. Using an empirical Bayes approach, we model the first block as a Gaussian vector with covariance matrix (kernel) given by the recently introduced stable spline kernel. The parameters of the target module are estimated by solving a marginal likelihood problem with a novel iterative scheme based on the Expectation-Maximization algorithm. Additionally, we extend the method to include additional measurements downstream of the target module. Using Markov Chain Monte Carlo techniques, it is shown that the same iterative scheme can solve also this formulation. Numerical experiments illustrate the effectiveness of the proposed methods
    corecore