25,941 research outputs found

    A Practical Guide to Robust Optimization

    Get PDF
    Robust optimization is a young and active research field that has been mainly developed in the last 15 years. Robust optimization is very useful for practice, since it is tailored to the information at hand, and it leads to computationally tractable formulations. It is therefore remarkable that real-life applications of robust optimization are still lagging behind; there is much more potential for real-life applications than has been exploited hitherto. The aim of this paper is to help practitioners to understand robust optimization and to successfully apply it in practice. We provide a brief introduction to robust optimization, and also describe important do's and don'ts for using it in practice. We use many small examples to illustrate our discussions

    Data-driven Inverse Optimization with Imperfect Information

    Full text link
    In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent's objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect information, that is, where the agent's true objective function is not contained in the search space of candidate objectives, where the agent suffers from bounded rationality or implementation errors, or where the observed signal-response pairs are corrupted by measurement noise. We formalize this inverse optimization problem as a distributionally robust program minimizing the worst-case risk that the {\em predicted} decision ({\em i.e.}, the decision implied by a particular candidate objective) differs from the agent's {\em actual} response to a random signal. We show that our framework offers rigorous out-of-sample guarantees for different loss functions used to measure prediction errors and that the emerging inverse optimization problems can be exactly reformulated as (or safely approximated by) tractable convex programs when a new suboptimality loss function is used. We show through extensive numerical tests that the proposed distributionally robust approach to inverse optimization attains often better out-of-sample performance than the state-of-the-art approaches

    Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

    Full text link
    We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribution within this Wasserstein ball. The state-of-the-art methods for solving the resulting distributionally robust optimization problems rely on global optimization techniques, which quickly become computationally excruciating. In this paper we demonstrate that, under mild assumptions, the distributionally robust optimization problems over Wasserstein balls can in fact be reformulated as finite convex programs---in many interesting cases even as tractable linear programs. Leveraging recent measure concentration results, we also show that their solutions enjoy powerful finite-sample performance guarantees. Our theoretical results are exemplified in mean-risk portfolio optimization as well as uncertainty quantification.Comment: 42 pages, 10 figure

    On Robust Tie-line Scheduling in Multi-Area Power Systems

    Full text link
    The tie-line scheduling problem in a multi-area power system seeks to optimize tie-line power flows across areas that are independently operated by different system operators (SOs). In this paper, we leverage the theory of multi-parametric linear programming to propose algorithms for optimal tie-line scheduling within a deterministic and a robust optimization framework. Through a coordinator, the proposed algorithms are proved to converge to the optimal schedule within a finite number of iterations. A key feature of the proposed algorithms, besides their finite step convergence, is the privacy of the information exchanges; the SO in an area does not need to reveal its dispatch cost structure, network constraints, or the nature of the uncertainty set to the coordinator. The performance of the algorithms is evaluated using several power system examples

    Lagrangean decomposition for large-scale two-stage stochastic mixed 0-1 problems

    Get PDF
    In this paper we study solution methods for solving the dual problem corresponding to the Lagrangean Decomposition of two stage stochastic mixed 0-1 models. We represent the two stage stochastic mixed 0-1 problem by a splitting variable representation of the deterministic equivalent model, where 0-1 and continuous variables appear at any stage. Lagrangean Decomposition is proposed for satisfying both the integrality constraints for the 0-1 variables and the non-anticipativity constraints. We compare the performance of four iterative algorithms based on dual Lagrangean Decomposition schemes, as the Subgradient method, the Volume algorithm, the Progressive Hedging algorithm and the Dynamic Constrained Cutting Plane scheme. We test the conditions and properties of convergence for medium and large-scale dimension stochastic problems. Computational results are reported.Progressive Hedging algorithm, volume algorithm, Lagrangean decomposition, subgradient method
    corecore