2,154 research outputs found

    Inspecting rewriting logic computations (in a parametric and stepwise way)

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-54624-2_12Trace inspection is concerned with techniques that allow the trace content to be searched for specific components. This paper presents a rich and highly dynamic, parameterized technique for the trace inspection of Rewriting Logic theories that allows the non-deterministic execution of a given unconditional rewrite theory to be followed up in different ways. Using this technique, an analyst can browse, slice, filter, or search the traces as they come to life during the program execution. Starting from a selected state in the computation tree, the navigation of the trace is driven by a user-defined, inspection criterion that specifies the required exploration mode. By selecting different inspection criteria, one can automatically derive a family of practical algorithms such as program steppers and more sophisticated dynamic trace slicers that facilitate the dynamic detection of control and data dependencies across the computation tree. Our methodology, which is implemented in the Anima graphical tool, allows users to capture the impact of a given criterion thereby facilitating the detection of improper program behaviors.This work has been partially supported by the EU (FEDER), the Spanish MEC project ref. TIN2010-21062-C02-02, the Spanish MICINN complementary action ref. TIN2009-07495-E, and by Generalitat Valenciana ref. PROMETEO2011/052. This work was carried out during the tenure of D. Ballis’ ERCIM “Alain Bensoussan ”Postdoctoral Fellowship. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 246016. F. Frechina was supported by FPU-ME grant AP2010-5681.Alpuente Frasnedo, M.; Ballis, D.; Frechina, F.; Sapiña Sanchis, J. (2014). Inspecting rewriting logic computations (in a parametric and stepwise way). En Specification, algebra, and software: essays dedicated to Kokichi Futatsugi. Springer Verlag (Germany). 229-255. https://doi.org/10.1007/978-3-642-54624-2_12S229255Alpuente, M., Ballis, D., Baggi, M., Falaschi, M.: A Fold/Unfold Transformation Framework for Rewrite Theories extended to CCT. In: Proc. PEPM 2010, pp. 43–52. ACM (2010)Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-checking Web Applications with Web-TLR. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 341–346. Springer, Heidelberg (2010)Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward Trace Slicing for Rewriting Logic Theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 34–48. Springer, Heidelberg (2011)Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Slicing-Based Trace Analysis of Rewriting Logic Specifications with iJulienne. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 121–124. Springer, Heidelberg (2013)Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using Conditional Trace Slicing for improving Maude programs. Science of Computer Programming (2013) (to appear)Alpuente, M., Ballis, D., Romero, D.: A Rewriting Logic Approach to the Formal Specification and Verification of Web applications. Science of Computer Programming (2013) (to appear)Baggi, M., Ballis, D., Falaschi, M.: Quantitative Pathway Logic for Computational Biology. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 68–82. Springer, Heidelberg (2009)Bruni, R., Meseguer, J.: Semantic Foundations for Generalized Rewrite Theories. Theoretical Computer Science 360(1-3), 386–414 (2006)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude Manual (Version 2.6). Technical report, SRI Int’l Computer Science Laboratory (2011), http://maude.cs.uiuc.edu/maude2-manual/Clements, J., Flatt, M., Felleisen, M.: Modeling an Algebraic Stepper. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 320–334. Springer, Heidelberg (2001)Durán, F., Meseguer, J.: A Maude Coherence Checker Tool for Conditional Order-Sorted Rewrite Theories. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 86–103. Springer, Heidelberg (2010)Eker, S.: Associative-Commutative Matching via Bipartite Graph Matching. The Computer Journal 38(5), 381–399 (1995)Eker, S.: Associative-Commutative Rewriting on Large Terms. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 14–29. Springer, Heidelberg (2003)Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. I, pp. 1–112. Oxford University Press (1992)Martí-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theoretical Computer Science 285(2), 121–154 (2002)Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer Science 96(1), 73–155 (1992)Meseguer, J.: The Temporal Logic of Rewriting: A Gentle Introduction. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Montanari Festschrift. LNCS, vol. 5065, pp. 354–382. Springer, Heidelberg (2008)Plotkin, G.D.: The Origins of Structural Operational Semantics. The Journal of Logic and Algebraic Programming 60-61(1), 3–15 (2004)Riesco, A., Verdejo, A., Caballero, R., Martí-Oliet, N.: Declarative Debugging of Rewriting Logic Specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 308–325. Springer, Heidelberg (2009)Riesco, A., Verdejo, A., Martí-Oliet, N.: Declarative Debugging of Missing Answers for Maude. In: Proc. RTA 2010. LIPIcs, vol. 6, pp. 277–294 (2010)TeReSe. Term Rewriting Systems. Cambridge University Press (2003

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Exploring Conditional Rewriting Logic Computations

    Get PDF
    [EN] Trace exploration is concerned with techniques that allow computation traces to be dynamically searched for specific contents. Depending on whether the exploration is carried backward or forward, trace exploration techniques allow provenance tracking or impact tracking to be done. The aim of provenance tracking is to show how (parts of) a program output depends on (parts of) its input and to help estimate which input data need to be modified to accomplish a change in the outcome. The aim of impact tracking is to identify the scope and potential consequences of changing the program input. Rewriting Logic (RWL) is a logic of change that supplements (an extension of) the equational logic by adding rewrite rules that are used to describe (nondeterministic) transitions between states. In this paper, we present a rich and highly dynamic, parameterized technique for the forward inspection of RWL computations that allows the nondeterministic execution of a given conditional rewrite theory to be followed up in different ways. With this technique, an analyst can browse, slice, filter, or search the traces as they come to life during the program execution. The navigation of the trace is driven by a user-defined, inspection criterion that specifies the required exploration mode. By selecting different inspection criteria, one can automatically derive a family of practical algorithms such as program steppers and more sophisticatedThis work has been partially supported by the EU (FEDER) and the Spanish MEC project Ref. TIN2010-21062-C02-02, the Spanish MICINN complementary action Ref. TIN2009-07495-E, and by Generalitat Valenciana Ref. PROMETEO2011/052. This work was carried out during the tenure of D. Ballis' ERCIM "Alain Bensoussan" Postdoctoral Fellowship. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement N. 246016. F. Frechina was supported by FPU-ME grant AP2010-5681, and J. Sapina was supported by FPI-UPV grant SP2013-0083.Alpuente Frasnedo, M.; Ballis, D.; Frechina Navarro, F.; Sapiña Sanchis, J. (2015). Exploring Conditional Rewriting Logic Computations. Journal of Symbolic Computation. 69:3-39. https://doi.org/10.1016/j.jsc.2014.09.028S3396

    Rewriting Logic Techniques for Program Analysis and Optimization

    Full text link
    Esta tesis propone una metodología de análisis dinámico que mejora el diagnóstico de programas erróneos escritos en el lenguaje Maude. La idea clave es combinar técnicas de verificación de aserciones en tiempo de ejecución con la fragmentación dinámica de trazas de ejecución para detectar automáticamente errores en tiempo de ejecución, al tiempo que se reduce el tamaño y la complejidad de las trazas a analizar. En el caso de violarse una aserción, se infiere automáticamente el criterio de fragmentación, lo que facilita al usuario identificar rápidamente la fuente del error. En primer lugar, la tesis formaliza una técnica destinada a detectar automáticamente eventuales desviaciones del comportamiento deseado del programa (síntomas de error). Esta técnica soporta dos tipos de aserciones definidas por el usuario: aserciones funcionales (que restringen llamadas a funciones deterministas) y aserciones de sistema (que especifican los invariantes de estado del sistema). La técnica de verificación dinámica propuesta es demostrablemente correcta en el sentido de que todos los errores señalados definitivamente delatan la violación de las aserciones. Tras eventuales violaciones de aserciones, se generan automáticamente trazas fragmentadas (es decir, trazas simplificadas pero igualmente precisas) que ayudan a identificar la causa del error. Además, la técnica también sugiere una posible reparación para las reglas implicadas en la generación de los estados erróneos. La metodología propuesta se basa en (i) una notación lógica para especificar las aserciones que se imponen a la ejecución; (ii) una técnica de verificación aplicable en tiempo de ejecución que comprueba dinámicamente las aserciones; y (iii) un mecanismo basado en la generalización (ecuacional) menos general que automáticamente obtiene criterios precisos para fragmentar trazas de ejecución a partir de aserciones falsificadas. Por último, se presenta una implementación de la técnica propuesta en la herramienta de análisis dinámico basado en aserciones ABETS, que muestra cómo es posible combinar el trazado de las propiedades asertadas del programa para obtener un algoritmo preciso de análisis de trazas que resulta útil para el diagnóstico y la depuración de programas.This thesis proposes a dynamic analysis methodology for improving the diagnosis of erroneous Maude programs. The key idea is to combine runtime assertion checking and dynamic trace slicing for automatically catching errors at runtime while reducing the size and complexity of the erroneous traces to be analyzed (i.e., those leading to states that fail to satisfy the assertions). In the event of an assertion violation, the slicing criterion is automatically inferred, which facilitates the user to rapidly pinpoint the source of the error. First, a technique is formalized that aims at automatically detecting anomalous deviations of the intended program behavior (error symptoms) by using assertions that are checked at runtime. This technique supports two types of user-defined assertions: functional assertions (which constrain deterministic function calls) and system assertions (which specify system state invariants). The proposed dynamic checking is provably sound in the sense that all errors flagged definitely signal a violation of the specifications. Then, upon eventual assertion violations, accurate trace slices (i.e., simplified yet precise execution traces) are generated automatically, which help identify the cause of the error. Moreover, the technique also suggests a possible repair for the rules involved in the generation of the erroneous states. The proposed methodology is based on (i) a logical notation for specifying assertions that are imposed on execution runs; (ii) a runtime checking technique that dynamically tests the assertions; and (iii) a mechanism based on (equational) least general generalization that automatically derives accurate criteria for slicing from falsified assertions. Finally, an implementation of the proposed technique is presented in the assertion-based, dynamic analyzer ABETS, which shows how the forward and backward tracking of asserted program properties leads to a thorough trace analysis algorithm that can be used for program diagnosis and debugging.Esta tesi proposa una metodologia d'anàlisi dinàmica que millora el diagnòstic de programes erronis escrits en el llenguatge Maude. La idea clau és combinar tècniques de verificació d'assercions en temps d'execució amb la fragmentació dinàmica de traces d'execució per a detectar automàticament errors en temps d'execució, alhora que es reduïx la grandària i la complexitat de les traces a analitzar. En el cas de violar-se una asserció, s'inferix automàticament el criteri de fragmentació, la qual cosa facilita a l'usuari identificar ràpidament la font de l'error. En primer lloc, la tesi formalitza una tècnica destinada a detectar automàticament eventuals desviacions del comportament desitjat del programa (símptomes d'error). Esta tècnica suporta dos tipus d'assercions definides per l'usuari: assercions funcionals (que restringixen crides a funcions deterministes) i assercions de sistema (que especifiquen els invariants d'estat del sistema). La tècnica de verificació dinàmica proposta és demostrablement correcta en el sentit que tots els errors assenyalats definitivament delaten la violació de les assercions. Davant eventuals violacions d'assercions, es generen automàticament traces fragmentades (és a dir, traces simplificades però igualment precises) que ajuden a identificar la causa de l'error. A més, la tècnica també suggerix una possible reparació de les regles implicades en la generació dels estats erronis. La metodologia proposada es basa en (i) una notació lògica per a especificar les assercions que s'imposen a l'execució; (ii) una tècnica de verificació aplicable en temps d'execució que comprova dinàmicament les assercions; i (iii) un mecanisme basat en la generalització (ecuacional) menys general que automàticament obté criteris precisos per a fragmentar traces d'execució a partir d'assercions falsificades. Finalment, es presenta una implementació de la tècnica proposta en la ferramenta d'anàlisi dinàmica basat en assercions ABETS, que mostra com és possible combinar el traçat cap avant i cap arrere de les propietats assertades del programa per a obtindre un algoritme precís d'anàlisi de traces que resulta útil per al diagnòstic i la depuració de programes.Sapiña Sanchis, J. (2017). Rewriting Logic Techniques for Program Analysis and Optimization [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/94044TESI

    Debugging Maude programs via runtime assertion checking and trace slicing

    Full text link
    [EN] This is the author’s version of a work that was accepted for publication in . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Logical and Algebraic Methods in Programming, [VOL 85, ISSUE 5, (2016)] DOI 10.1016/j.jlamp.2016.03.001.In this paper we propose a dynamic analysis methodology for improving the diagnosis of erroneous Maude programs. The key idea is to combine runtime checking and dynamic trace slicing for automatically catching errors at runtime while reducing the size and complexity of the erroneous traces to be analyzed (i.e., those leading to states failing to satisfy some of the assertions). First, we formalize a technique that is aimed at automatically detecting deviations of the program behavior (symptoms) with respect to two types of user-defined assertions: functional assertions and system assertions. The proposed dynamic checking is provably sound in the sense that all errors flagged are definitely violations of the specifications. Then, upon eventual assertion violations we generate accurate trace slices that help identify the cause of the error. Our methodology is based on (i) a logical notation for specifying assertions that are imposed on execution runs; (ii) a runtime checking technique that dynamically tests the assertions; and (iii) a mechanism based on (equational) least general generalization that automatically derives accurate criteria for slicing from falsified assertions. Finally, we report on an implementation of the proposed technique in the assertion-based, dynamic analyzer ABETS and show how the forward and backward tracking of asserted program properties leads to a thorough trace analysis algorithm that can be used for program diagnosis and debugging. © 2016 Elsevier Inc. All rights reserved.This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN2015-69175-C4-1-R and TIN2013-45732-C4-1-P, and by Generalitat Valenciana Ref. PROMETEOII/2015/013. F. Frechina was supported by FPU-ME grant AP2010-5681, and J. Sapiña was supported by FPI-UPV grant SP2013-0083 and mobility grant VIIT-3946.Alpuente Frasnedo, M.; Ballis, D.; Frechina, F.; Sapiña-Sanchis, J. (2016). Debugging Maude programs via runtime assertion checking and trace slicing. Journal of Logical and Algebraic Methods in Programming. 85(5):707-736. https://doi.org/10.1016/j.jlamp.2016.03.001S70773685

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Model Checking Linear Logic Specifications

    Full text link
    The overall goal of this paper is to investigate the theoretical foundations of algorithmic verification techniques for first order linear logic specifications. The fragment of linear logic we consider in this paper is based on the linear logic programming language called LO enriched with universally quantified goal formulas. Although LO was originally introduced as a theoretical foundation for extensions of logic programming languages, it can also be viewed as a very general language to specify a wide range of infinite-state concurrent systems. Our approach is based on the relation between backward reachability and provability highlighted in our previous work on propositional LO programs. Following this line of research, we define here a general framework for the bottom-up evaluation of first order linear logic specifications. The evaluation procedure is based on an effective fixpoint operator working on a symbolic representation of infinite collections of first order linear logic formulas. The theory of well quasi-orderings can be used to provide sufficient conditions for the termination of the evaluation of non trivial fragments of first order linear logic.Comment: 53 pages, 12 figures "Under consideration for publication in Theory and Practice of Logic Programming

    07401 Abstracts Collection -- Deduction and Decision Procedures

    Get PDF
    From 01.10. to 05.10.2007, the Dagstuhl Seminar 07401 ``Deduction and Decision Procedures\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper
    corecore