7 research outputs found

    Deep Ensembles Based on Stochastic Activations for Semantic Segmentation

    Get PDF
    Semantic segmentation is a very popular topic in modern computer vision, and it has applications in many fields. Researchers have proposed a variety of architectures for semantic image segmentation. The most common ones exploit an encoder–decoder structure that aims to capture the semantics of the image and its low-level features. The encoder uses convolutional layers, in general with a stride larger than one, to extract the features, while the decoder recreates the image by upsampling and using skip connections with the first layers. The objective of this study is to propose a method for creating an ensemble of CNNs by enhancing diversity among networks with different activation functions. In this work, we use DeepLabV3+ as an architecture to test the effectiveness of creating an ensemble of networks by randomly changing the activation functions inside the network multiple times. We also use different backbone networks in our DeepLabV3+ to validate our findings. A comprehensive evaluation of the proposed approach is conducted across two different image segmentation problems: the first is from the medical field, i.e., polyp segmentation for early detection of colorectal cancer, and the second is skin detection for several different applications, including face detection, hand gesture recognition, and many others. As to the first problem, we manage to reach a Dice coefficient of 0.888, and a mean intersection over union (mIoU) of 0.825, in the competitive Kvasir-SEG dataset. The high performance of the proposed ensemble is confirmed in skin detection, where the proposed approach is ranked first concerning other state-of-the-art approaches (including HarDNet) in a large set of testing datasets

    The Adaptive Quadratic Linear Unit (AQuLU): Adaptive Non Monotonic Piecewise Activation Function

    Get PDF
    The activation function plays a key role in influencing the performance and training dynamics of neural networks. There are hundreds of activation functions widely used as rectified linear units (ReLUs), but most of them are applied to complex and large neural networks, which often have gradient explosion and vanishing gradient problems. By studying a variety of non-monotonic activation functions, we propose a method to construct a non-monotonic activation function, x·Φ(x), with Φ(x) [0, 1]. With the hardening treatment of Φ(x), we propose an adaptive non-monotonic segmented activation function, called the adaptive quadratic linear unit, abbreviated as AQuLU, which ensures the sparsity of the input data and improves training efficiency. In image classification based on different state-of-the-art neural network architectures, the performance of AQuLUs has significant advantages for more complex and deeper architectures with various activation functions. The ablation experimental study further validates the compatibility and stability of AQuLUs with different depths, complexities, optimizers, learning rates, and batch sizes. We thus demonstrate the high efficiency, robustness, and simplicity of AQuLUs

    An efficient semi-sigmoidal non-linear activation function approach for deep neural networks

    Get PDF
    A non-linear activation function is one of the key contributing factors to the success of Deep Learning (DL). Since the revival of DL takes place in 2012, Rectified Linear Unit (ReLU) has been regarded as a de facto standard for many DL models by the community. Despite its popularity, however, ReLU contains several shortcomings that could result in inefficient learning of the DL models. These shortcomings are: 1) the inherent negative cancellation property in ReLU tends to remove all negative inputs and causes massive information lost to the network; 2) the derivative of ReLU potentially causes the occurrence of dead neurons problem to the networks; 3) the mean activation generated by ReLU is highly positive and lead to bias shift effect in the network layers; 4) the inherent multilinear structure of ReLU restricts the nonlinear capability of the networks; 5) the predefined nature of ReLU limits the flexibility of the networks. To address these shortcomings, this study proposed a new variant of activation function based on the Semi-sigmoidal (Sig) approach. Based on this approach, three variants of activation functions are introduced, namely, Shifted Semisigmoidal (SSig), Adaptive Shifted Semi-sigmoidal (ASSig), and Bi-directional Adaptive Shifted Semi-sigmoidal (BiASSig). The proposed activation functions were tested against the ReLU (baseline) and state-of-the-art methods using eight Deep Neural Networks (DNNs) on seven benchmark image datasets. Further, Adaptive Moment Estimation (ADAM) and Stochastic Gradient Descent (SGD) were selected as optimizers to train the DNNs. The baseline comparison score and mean rank were used to consolidate and analyse the experimental results effectively. The experimental results in terms of the overall baseline comparison score shown that SSig, ASSig, and BiASSig obtained the score of 79, 87, and 86 out of 112, respectively, which achieving outstanding performance than ReLU in more than 70% of the cases. In terms of overall mean rank (OMR), ReLU ranked at tenth (10th), whereas SSig, ASSig, and BiASSig ranked at fifth (5th), first (1st), and second (2nd), showing remarkable performance than ReLU and other comparing methods

    ASB-CS: Adaptive sparse basis compressive sensing model and its application to medical image encryption

    Get PDF
    Recent advances in intelligent wearable devices have brought tremendous chances for the development of healthcare monitoring system. However, the data collected by various sensors in it are user-privacy-related information. Once the individuals’ privacy is subjected to attacks, it can potentially cause serious hazards. For this reason, a feasible solution built upon the compression-encryption architecture is proposed. In this scheme, we design an Adaptive Sparse Basis Compressive Sensing (ASB-CS) model by leveraging Singular Value Decomposition (SVD) manipulation, while performing a rigorous proof of its effectiveness. Additionally, incorporating the Parametric Deformed Exponential Rectified Linear Unit (PDE-ReLU) memristor, a new fractional-order Hopfield neural network model is introduced as a pseudo-random number generator for the proposed cryptosystem, which has demonstrated superior properties in many aspects, such as hyperchaotic dynamics and multistability. To be specific, a plain medical image is subjected to the ASB-CS model and bidirectional diffusion manipulation under the guidance of the key-controlled cipher flows to yield the corresponding cipher image without visual semantic features. Ultimately, the simulation results and analysis demonstrate that the proposed scheme is capable of withstanding multiple security attacks and possesses balanced performance in terms of compressibility and robustness

    Comparison of Different Convolutional Neural Network Activation Functions and Methods for Building Ensembles for Small to Midsize Medical Data Sets

    Get PDF
    CNNs and other deep learners are now state-of-the-art in medical imaging research. However, the small sample size of many medical data sets dampens performance and results in overfitting. In some medical areas, it is simply too labor-intensive and expensive to amass images numbering in the hundreds of thousands. Building Deep CNN ensembles of pre-trained CNNs is one powerful method for overcoming this problem. Ensembles combine the outputs of multiple classifiers to improve performance. This method relies on the introduction of diversity, which can be introduced on many levels in the classification workflow. A recent ensembling method that has shown promise is to vary the activation functions in a set of CNNs or within different layers of a single CNN. This study aims to examine the performance of both methods using a large set of twenty activations functions, six of which are presented here for the first time: 2D Mexican ReLU, TanELU, MeLU + GaLU, Symmetric MeLU, Symmetric GaLU, and Flexible MeLU. The proposed method was tested on fifteen medical data sets representing various classification tasks. The best performing ensemble combined two well-known CNNs (VGG16 and ResNet50) whose standard ReLU activation layers were randomly replaced with another. Results demonstrate the superiority in performance of this approach.publishedVersionPeer reviewe
    corecore