207 research outputs found

    Lattice points on circles, squares in arithmetic progressions and sumsets of squares

    Get PDF
    Rudin conjectured that there are never more than c N^(1/2) squares in an arithmetic progression of length N. Motivated by this surprisingly difficult problem we formulate more than twenty conjectures in harmonic analysis, analytic number theory, arithmetic geometry, discrete geometry and additive combinatorics (some old and some new) which each, if true, would shed light on Rudin's conjecture.Comment: 21 pages, preliminary version. Comments welcom

    Large gaps between consecutive prime numbers

    Full text link
    Let G(X)G(X) denote the size of the largest gap between consecutive primes below XX. Answering a question of Erdos, we show that G(X)f(X)logXloglogXloglogloglogX(logloglogX)2,G(X) \geq f(X) \frac{\log X \log \log X \log \log \log \log X}{(\log \log \log X)^2}, where f(X)f(X) is a function tending to infinity with XX. Our proof combines existing arguments with a random construction covering a set of primes by arithmetic progressions. As such, we rely on recent work on the existence and distribution of long arithmetic progressions consisting entirely of primes.Comment: v2. very minor corrections. To appear in Ann. Mat

    Some applications of p-adic uniformization to algebraic dynamics

    Full text link
    This is not a research paper, but a survey submitted to a proceedings volume.Comment: 21 pages, LaTe

    Points at rational distances from the vertices of certain geometric objects

    Full text link
    We consider various problems related to finding points in \Q^{2} and in \Q^{3} which lie at rational distance from the vertices of some specified geometric object, for example, a square or rectangle in \Q^{2}, and a cube or tetrahedron in \Q^{3}.Comment: 23 pages, submitte

    Algoritmikus számelmélet és alkalmazásai a kriptográfiában = Computational number theory and its applications in cryptography

    Get PDF
    Megmutattuk, hogy a normaforma függvényt moduló pq redukálva, ahol p és q nagy prímszámok, ütközésmentes függvényt kapunk. Több konstrukciót elemeztünk kriptográfiai alkalmazások szempontjából releváns véletlen sorozatcsaládra. Ha Gn(x) egy algebrailag zárt test feletti lineáris rekurzív polinomsorozat és x,y algebrailag függőek, akkor bebizonyítottuk, hogy a Gn(x)=Gm(y) egyenletnek általános feltételek mellett csak véges sok megoldása van n,m-ben. Bebizonyítottuk, hogy egy normaforma egyenletnek általában csak véges sok olyan megoldása van, ahol a megoldások koordinátái egy számtani sorozatot alkotnak. Megadtuk a klasszikus ?-reprezentáció és a kanonikus számrendszerek egy közös általánosítását és több dolgozatban vizsgáltuk ezen SRS-nek elnevezett fogalom tulajdonságait. Elemzésünk választ ad arra, hogy miért nehéz a harmadfokú CNS polinomok, illetve az (F) tulajdonságú Pisot számok jellemzése. Megfogalmaztuk a következő sejtést: Legyen |?|<2 és {an} egész számok olyan sorozata, amelyre 0 ? an-1+ ? an + an+1 <1 minden n-re. Akkor {an} periódikus. Számos korábbi eredményt messzemenően általánosítva, mély eredményeket értünk el két klasszikus, Fermat-ig és Eulerig visszanyúló diofantikus témakörben, nevezetesen számtani sorozatokban, illetve hatványösszegekben található teljes hatványokra vonatkozóan. Többek között megmutattuk, hogy egészekből álló k-tagú számtani sorozat tagjainak szorzata k ? 11-re általában nem lehet teljes hatvány. | Considering the reduction modulo pq, where p and q are big primes we constructed collision resistant hash functions. We studied some construction of cryptography relevant pseudo random number sequences. If Gn(x) denotes a linear recursive polynomial sequence over an algebraically closed field and x,y are algebraically dependent, then we proved that the equation Gn(x)=Gm(y) has under quite general assumptions only finitely many solutions in n,m. We proved that a norm form equation has only finitely many solutions, which coordinates form an arithmetical progression. We realized a common generalization, called shift radix system, of the classical ?-reprezentation and the canonical number systems and studied its properties in several papers. Our investigation showed that the characterization problem of cubic CNS polynomials and Pisot numbers of proprty (F) is complicated. We made rise the conjecture: Let |?|<2 and {an} a sequence of integers staisfying the inequality 0 ? an-1+ ? an + an+1 <1 for all n. Then {an} is periodical. Generalyzing essentially several earlier results, we achieved deep results in two classical diophantine topics: perfect powers in arithmetical progressions and in power sums, which are going back to Farmat and Euler. We proved among others that the product of members of an arithmetical progression of length at most 11 apart from trivial cases cannot be a perfect power

    30 years of collaboration

    Get PDF
    We highlight some of the most important cornerstones of the long standing and very fruitful collaboration of the Austrian Diophantine Number Theory research group and the Number Theory and Cryptography School of Debrecen. However, we do not plan to be complete in any sense but give some interesting data and selected results that we find particularly nice. At the end we focus on two topics in more details, namely a problem that origins from a conjecture of Rényi and Erdős (on the number of terms of the square of a polynomial) and another one that origins from a question of Zelinsky (on the unit sum number problem). This paper evolved from a plenary invited talk that the authors gaveat the Joint Austrian-Hungarian Mathematical Conference 2015, August 25-27, 2015 in Győr (Hungary)
    corecore