371 research outputs found

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either n/k\left\lfloor n/k \right\rfloor or n/k\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Polynomial kernelization for removing induced claws and diamonds

    Full text link
    A graph is called (claw,diamond)-free if it contains neither a claw (a K1,3K_{1,3}) nor a diamond (a K4K_4 with an edge removed) as an induced subgraph. Equivalently, (claw,diamond)-free graphs can be characterized as line graphs of triangle-free graphs, or as linear dominoes, i.e., graphs in which every vertex is in at most two maximal cliques and every edge is in exactly one maximal clique. In this paper we consider the parameterized complexity of the (claw,diamond)-free Edge Deletion problem, where given a graph GG and a parameter kk, the question is whether one can remove at most kk edges from GG to obtain a (claw,diamond)-free graph. Our main result is that this problem admits a polynomial kernel. We complement this finding by proving that, even on instances with maximum degree 66, the problem is NP-complete and cannot be solved in time 2o(k)V(G)O(1)2^{o(k)}\cdot |V(G)|^{O(1)} unless the Exponential Time Hypothesis fai

    Polynomial fixed-parameter algorithms : a case study for longest path on interval graphs.

    Get PDF
    We study the design of fixed-parameter algorithms for problems already known to be solvable in polynomial time. The main motivation is to get more efficient algorithms for problems with unattractive polynomial running times. Here, we focus on a fundamental graph problem: Longest Path; it is NP-hard in general but known to be solvable in O(n^4) time on n-vertex interval graphs. We show how to solve Longest Path on Interval Graphs, parameterized by vertex deletion number k to proper interval graphs, in O(k^9n) time. Notably, Longest Path is trivially solvable in linear time on proper interval graphs, and the parameter value k can be approximated up to a factor of 4 in linear time. From a more general perspective, we believe that using parameterized complexity analysis for polynomial-time solvable problems offers a very fertile ground for future studies for all sorts of algorithmic problems. It may enable a refined understanding of efficiency aspects for polynomial-time solvable problems, similarly to what classical parameterized complexity analysis does for NP-hard problems

    Structure of conflict graphs in constraint alignment problems and algorithms

    Get PDF
    We consider the constrained graph alignment problem which has applications in biological network analysis. Given two input graphs G1=(V1,E1),G2=(V2,E2)G_1=(V_1,E_1), G_2=(V_2,E_2), a pair of vertex mappings induces an {\it edge conservation} if the vertex pairs are adjacent in their respective graphs. %In general terms The goal is to provide a one-to-one mapping between the vertices of the input graphs in order to maximize edge conservation. However the allowed mappings are restricted since each vertex from V1V_1 (resp. V2V_2) is allowed to be mapped to at most m1m_1 (resp. m2m_2) specified vertices in V2V_2 (resp. V1V_1). Most of results in this paper deal with the case m2=1m_2=1 which attracted most attention in the related literature. We formulate the problem as a maximum independent set problem in a related {\em conflict graph} and investigate structural properties of this graph in terms of forbidden subgraphs. We are interested, in particular, in excluding certain wheals, fans, cliques or claws (all terms are defined in the paper), which corresponds in excluding certain cycles, paths, cliques or independent sets in the neighborhood of each vertex. Then, we investigate algorithmic consequences of some of these properties, which illustrates the potential of this approach and raises new horizons for further works. In particular this approach allows us to reinterpret a known polynomial case in terms of conflict graph and to improve known approximation and fixed-parameter tractability results through efficiently solving the maximum independent set problem in conflict graphs. Some of our new approximation results involve approximation ratios that are function of the optimal value, in particular its square root; this kind of results cannot be achieved for maximum independent set in general graphs.Comment: 22 pages, 6 figure

    Complexity of Grundy coloring and its variants

    Full text link
    The Grundy number of a graph is the maximum number of colors used by the greedy coloring algorithm over all vertex orderings. In this paper, we study the computational complexity of GRUNDY COLORING, the problem of determining whether a given graph has Grundy number at least kk. We also study the variants WEAK GRUNDY COLORING (where the coloring is not necessarily proper) and CONNECTED GRUNDY COLORING (where at each step of the greedy coloring algorithm, the subgraph induced by the colored vertices must be connected). We show that GRUNDY COLORING can be solved in time O(2.443n)O^*(2.443^n) and WEAK GRUNDY COLORING in time O(2.716n)O^*(2.716^n) on graphs of order nn. While GRUNDY COLORING and WEAK GRUNDY COLORING are known to be solvable in time O(2O(wk))O^*(2^{O(wk)}) for graphs of treewidth ww (where kk is the number of colors), we prove that under the Exponential Time Hypothesis (ETH), they cannot be solved in time O(2o(wlogw))O^*(2^{o(w\log w)}). We also describe an O(22O(k))O^*(2^{2^{O(k)}}) algorithm for WEAK GRUNDY COLORING, which is therefore \fpt for the parameter kk. Moreover, under the ETH, we prove that such a running time is essentially optimal (this lower bound also holds for GRUNDY COLORING). Although we do not know whether GRUNDY COLORING is in \fpt, we show that this is the case for graphs belonging to a number of standard graph classes including chordal graphs, claw-free graphs, and graphs excluding a fixed minor. We also describe a quasi-polynomial time algorithm for GRUNDY COLORING and WEAK GRUNDY COLORING on apex-minor graphs. In stark contrast with the two other problems, we show that CONNECTED GRUNDY COLORING is \np-complete already for k=7k=7 colors.Comment: 24 pages, 7 figures. This version contains some new results and improvements. A short paper based on version v2 appeared in COCOON'1
    corecore