Structure of conflict graphs in constrained alignment problems and algorithms|*

Ferhat Alkan ${ }^{1}$ Türker Bıyıkoğlu ${ }^{2} \|$ Marc Demange ${ }^{3}$ Cesim Erten ${ }^{4} \|$

${ }^{1}$ Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
${ }^{2}$ 2. Cadde, 12/9, 06500, Ankara, Turkey
${ }^{3}$ School of Science, RMIT University, Melbourne, Australia
${ }^{4}$ Computer Engineering, Antalya Bilim University, Antalya, Turkey
received $14^{\text {th }}$ Aug. 2017, revised $13^{\text {th }}$ July 2019, accepted $6^{\text {th }}$ Aug. 2019.

Abstract

We consider the constrained graph alignment problem which has applications in biological network analysis. Given two input graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$, two vertices u_{1}, v_{1} of G_{1} paired respectively to two vertices u_{2}, v_{2} of G_{2} induce an edge conservation if u_{1}, v_{1} and u_{2}, v_{2} are adjacent in their respective graphs. The goal is to provide a one-to-one mapping between some vertices of the input graphs in order to maximize edge conservation. However the allowed mappings are restricted since each vertex from V_{1} (resp. V_{2}) is allowed to be mapped to at most m_{1} (resp. m_{2}) specified vertices in $V_{2}\left(\right.$ resp. $\left.V_{1}\right)$. Most of the results in this paper deal with the case $m_{2}=1$ which attracted most attention in the related literature. We formulate the problem as a maximum independent set problem in a related conflict graph and investigate structural properties of this graph in terms of forbidden subgraphs. We are interested, in particular, in excluding certain wheels, fans, cliques or claws (all terms are defined in the paper), which in turn corresponds to excluding certain cycles, paths, cliques or independent sets in the neighborhood of each vertex. Then, we investigate algorithmic consequences of some of these properties, which illustrates the potential of this approach and raises new horizons for further works. In particular this approach allows us to reinterpret a known polynomial case in terms of conflict graph and to improve known approximation and fixed-parameter tractability results through efficiently solving the maximum independent set problem in conflict graphs. Some of our new approximation results involve approximation ratios that are functions of the optimal value, in particular its square root; this kind of results cannot be achieved for maximum independent set in general graphs.

Keywords: Graph algorithms, graph alignment, constrained alignments, conflict graph, maximum independent set, protein-protein interaction networks, functional orthologs, H-free graphs

[^0]
1 Introduction

The graph alignment problem has important applications in biological network alignment, in particular in the alignments of protein-protein interaction (PPI) networks (Abaka et al. (2013); Aladag and Erten (2013); Sharan and Ideker (2006); Zaslavskiy et al. (2009); Alkan and Erten (2014)). Undirected graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ (not necessarily connected) correspond to PPI networks for a pair of species, where the vertex sets V_{1}, V_{2} represent the sets of proteins, and E_{1}, E_{2} represent the sets of known protein interactions pertaining to the networks of species under consideration. The informal goal is to find similar patterns between two PPI networks by identifying a one-to-one mapping between some vertices of V_{1} and V_{2} that maximizes the "similarity" of the mapped proteins, usually scored with respect to the aminoacid sequence similarity and the conservation of interactions between mapped proteins. Functional orthology is an important application that serves as the main motivation to study the alignment problems as part of a comparative analysis of PPI networks. A successful protein interaction network alignment across multiple species could provide a basis for deciding the proteins with similar functions, which may further be used in predicting functions of proteins with unknown functions or in verifying those with known functions, in detecting common orthologous pathways between species, or in reconstructing the evolutionary dynamics (Faisal et al. (2015)).

A graph theory problem related to the biological network alignment problem is that of finding the maximum common edge subgraph (MCES) of a pair of graphs, a problem commonly employed in the matchings of 2D/3D chemical structures (Raymond and Willett (2002)). The MCES of two undirected graphs G_{1}, G_{2} is a common subgraph (not necessarily induced) that contains the largest number of edges common to both G_{1} and G_{2}. The NP-hardness of the MCES problem proposed in Garey and Johnson (1979) trivially implies that the biological network alignment problem is also NP-hard.

A specific version of the problem reduces its size by restricting the output alignment mappings to those chosen among certain subsets of protein mappings. The subsets of allowed mappings are assumed to be predetermined via some measure of similarity, usually that of sequence similarity (Abaka et al. (2013); Zaslavskiy et al. (2009)). The constrained alignment problem we consider herein can be considered as a graph theoretical generalization of this biological network alignment problem version. Formally, an instance $\prec G_{1}, G_{2}, S \succ$ is defined by a pair of undirected graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ and a bipartite graph $S=\left(V_{1} \cup V_{2}, E_{S}\right)$ with parts V_{1} and V_{2} representing possible matching between vertices of G_{1} and vertices of G_{2}. For $i=1,2$, we denote by m_{i}, the maximum degree in S of vertices from part V_{i}. A legal alignment A is a matching of S, i.e., a set of independent edges (pairwise non adjacent). An edge $a b \in E_{1}$ is said to be conserved, if there is an edge $c d \in E_{2}$ such that $b c$ and $a d$ are in A, or $a c$ and $b d$ are in A. Then, the edge $c d$ is equivalently called conserved and, by definition of a matching, the number of conserved edges of G_{1} is equal to the number of conserved edges of G_{2}. The constrained alignment problem is that of finding a legal alignment that maximizes the number of conserved edges in G_{1} (or equivalently in G_{2}).

Several related problems have been studied previously like, for instance, the contact map overlap problem introduced in Goldman et al. (1999). The goal is to maximize the number of conserved edges; however contrary to the constrained alignment problem, no constraint is given in terms of the bipartite graph S. Furthermore their problem definition assumes a linear order of the vertices of both G_{1}, G_{2} which should be preserved by the output mapping. The problem of $\left(\mu_{G_{1}}, \mu_{G_{2}}\right)$ - matching with orthologies, was introduced in Fagnot et al. (2008). Similar to the constrained alignment problem, it is to find a mapping respecting a set of constraints represented by a bipartite graph S but all edges of G_{1} are requested to be
conserved. Assuming $m_{i}=\mu_{G_{i}}, i=1,2$ and denoting by $\Delta_{i}=\Delta\left(G_{i}\right), i=1,2$ for an instance of the problem, where $\Delta(G)$ denotes the maximum degree of graph G, the problem of $\left(\mu_{G_{1}}, \mu_{G_{2}}\right)$-matching with orthologies is shown NP-complete even when $m_{1}=3, m_{2}=2$ and G_{1} and G_{2} are bipartite, $\Delta_{1} \leq 1$ and $\Delta_{2} \leq 2$, or if $m_{1}=3, m_{2}=1$ and $\Delta_{1} \leq 3, \Delta_{2} \leq 4$. It is linear-time solvable if $m_{1}=2$ and $m_{2} \in O(1)$ (see also Fertin et al. (2009)). Finally, the problem $M A X\left(\mu_{G_{1}}, \mu_{G_{2}}\right)$ considered in Fertin et al. (2009) is the optimization version of $\left(\mu_{G_{1}}, \mu_{G_{2}}\right)$-matching with orthologies with the objective to maximize the number of conserved edges. It is almost the same as the constrained alignment problem with $m_{i}=\mu_{G_{i}}, i=1,2$ with the additional requirement that every vertex of G_{1} is mapped to a vertex in G_{2}. We discuss more precisely the relations between these problems in Section 2 In Fertin et al. (2009), only the case $m_{2}=\mu_{G_{2}}=1$ is considered. It is shown APX-hard even if $m_{1}=2$ and $m_{2}=1$ (APX-complete if G_{1} has bounded degree) and both graphs are bipartite. They also propose several approximability and fixed-parameter tractability results (see Ausiello et al. (1999) and Downey and Fellows (1999) for definitions about approximation and parameterized complexity, respectively). In particular, they show that the problem can be approximated within ratio $2\left\lceil 3 \Delta_{1} / 5\right\rceil$ for even Δ_{1} and ratio $2\left\lceil\left(3 \Delta_{1}+2\right) / 5\right\rceil$ for odd Δ_{1}. They also show that the problem is fixed-parameter tractable on the size of the output assuming $m_{2}=1$, m_{1} is constant and G_{1} has a bounded degree.

In this paper, we consider the maximum constrained alignment problem as a maximum independent set problem in a related conflict graph, constructed from G_{1}, G_{2}, and S. Our aim is to investigate structural properties of this conflict graph in order to derive efficient algorithms for the alignment problem. Although a conflict graph is also proposed in Fertin et al. (2009) for $m_{2}=1$, with in particular a fixed-parameter tractability result based on a degree argument, no further structural property is provided. Here, we deepen this approach and strengthen algorithmic results. Our main results and comparison with known results are given in Tables 1, 2 and 3 at the end of this section.
Table 1 shows our main structural results: the basic metrics of the graph - size and maximum degree - in the most general case as well as forbidden subgraphs for the case $m_{2}=1$. Some of these results have direct algorithmic consequences but even those without algorithmic applications are interesting, in particular since they motivate some graph classes for further studies. This is in particular the case for classes of graphs excluding some wheels or fans (related definitions are given in Section 22).

Table 2 describes our approximation results that extend the results in Fertin et al. (2009) in several ways; it also illustrates the potential of our approach. For instance, an analysis of the degree of the conflict graph, generalizing the one in Fertin et al. (2009), immediately leads to an approximation ratio for the general case with a ratio $o\left(\Delta_{1}+\Delta_{2}\right)$ when m_{1}, m_{2} are constant; it is improved to $o\left(\Delta_{1}\right)$ if $m_{2}=1$ and m_{1} is constant. For the case $m_{2}=1$ and m_{1} constant, we propose as well a $O\left(\frac{\left|V_{1}\right|}{\log \left(\left|V_{1}\right|\right)}\right)$ approximation as well as a $O(\sqrt{\beta(I)})$-approximation, where $\beta(I)$ is the optimal value of instance I. To our knowledge such kinds of ratios are totally new for this problem. Finally, one of our structural results gives a $\left(\min \left(\Delta_{1}, \Delta_{2}\right)+1\right)$ approximation if $m_{2}=1$, improving also the previous known ratios.

Table 3 presents two fixed parameter tractability results with respect to the size of the output. Both extend the results of Fertin et al. (2009) to more general cases and both are direct consequences of structural results and known maximum independent set results.

Finally, a last illustration of the potential of the maximum independent set approach is the case where $m_{2}=1$ and G_{1} is acyclic. This case was already shown polynomial in Abaka et al. (2013), using a specific dynamic programming method. A structural analysis of the conflict graphs allows to prove the same result and to interpret it as a maximum stable set polynomial case. Moreover it allows us to derive an explicit
expression of the related complexity. Table 4 sums-up all known complexity results for the maximum constrained alignment problem. Despite being obtained for $\operatorname{MAX}\left(\mu_{G_{1}}, \mu_{G_{2}}\right)$ the hardness results also apply to the constrained alignment problem as noticed at the end of Section 2.

The paper is organized as follows. Section 2 gives the main definitions, introduces the conflict graph and investigates its first characteristics (size and degree), leading to first approximation and fixed parameter tractability results. Section 3 is dedicated to the case $m_{2}=1$ that raised the main attention in the literature. We first investigate in Subsection 3.1 some structural properties of the conflict graph in terms of forbidden subgraphs (wheels and fans and cliques and claws) with their algorithmic consequences. This part constitutes our main contribution. Then, in Subsection 3.2, we revisit the case where $m_{2}=1$ and G_{1} is acyclic. Finally Section 4 discusses further research directions.

Tab. 1: Main structural Properties of \mathcal{C}.

m_{2}	≥ 2	$m_{2}=1$
m_{1}	≥ 3	$m_{1}=2$
Approximation ratio	$\begin{gathered} O\left(\frac{\left(\Delta_{1}+\Delta_{2}\right) \log \log \left(\Delta_{1}+\Delta_{2}\right)}{\log \left(\Delta_{1}+\Delta_{2}\right)}\right) \\ \left(m_{i} \text { const., } i=1,2 \text { - Prop. } 9\right. \end{gathered}$	$\frac{\frac{6 \Delta_{1}}{5}+\text { cst }}{\text { Fertin et al. }} \mathbf{(2 0 0 9)}$
		$\begin{gathered} O\left(\frac{\Delta_{1} \log \log \left(\Delta_{1}\right)}{\log \left(\Delta_{1}\right)}\right) \\ \left(m_{1} \text { constant - Prop. } 11\right) \end{gathered}$
		$\begin{array}{c\|c} \hline \sqrt{3 \beta(I) / 2} & \sqrt{\beta(I)} \\ \text { (Prop. } 21 \\ \hline \end{array}$
		$\begin{aligned} & \forall K>0, \left\lvert\, \frac{V_{1} \mid}{K \log \left(\left\|V_{1}\right\|\right)}\right. \\ & \left(m_{1} \text { constant }- \text { Th. } 25 \mid\right. \end{aligned}$
		$\begin{gathered} \Delta_{\min }+1 \\ \text { (Prop. } 30 \end{gathered}$

Tab. 2: Main approximation results ($\beta(I)$ denotes the optimal value of instance I).

m_{2}	Bounded ≥ 2	$m_{2}=1$	
m_{1}	Bounded ≥ 3		
G_{1} and G_{2}	Bounded degree		Any degree
Parameterized tractability	$\begin{array}{c}\text { FTP } \\ \text { (Prop. 10) }\end{array}$	FTP	FTP
Fertin et al. (2009)			

Tab. 3: FTP results parameterized by the size of the output

Tab. 4: Complexity of the constrained alignment problem

2 Definitions and first remarks

2.1 Main definitions and the considered problem

For all graph-theoretical definitions not given here, the reader is referred to Golumbic (2004). A matching in a graph is a set of independent edges, i.e., pairwise non adjacent. The extremities of the edges in the matching are called saturated. For any $t \geq 2, P_{t}$ denotes a path with t vertices (t-path), C_{t} denotes a cycle with t vertices (t-cycle) and K_{t} denotes a clique with t vertices (t-clique). A P_{t} or a C_{t} will be denoted as list of successive vertices like $x_{1} x_{2} \cdots x_{t}$. In the case of a t-path x_{1} and x_{t} are the extremities while, in the case of a t-cycle, x_{1} is any vertex and the order correspond to one of the two possible orientations of the cycle. Sometimes, when a confusion is possible, the t-cycle will be denoted $x_{1} x_{2} \cdots x_{t} x_{1}$ to distinguish it from a t-path. Denote the complement of G with \bar{G}. An induced subgraph of $G=(V, E)$ is a subgraph of G induced by a subset of vertices, $X \subset V$. It will be denoted by $G[X]$. Given a graph H, G will be called H-free if it does not have any induced subgraph isomorphic to H. A partial graph of $G=(V, E)$ is a graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $E^{\prime} \subset E$ and a partial induced subgraph is a partial graph of an induced subgraph. For a vertex $v \in V$ we will denote by $N(v)$ its (open) neighborhood and by $N[v]=N(v) \cup\{v\}$ its close neighborhood. For any vertex v we will denote by $G_{v}=G[N[v]]$ the subgraph induced by v and its neighborhood. For a vertex $v \in V, d_{G}(v)$ is its degree in G. When no ambiguity may occur, we simply denote Δ instead of $\Delta(G)=\max _{v \in V}\left(d_{G}(v)\right)$.

A graph is called weakly triangulated if it is C_{t}-free and $\overline{C_{t}}$-free, for $t \geq 5$.
For $t \geq 3$, a wheel W_{t} is a graph consisting of a t-cycle C_{t} with an additional vertex, called center, adjacent to all the vertices of the cycle C_{t}. A fan graph F_{t} consists of a path P_{t} with t vertices and a new vertex v that is adjacent to all the vertices of the path. As a consequence, a graph $G=(V, E)$ is W_{t}-free (resp. F_{t}-free) if and only if, for every vertex $v \in V, G_{v}$ is C_{t}-free (resp. P_{t}-free).

An independent set is a set of pairwise non adjacent vertices, i.e., they induced a graph without any edge. Given a graph $G, \alpha(G)$ denotes its independent number, i.e., the maximum size of an independent set in G. Consider a graph class \mathcal{G} and a polynomial algorithm determining, for every graph $G \in \mathcal{G}$ of a graph class, an independent set of size $\lambda(G)$, is said to guarantee the approximation ratio of $\rho(G)$, for a
function $\rho \geq 1$, on \mathcal{G} if:

$$
\forall G \in \mathcal{G}, \frac{\alpha(G)}{\lambda(G)} \leq \rho(G)
$$

Polynomial approximation algorithms are defined similarly for other graph maximization problems. If an algorithm guarantees a ratio that belongs to the class of functions $O(f)$ (resp. $o(f)$), then we will simply say that the algorithm guarantees a ratio of $O(f)$ (resp. $o(f)$) or constitutes a $O(f)$ - (resp. $o(f)$)approximation. The reader is referred to Ausiello et al. (1999) for all concepts in approximation not defined here. Throughout the paper we only use natural logarithms, so log stands for $\log _{e}$.

Finally, in Subsection 2.3. we will use the first Zagreb index of a graph G; it is denoted $M_{1}(G) . M_{1}(G)$ is defined as the sum of squares of degrees of the vertices. It has been extensively studied, in particular for its interest in computational chemistry (see, e.g. Nikolić et al. (2003) for an introduction to this index).

The constrained alignment problem is formally defined as follows:

Input:	$I=\prec G_{1}, G_{2}, S \succ$, where $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are undirected graphs
	and $S=\left(V_{1} \cup V_{2}, E_{S}\right)$ is a bipartite graph with parts $V_{1}, V_{2} ;$
	I will be called an instance.
Output:	A matching A of S, called legal alignment;
Objective:	Maximize the number of conserved edges in G_{1}, or equivalently in G_{2}, i.e.,
	the number of pairs $(a b, c d) \in E_{1} \times E_{2}$, where $a d, b c \in A$ or $a c, b d \in A$.

For the ease of description, the edges of the bipartite graph S will be called similarity edges. A legal alignment is called minimal if the removal of any similarity edge in the alignment creates an alignment that conserves less edges. Any legal alignment includes at least one minimal alignment and consequently, an optimal minimal alignment is an optimal alignment. Therefore, we can restrict ourselves to minimal alignments.

We conclude this subsection with few remarks comparing the constrained alignment problem and relaqted problems introduced in Section 1. Note that the conserved edges of G_{1} and G_{2} as well as their extremities respectively induce isomorphic partial subgraphs of G_{1} and G_{2}. So, if S is a complete bipartite graph, then the problem corresponds to finding two isomorphic partial subgraphs of G_{1} and G_{2} with a maximum number of edges, which is exactly the maximum common edge subgraph. However, in our case, the bipartite graph S constraints the possible isomorphisms since a vertex of V_{1} (resp. V_{2}) can only be mapped to one of its neighbors in S. In an applied context, such constraints represent a priori knowledge about the system that makes only some matchings meaningful.

The only difference with the problem $\operatorname{MAX}\left(\mu_{G_{1}}, \mu_{G_{2}}\right)$, with $m_{i}=\mu_{G_{i}}, i=1,2$ (Fertin et al. (2009)), is that in this latter problem, the matching A is required to saturate all vertices in G_{1}, thus defining an injective (one-to-one) mapping from V_{1} to V_{2}. Contrary to the problems considered in Fagnot et al. (2008); Fertin et al. (2009), our problem is symmetric in G_{1}, G_{2}. All our results can be equivalently formulated by swapping indexes 1 and 2 . When we will assume that one of G_{1}, G_{2} has a specific structure, in particular acyclic like in Subsection 3.2, we can assume without loss of generality that the condition holds for G_{1}. Roughly speaking, the problems considered in Fagnot et al. (2008); Fertin et al. (2009) correspond to detecting, in G_{2} a specific structure as close as possible to the pattern represented by G_{1}. Our version however, aims to detect similar patterns in the two graphs. We believe that both versions make sense for the suggested applications.

With the constraint for the solution to define an injective mapping from V_{1} to V_{2}, some instances of $\operatorname{MAX}\left(\mu_{G_{1}}, \mu_{G_{2}}\right)$ may have no feasible solution while every instance of the constrained alignment problem has at least one feasible solution. For this reason, Fertin et al. (2009) restrict their problem to the so called trim instances for which S has a matching saturating V_{1}, every vertex in V_{2} has a degree at least 1 in S and there is no bad edge in G_{1}, i.e., an edge that cannot be conserved for any matching of S. The constrained alignment problem does not require the first assumption. Removing bad edges as well as isolated vertices in S can be performed in polynomial time and leads to an equivalent instance. So, we can assume that there is neither bad edge nor isolated vertex in S.

Note finally that any $\left(m_{1}, m_{2}\right)$-instance of the constrained alignment problem (with $m_{2}>0$) can be transformed into an instance of $\operatorname{MAX}\left(m_{1}+1, m_{2}\right)$ with the same optimal value by adding to V_{2} a set V_{I} of $\left|V_{1}\right|$ independent vertices and linking, in S, every vertex in V_{1} to its copy in V_{I}. This transformation does not modify m_{2}. In addition, note that, with the restriction that S has no isolated vertex, the alignment problem with $m_{2}=1$ is equivalent to $\operatorname{MAX}\left(\mu_{G_{1}}, 1\right)$ problem and if there is no bad edge, then all instances are trim instances for the latter problem. Indeed, if all vertices of V_{1} have a degree at least 1 in S and if vertices in V_{2} have the degree $1 S$, then all maximal matchings of the graph S saturate V_{1}. As a consequence, all known results for $\operatorname{MAX}\left(\mu_{G_{1}}, 1\right)$ also hold for the alignment problem with $m_{2}=1$.

2.2 Conflict graph

2.2.1 The notion of $c_{4} s$ and their conflicting configurations

For the following, we will call c_{4} some specific 4-cycles $a b c d$, where $a b \in E_{1}, c d \in E_{2}$ and $a d, b c \in E_{S}$. These are partial induced C_{4} 's of the graph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E_{S}\right)$, obtained as the union of G_{1}, G_{2} and S, for the instance $\prec G_{1}, G_{2}, S \succ$. Throughout the paper, we adopt the following notations to avoid any confusion between the different graphs we will refer to. When referring to $c_{4} \mathrm{~s}$, we will use simple letters from a to w (without indexes) to denote vertices of $V_{1} \cup V_{2}$. A c_{4} is then denoted as a list of four vertices, where the two first ones are in V_{1} and the two last are in V_{2}. Letters x, y, z (sometimes with indexes) will denote vertices of the conflict graph defined below.

We say that two $c_{4} \mathrm{~s}$ conflict, if at least two of their similarity edges are adjacent but distinct (then, they cannot coexist in any matching of S). Let $e f g h$ be a c_{4} conflicting with the $c_{4} a b c d$, where ef $\in E_{1}$, $g h \in E_{2}$, and $e h, f g \in E_{S}$. In the case $m_{2}=1$, we can identify five generic configurations corresponding to the relative position of $e f g h$ with respect to $a b c d$. These possible configurations are shown in Figure 1 . note that if $e, f \in\{a, b\}$ or $g, h \in\{c d\}$, then only the label in $\{a, b, c, d\}$ is represented. In $C o n f_{1 a}$, we have $a=f$, and the rest of the vertices are all distinct; in this case, we say that it is a Conf $f_{1 a}$ conflict. Analogously, in $C o n f_{1 b}$, we have $b=e$, and the rest of the vertices are all distinct. In $C o n f_{2}$, we have $a=e, b=f$, and the rest of the vertices are all distinct. In Conf $f_{3 a}$, we have $a=e, b=f, c=g$, and the rest of the vertices d, h are distinct. Analogously, in $C o n f_{3 b}$, we have $a=e, b=f, d=h$, and the rest of the vertices c, g are distinct. So, the number in the name of the conflicting configuration represents the number of vertices the two c_{4} s have in common. Similar to $C o n f_{1 a}$ conflict, we will refer to $C o n f_{1 b}$, $\operatorname{Con} f_{2}, \operatorname{Conf}_{3 a}$ or $\operatorname{Con} f_{1 b}$ conflicts.

For larger m_{2}, one can also observe all symmetric conflicting configurations obtained by exchanging V_{1} and V_{2} with similarity edges adjacent on V_{2} vertices plus one configuration with two similarity edges adjacent on a V_{1} vertex and two adjacent on a V_{2} vertex.

Fig. 1: Given two conflicting $c_{4} \mathrm{~s}$, abcd and efgh, all possible conflicting configurations with respect to $a b c d$, when $m_{2}=1$. For each configuration, the vertices at the top are V_{1} vertices and the vertices at the bottom are V_{2} vertices.

2.2.2 The conflict graph and its independent sets

With a given instance $\prec G_{1}, G_{2}, S \succ$, we associate a conflict graph, $\mathcal{C}=\left(V_{\mathcal{C}}, E_{\mathcal{C}}\right)$, as follows. For each c_{4}, create a vertex in $V_{\mathcal{C}}$ and for each pair of conflicting $c_{4} \mathrm{~s}$, create an edge between their respective vertices in $E_{\mathcal{C}}$.

We will denote by γ the one-to-one correspondence mapping vertices of the conflict graph \mathcal{C} to $c_{4} \mathrm{~s}$ in ($V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E_{S}$). Thus, for any vertex $x \in V_{\mathcal{C}}$ of the conflict graph, $\gamma(x)$ is the corresponding c_{4}; for instance, if the related c_{4} is $a b c d$ with $a, b \in V_{1}, a b \in E_{1}$ and $c, d \in V_{2}, c d \in E_{2}$, we will write $\gamma(x)=a b c d$. We call $\gamma(x)$ "the c_{4} associated with x ". In Theorem 19 we will need the notation $\gamma(x) \cap\{a, b\}$ to denote the set of vertices in $\{a, b\}$ and visited by the $c_{4} \gamma(x)$.
With this construction of the conflict graph, the constrained alignment problem reduces to the maximum independent set problem as stated in the following proposition. This will be illustrated in the example detailed in Paragraph 2.2.4

Proposition 1

(i) There is a one-to-one correspondence (bijective mapping) between independent sets in the conflict graph and minimal alignments in the instance $\prec G_{1}, G_{2}, S \succ$. An independent set of p vertices maps to an alignment that conserves p edges.
(ii) A maximum independent set of \mathcal{C} maps to to an optimal alignment for $\prec G_{1}, G_{2}, S \succ$.
(iii) The maximum possible number of conserved edges is $\alpha(\mathcal{C})$.

Proof: (i) Let $\left\{x_{1}, \ldots, x_{p}\right\}$ be an independent set in the conflict graph \mathcal{C}; by definition of the conflict graph, the $c_{4} \mathrm{~S} \gamma\left(x_{i}\right), i=1, \ldots, p$ are pairwise not conflicting in the graph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E_{S}\right)$ and consequently their similarity edges constitute a legal alignment A. An edge $a b \in E_{1}$ is conserved for this alignment if and only if there are two edges $a d, b c$ in A and $c d \in E_{2}$; in this case $a b c d=\gamma\left(x_{i}\right)$ for some $i \in\{1, \ldots, p\}$. Since two distinct non conflicting $c_{4} s$ cannot share an edge of G_{1} (neither of G_{2}), exactly p edges of G_{1} are conserved by this alignment. This also implies that the alignment A is minimal.

Conversely, for any minimal legal alignment that conserves p edges of G_{1}, the conserved edges are in one-to-one correspondence with non-conflicting c_{4} s in the graph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E_{S}\right)$. Through γ^{-1}, these $c_{4} \mathrm{~S}$ correspond to an independent set $\left\{x_{1}, \ldots, x_{p}\right\}$ in \mathcal{C}.
(ii) Since the one-to-one correspondence transforms an independent of cardinality p set into an alignment conserving p edges, a maximum independent set maps to an alignment maximising the number of conserved edges.
(iii) It follows immediately that the maximum possible number of conserved edges is $\alpha(\mathcal{C})$.

Corollary 2 Any polynomial approximation algorithm for the maximum independent set in a graph G guaranteeing the ratio $\rho(\mathcal{G})$ can be turned into a polynomial approximation algorithm for the constrained alignment problem guaranteeing the ratio $\rho(\mathcal{C})$, where \mathcal{C} is the conflict graph associated with the instance $\prec G_{1}, G_{2}, S \succ$.

Proof: The conflict graph as well as the mapping γ can be computed in polynomial time with respect to the size $\left|V_{1}\right|+\left|V_{2}\right|$ of the instance $\prec G_{1}, G_{2}, S \succ$ since it only requires identifying all c_{4} s and testing the compatibility of every two c_{4} s. The conflict graph is of polynomial size (details about its size are given in Subsection 2.3) and it follows immediately from the proof of Proposition 1 (i) that, given an independent set of size p in \mathcal{C}, computing the corresponding minimal alignment that conserves p edges can be done in polynomial. We conclude by using the fact that the maximum possible number of conserved edges is $\alpha(\mathcal{C})$.

Approximation ratios for the maximum independent set problem are usually expressed as functions of the number of vertices and/or maximum degree of the graph instance. To derive an approximation ratio for the constrained alignment expressed as a function of the instance $\prec G_{1}, G_{2}, S \succ$ will require evaluating the main parameters of the conflict graph. This is the purpose of the Subsection 2.3 .

Remark 3 Several minimal alignments (thus, several independent sets of the conflict graph) may correspond to the same set of conserved edges.

Consider for instance as the graph G_{1} a path $a b c$ of length 2 and as the graph G_{2} a path def. If similarity edges are $a d, b e, c f, a f$ and $c d$, then, the two minimal alignments $\{a d, b e, c f\}$ and $\{a f, b e, c d\}$ conserve the same edges $a b$ and $b c$ of G_{1}. We give in paragraph 2.2.4 another possible situation, where two different alignments correspond to the same conserved edges in G_{1} but not in G_{2}.

2.2.3 The underlying graph

A direct consequence of Proposition 1 is that removing from the instance $\prec G_{1}, G_{2}, S \succ$ all G_{1}-edges, G_{2}-edges or similarity edges that do not belong to any c_{4} does not change the problem in the sense that minimal alignments remain the same. For this reason, we consider the graph $\mathcal{C}_{U}=\left(V_{U}, E_{U}\right)$ obtained from the union of G_{1}, G_{2}, and S by excluding all the vertices and edges that are not part of any $c_{4} \mathrm{~s}$. In particular, this includes removing all bad edges (Fertin et al. (2009)) of G_{1} and G_{2}. We call \mathcal{C}_{U} the underlying graph associated with the instance $\prec G_{1}, G_{2}, S \succ$. It can be seen as a simplified equivalent instance and consequently, we can always assume that we work on \mathcal{C}_{U} instead of $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E_{S}\right)$ or, equivalently, that each edge in $E_{1} \cup E_{2} \cup E_{S}$ belongs to at least one c_{4}. In particular, in all our results, m_{i} can be seen as the maximum number of similarity edges in E_{U} incident to vertices of $V_{i} \cap V_{U}$.

2.2.4 An example

Figure 2 gives an example that illustrates the notions of conflict graph, of underlying graph, the function γ and the correspondence between minimal alignments in the original instance and independent sets in the conflict graph. The left chart represents the instance $I=\prec G_{1}, G_{2}, S \succ$ and the related underlying graph $\mathcal{C}_{U} . G_{1}$ is represented on the top, with vertices $V_{1}=\{a, b, c, d, e\}$ and dashed edges and G_{2} on the bottom with vertices $V_{2}=\{f, g, h, i, j\}$ and dotted edges. Blue edges/vertices correspond to edges/vertices in $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E_{S}\right)$ that are not part of the underlying graph. So, the underlying graph \mathcal{C}_{U} appears

Fig. 2: An instance $\prec G_{1}, G_{2}, S \succ$ with the underlying graph \mathcal{C}_{U} and the conflict graph \mathcal{C}. $V_{1}=$ $\{a, b, c, d, e\}$ and $V_{2}=\{f, g, h, i, j\}$. In the left graph, dashed lines correspond to edges in E_{1} while dotted lines correspond to edges in E_{2}. Blue edges and vertices (left graph) are edges and vertices in $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E_{S}\right)$ that are not part of the underlying graph and can be ignored. The list of $c_{4} \mathrm{~S}$ also defines the function γ.
in black color. In the original instance $m_{1}=3$ but, in the equivalent simplified instance defined by \mathcal{C}_{U}, it becomes 2 .
The list of $c_{4} \mathrm{~s}$ and the related function γ are represented in the middle part of the figure. Note that $a d c b$ or bhcg are 4 -cycles in \mathcal{C}_{U} but not $c_{4} \mathrm{~s}$.

Finally, the related conflict graph is represented on the right hand side. This instance has four different optimal solutions corresponding to the minimal alignments $\{a g, b h, d i\},\{b h, c g, d i\},\{b g, c h, d i\}$ and $\{a g, d i, c h\}$. They correspond respectively to the independent sets $\left\{x_{1}, x_{4}\right\},\left\{x_{2}, x_{6}\right\},\left\{x_{3}, x_{5}\right\}$ and $\left\{x_{4}, x_{5}\right\}$ in the conflict graph. Each optimal solution corresponds to two conserved edges in $E_{1}:\{a b, a d\}$, $\{b c, c d\},\{b c, c d\}$ and $\{a d, c d\}$, respectively. In this example, these conserved edges correspond to an induced P_{3} in the graph G_{1} but, in the graph G_{2}, the related conserved edges which are respectively $\{g h, g i\},\{g h, h i\},\{g h, g i\}$ and $\{g i, h i\}$, are not induced subgraphs of G_{2} but only partial induced subgraphs. Note finally that the two alignments $\{b h, c g, d i\}$ and $\{b g, c h, d i\}$ correspond to the same conserved edges in G_{1} but not in G_{2}. This is another illustration of Remark 3 .

In what follows we provide several graph-theoretic properties of conflict graphs arising from possible constrained alignment instances under various restrictions. Such properties are then employed in applying relevant independent set results.

Throughout the paper we will assume $\left|V_{1}\right| \geq 2$ and $\left|V_{2}\right| \geq 2$ since, in the opposite case, the conflict graph is empty and the maximum alignment problem would be trivial (the only minimal alignment is empty). For a vertex $x \in V_{i}$ of $G_{i}, i=1,2$, we will denote by $d_{i}(x)$ its degree in G_{i}.

2.3 General properties of the conflict graph and applications

In this subsection we first investigate the first basic properties of the conflict graph and deduce first approximation results using some standard results on the maximum independent set problem. For an instance $\prec G_{1}, G_{2}, S \succ$, we denote by $\mathcal{C}=\left(V_{\mathcal{C}}, E_{\mathcal{C}}\right)$ the related conflict graph.

Lemma 4 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C}, the number $\left|V_{\mathcal{C}}\right|$ of vertices of \mathcal{C} satisfies:

$$
\left|V_{\mathcal{C}}\right| \leq \min \left(m_{1}^{2}\left|E_{1}\right|, m_{2}^{2}\left|E_{2}\right|, \frac{1}{2} m_{1} m_{2}\left|V_{1}\right| \Delta_{2}, \frac{1}{2} m_{1} m_{2}\left|V_{2}\right| \Delta_{1}\right)
$$

Proof: Consider a similarity edge $x y \in E_{S}, x \in V_{1}, y \in V_{2}$. The edge $x y$ can belong to at most $\min \left(m_{1} d_{1}(x), m_{2} d_{2}(y)\right)$ different $c_{4} \mathrm{~s}$. Consequently the number of possible $c_{4} \mathrm{~s}$ satisfies:

$$
\left|V_{\mathcal{C}}\right| \leq \frac{1}{2} \sum_{x y \in E_{S}} \min \left(m_{1} d_{1}(x), m_{2} d_{2}(y)\right)
$$

Since x has at most m_{1} incident edges in S and $d_{2}(y) \leq \Delta_{2}$ we deduce:

$$
\left|V_{\mathcal{C}}\right| \leq \frac{m_{1}}{2} \sum_{x \in V_{1}} \min \left(m_{1} d_{1}(x), m_{2} \Delta_{2}\right) \leq \min \left(m_{1}^{2}\left|E_{1}\right|, \frac{1}{2} m_{2} m_{1}\left|V_{1}\right| \Delta_{2}\right)
$$

Similarly we have:

$$
\left|V_{\mathcal{C}}\right| \leq \min \left(m_{2}\left|E_{2}\right|, \frac{1}{2} m_{2} m_{1}\left|V_{2}\right| \Delta_{1}\right)
$$

which concludes the proof.
Given an independent set in \mathcal{C}, Proposition 1 states that all similarity edges involved in the related $c_{4} \mathrm{~S}$ constitute a matching. Consequently,
the optimal value $\alpha(\mathcal{C})$ can be bounded using Lemma 4 with $m_{1}=1$ and $m_{2}=1$. This leads immediately to the following bound:
Corollary 5 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C}, the independence number of \mathcal{C} satisfies:

$$
\alpha(\mathcal{C}) \leq \min \left(\left|E_{1}\right|,\left|E_{2}\right|, \frac{1}{2}\left|V_{1}\right| \Delta_{2}, \frac{1}{2}\left|V_{2}\right| \Delta_{1}\right)
$$

The following lemma generalises the bound for degrees provided in Fertin et al. (2009) for the case where $m_{2}=1$.
Lemma 6 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C}, let $\gamma(x)=$ abcd be a c_{4} corresponding to a vertex x in \mathcal{C}, then the degrees in \mathcal{C} satisfy:
(i) $\quad d_{\mathcal{C}}(x) \leq m_{1}\left(m_{1}-1\right)\left(d_{1}(a)+d_{1}(b)\right)-\left(m_{1}-1\right)^{2}+m_{2}\left(m_{2}-1\right)\left(d_{2}(c)+d_{2}(d)\right)-\left(m_{2}-1\right)^{2}$;
(ii) $\Delta(\mathcal{C}) \leq 2 \Delta_{1} m_{1}^{2}+2 \Delta_{2} m_{2}^{2}-2 \Delta_{1} m_{1}-2 \Delta_{2} m_{2}-m_{1}{ }^{2}-m_{2}{ }^{2}+2 m_{1}+2 m_{2}-2$.

Proof: (i) Denote the set of $c_{4} \mathrm{~s}$ in \mathcal{C} conflicting with $\gamma(x)$ with $S_{1} \cup S_{2}$, where S_{1} is the set of $c_{4} \mathrm{~s}$ in conflict with $\gamma(x)$ that include $a d$ or $b c$, and S_{2} consists of all other c_{4} s conflicting with $\gamma(x)$. It is clear that, if a c_{4} from S_{1} shares the edge $a d(b c)$ with $\gamma(x)$, it must also include either $b(a)$ or $c(d)$ in order to create a conflict with $\gamma(x)$. In any case, since the total number of valid similarity edges (edges that can create the conflict with $\gamma(x)$) incident to b and $c\left(a\right.$ and d) is bounded by $m_{1}+m_{2}-2$, this implies that $\left|S_{1}\right|$ is upper-bounded by $2 m_{1}+2 m_{2}-4$. For the second set S_{2}, we first note that a pair of similarity edges can create only one c_{4}. This implies that any edge in G_{1} different from $a b$ can be part of at most $m_{1}{ }^{2}-m_{1}$ different $c_{4} \mathrm{~s}$ in S_{2} and any edge in G_{2} different from $c d$ can be part of at most $m_{2}{ }^{2}-m_{2}$ different $c_{4} \mathrm{~s}$ in S_{2}. Since the number of G_{1} edges incident to a or b, and different from $a b$ is $d_{1}(a)+d_{1}(b)-2$, and respectively the number of G_{2} edges incident to c or d, and different from $c d$ is at most $d_{2}(c)+d_{2}(d)-2$, the number of $c_{4} \mathrm{~s}$ in S_{2} that do not include $a b$ or $c d$ is bounded by $\left(d_{1}(a)+d_{1}(b)-2\right)\left(m_{1}^{2}-m_{1}\right)+\left(d_{2}(c)+d_{2}(d)-2\right)\left(m_{2}^{2}-m_{2}\right)$. The edges $a b$ and $c d$ themselves can be part of at most $\left(m_{1}-1\right)^{2}$ and $\left(m_{2}-1\right)^{2}$ different c_{4} s in S_{2} respectively, which concludes the proof of (i). (ii) is immediately deduced since $d_{1}(a), d_{1}(b) \leq \Delta_{1}$ and $d_{2}(c), d_{2}(d) \leq \Delta_{2}$.

When evaluating the number of edges of the conflict graph, the first Zagreb index of the graphs G_{1} and G_{2} appear naturally, as stated in the following lemma. Note that if $m_{1}=1$ (resp., $m_{2}=1$), then the bound only depends on G_{2} (resp., G_{1}).
Lemma 7 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C}, the number $\left|E_{\mathcal{C}}\right|$ of edges of \mathcal{C} is bounded by:
$\left|E_{\mathcal{C}}\right| \leq \frac{1}{2}\left(m_{1}^{2}\left(m_{1}-1\right)\left(m_{1} M_{1}\left(G_{1}\right)-\left(m_{1}-1\right)\left|E_{1}\right|\right)+m_{2}^{2}\left(m_{2}-1\right)\left(m_{2} M_{1}\left(G_{2}\right)-\left(m_{2}-1\right)\left|E_{2}\right|\right)\right)$.
Proof: We have $\left|E_{\mathcal{C}}\right|=\frac{1}{2} \sum_{x \in V_{\mathcal{C}}} d_{\mathcal{C}}(x)$. Using Lemma 6 and the fact that $a b$ (resp., $c d$) participates to at most m_{1}^{2} (resp., m_{2}^{2}) c_{4} s we get:

$$
\begin{align*}
& 2\left|E_{\mathcal{C}}\right| \leq m_{1}^{2}\left(m_{1}-1\right) \sum_{a b \in E_{1}}\left[m_{1}\left(d_{1}(a)+d_{1}(b)\right)-\left(m_{1}-1\right)\right] \\
&+ m_{2}^{2}\left(m_{2}-1\right) \sum_{c d \in E_{2}}^{c d}\left[m_{2}\left(d_{2}(c)+d_{2}(b)\right)-\left(m_{2}-1\right)\right] \\
& \leq \quad m_{1}^{3}\left(m_{1}-1\right) \sum_{a b \in E_{1}}^{a}\left(d_{1}(a)+d_{1}(b)\right)-m_{1}^{2}\left(m_{1}-1\right)^{2}\left|E_{1}\right| \tag{1}\\
&+m_{2}^{3}\left(m_{2}-1\right) \sum_{c d \in E_{2}}\left(d_{2}(c)+d_{2}(d)\right)-m_{2}^{2}\left(m_{2}-1\right)^{2}\left|E_{2}\right|
\end{align*}
$$

We conclude by noting that $\sum_{a b \in E_{1}}\left(d_{1}(a)+d_{1}(b)\right)=M_{1}\left(G_{1}\right)$ and similarly for $c d$ in the graph G_{2}.
If we want a bound for $\left|E_{\mathcal{C}}\right|$ only dependent on the degree, number of vertices and edges of G_{1}, G_{2}, then several upper bounds exist for the first Zagreb index. We mention here two of these bounds.
Theorem 8 Given a connected graph $G=(V, E)$ with maximum degree Δ and minimum degree δ, (i) Liu and Liu (2009)) $M_{1}(G) \leq \frac{|E|^{2}(\Delta+\delta)^{2}}{n \Delta \delta}$;
(ii) (Fath-Tabar (2011)) $M_{1}(G) \leq 4 \frac{|E|^{2}}{|V|}+\frac{|V|}{4}(\Delta-\delta)^{2}$.

Note that the bound $M_{1}(G) \leq 2 \Delta|E|$ is trivial for all graph $G=(V, E)$ and with maximum degree Δ. This bound meets the two bounds in Theorem 8 for regular graphs. In Subsection 3.2, we will consider the class of acyclic graphs. For this class $(\delta=1$ and $|E| \leq|V|)$, the bound (i) immediately gives $M_{1}(G) \leq|E| \frac{(\Delta+1)^{2}}{\Delta} \leq|E|(\Delta+3)$, thus twice better than the trivial bound. Note also that in the case where one of these graphs has much less edges, $\left|E_{1}\right| \in o\left(\left|E_{2}\right|\right)$ or $\left|E_{2}\right| \in o\left(\left|E_{1}\right|\right)$, then a direct application of Lemma 4 , using $\left|E_{\mathcal{C}}\right| \leq\left|V_{\mathcal{C}}\right|^{2}$, can give better bounds.

Lemma 7 and Theorem 8 will be used in Subsection 3.2. Below we provide direct consequences of Lemmas 4 and 6 leading to the design of polynomial-time approximation algorithms for the constrained alignment problem.

The best known approximation ratios guaranteed by polynomial algorithms for the maximum independent set problem are $O(\Delta \log \log \Delta / \log \Delta)$ (Halldórsson (2000)) and $O\left(n / \log ^{2} n\right)$ Boppana and Halldórsson (1992)), where Δ and n denote respectively the maximum degree and the number of vertices of the input graph. Combining it with Lemmas 4 and 6 leads to the following approximation for the general setting.

Proposition 9
(i) For any positive constant m_{1}, m_{2}, the constrained alignment problem can be approximated in polynomial time with an approximation ratio of $O\left(\left(\Delta_{1}+\Delta_{2}\right) \log \log \left(\Delta_{1}+\Delta_{2}\right) / \log \left(\Delta_{1}+\Delta_{2}\right)\right)$;
(ii) If only m_{2} (resp. m_{1}) is constant, then the constrained alignment problem can be approximated in polynomial time with an approximation ratio of $O\left(\left|E_{1}\right| / \log ^{2}\left|E_{1}\right|\right)\left(\right.$ resp. $O\left(\left|E_{2}\right| / \log ^{2}\left|E_{2}\right|\right)$).

It is known that using bounded search techniques (Downey and Fellows (1999)), one can find an independent set of size k in a graph G in $O\left(n(\Delta(G)+1)^{k}\right)$ time, or return that no such subset exists. In Fertin et al. (2009), this result is used to show that the constrained alignment problem is fixed-parameter tractable for bounded degree graphs with $m_{2}=1$. Lemma 6 immediately provides a generalisation for the general setting.

Proposition 10 Provided that G_{1} and G_{2} are bounded degree graphs, for any positive constants m_{1}, m_{2}, the constrained alignment problem is fixed-parameter tractable for parameter k and solvable in $O\left(\min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)(D+1)^{k}\right)$ time, where k is the number of final conserved edges and $D=O\left(\Delta_{1}+\Delta_{2}\right)$.

In what follows we consider the case $m_{2}=1$ - which, to our knowledge, is the most studied case and investigate specific properties of the conflict graph. This case, by itself already very hard, simplifies the possible conflicts and then perfectly illustrates the use of the conflict graph. As explained in the conclusion, the following results motivate the further study of conflict graphs and their independent sets for a more general set-up.

3 The case $m_{2}=1$

The case with $m_{2}=1$ is the main case considered in Fertin et al. (2009). We remind that, in this case, the possible conflicting configurations are listed in Figure 1. Some improved results deal with the particular case $m_{1}=2$. It is known that the problem is APX-hard even for the case where $m_{1}=2$ and both G_{1}, G_{2} are bipartite (Fertin et al. (2009)).

3.1 Structure of \mathcal{C} and approximation

In this subsection we present graph theoretic properties of conflict graphs in terms of forbidden subgraphs when $m_{1}=2$. In addition to providing valuable information regarding structural properties of conflict graphs, it has also algorithmic applications, mainly approximation results.

Note first that, if $m_{2}=1$, Lemma 6 states that the maximum degree of the conflict graph is at most $2\left(m_{1}{ }^{2}-m_{1}\right) \Delta_{1}+m_{1}\left(2-m_{1}\right)-1$ and consequently Proposition 9 can be immediately replaced by:

Proposition 11 For $m_{2}=1$ and any positive constant m_{1}, the constrained alignment problem can be approximated in polynomial time with an approximation ratio of $O\left(\Delta_{1} \log \log \left(\Delta_{1}\right) / \log \left(\Delta_{1}\right)\right)$.

This approximation ratio in $o\left(\Delta_{1}\right)$ improves the result of Fertin et al. (2009) - $2\left\lceil 3 \Delta_{1} / 5\right\rceil$ for even Δ_{1} and $2\left\lceil\left(3 \Delta_{1}+2\right) / 5\right\rceil$ for odd Δ_{1} - also obtained for $m_{2}=1$. We will give later another improvement in the case where Δ_{2} is less than this ratio.

We first establish some properties of conflict graphs when $m_{2}=1$ - Facts 1 and 2, Lemmas 12 and 14 and Corollary 13 - that will be useful for the main structural and algorithmic results. Then, in paragraphs 3.1.1 and 3.1.2, we derive structural results and their algorithmic consequences.

Fact 1 Any pair of conflicting $c_{4} s$ in \mathcal{C}_{U} must share at least one vertex from G_{1}.
Fact 2 Any pair of distinct $c_{4} s$ in \mathcal{C}_{U} sharing two vertices from G_{1} has a conflict.

Lemma 12 Given an instance $\prec G_{1}, G_{2}, S \succ$ with confict graph \mathcal{C}, suppose $m_{2}=1$ and consider an induced subgraph H of \mathcal{C} such that \bar{H} is connected and H has an induced P_{3}. Then the c_{4} s in H cannot all share a vertex from G_{1}.

Proof: Let $x_{1} x_{2} x_{3}$ be an induced P_{3} in H and let $\gamma\left(x_{1}\right)=a b c d$. Assume for the sake of contradiction that $a \in G_{1}$ is a vertex common to all the $c_{4} \mathrm{~s}$ associated with vertices of H. For every two vertices y, z in H not linked by an edge, $\gamma(y)$ and $\gamma(z)$ must share the similarity edge including a to avoid any conflict. As a consequence and since \bar{H} is connected, all the c_{4} s associated with vertices of H must share the edge $a d$. This implies that any conflict between any pair of these $c_{4} s$ can only be either a $\operatorname{Con} f_{3 a}$ or a $\operatorname{Conf}_{3 b}$ conflict, which further implies that all the $c_{4} \mathrm{~s} \gamma\left(x_{i}\right), i=1,2,3$ include b. By Fact 2 and since $x_{1} \neq x_{3}$, this implies a conflict between $\gamma\left(x_{1}\right)$ and $\gamma\left(x_{3}\right)$, a contradiction.
For instance, a P_{4} or $P_{3}+K_{1}$ - the independent union of a P_{3} and an isolated vertex - clearly both satisfy the conditions on H : they both have an induced P_{3} and moreover, $\overline{P_{4}}$ is a P_{4} as well while $\overline{P_{3}+K_{1}}$ is a triangle with a pendent vertex, both connected. So, we immediately deduce:

Corollary 13 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C}, if $m_{2}=1$, the four $c_{4} s$ of an induced P_{4} or an induced $P_{3}+K_{1}$ of \mathcal{C} cannot all share a vertex from G_{1}.

The following lemma will be useful for studying the structure of \mathcal{C}.
Lemma 14 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C}, suppose $m_{2}=1$ and that we have in \mathcal{C} an induced $P_{5} x_{1} x_{2} x_{3} x_{4} x_{5}$ as well as two vertices y_{1}, y_{2} not linked to $x_{i}, i=2,3,4$ and an additional vertex x linked to the seven vertices $y_{1}, y_{2}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. Denote $\gamma(x)=a b c d$. Then if $\gamma\left(y_{1}\right)$ does not include b, neither does $\gamma\left(y_{2}\right)$.

Proof: Since $y_{1}, y_{2}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are all linked to x, Fact 1 ensures the related c_{4} s include a or b. Assume for the sake of contradiction that $\gamma\left(y_{1}\right)$ does not include b while $\gamma\left(y_{2}\right)$ does. Since $\gamma\left(y_{1}\right)$ conflicts with $\gamma(x)$, we have $\gamma\left(y_{1}\right)=a k l m$ with $k \in V_{1} \backslash\{a, b\}$ and $m \neq d$. Let $\gamma\left(y_{2}\right)=b p q r, r \neq c$. Since $m_{2}=1, m, d, c, r$ are all paire wise distinct.
As mentioned above $\gamma\left(x_{j}\right), j=1, \ldots 5$ must include a or b. Since $\gamma\left(x_{j}\right), j=2,3,4$ do not conflict with $\gamma\left(y_{1}\right)$ nor with $\gamma\left(y_{2}\right)$, if it includes a it must include the edge $a m$ and if it includes b it must include the edge $b r$. Moreover, none of them can include both a and b. Indeed, in this case $\gamma\left(x_{j}\right)=a b r m$ for some $j=2,3,4$ and since any $\gamma\left(x_{j^{\prime}}\right), j^{\prime} \in\{2,3,4\} \backslash\{j\}$, can neither include an edge $a m^{\prime}, m^{\prime} \neq m$ nor $b r^{\prime}, r^{\prime} \neq r$, it cannot conflict with $\gamma\left(x_{j}\right)$, a contradiction.
On the other hand, since $\gamma\left(x_{3}\right)$ has a conflict with both $\gamma\left(x_{2}\right)$ and $\gamma\left(x_{4}\right)$ and since $\gamma\left(x_{2}\right)$ and $\gamma\left(x_{4}\right)$ are not conflicting, there must be two similarity edges $u v, u v^{\prime}, u \in V_{1} \backslash\{a, b\}, v, v^{\prime} \in V_{2}, v \neq v^{\prime}$, where $u v$ is an edge of $\gamma\left(x_{3}\right)$ and $u v^{\prime}$ is an edge of both $\gamma\left(x_{2}\right)$ and $\gamma\left(x_{4}\right)$. Since $\gamma\left(x_{2}\right) \neq \gamma\left(x_{4}\right)$, one of them includes the edge $a m$ and the other includes the edge $b r$.

We consider below the possible cases that all lead to a contradiction.
Case-1: Suppose $\gamma\left(x_{2}\right)=a u v^{\prime} m$ and $\gamma\left(x_{4}\right)=b u v^{\prime} r$, thus $\gamma\left(x_{3}\right)$ is either auvm or buvr.
Case-1.1: If $\gamma\left(x_{3}\right)=$ auvm, then since $\gamma\left(x_{1}\right)$ conflicts with $\gamma\left(x_{2}\right)$ but not with $\gamma\left(x_{3}\right)$ it must include the edge $u v$ but in this case it would conflict with $\gamma\left(x_{4}\right)$.

Case-1.2: Similarly if $\gamma\left(x_{3}\right)=$ buvr, then since $\gamma\left(x_{5}\right)$ conflicts with $\gamma\left(x_{4}\right)$ but not with $\gamma\left(x_{3}\right)$ it must include the edge $u v$ but in this case it would conflict with $\gamma\left(x_{2}\right)$.

Case-2: Suppose now $\gamma\left(x_{2}\right)=b u v^{\prime} r$ and $\gamma\left(x_{4}\right)=a u v^{\prime} m$, thus $\gamma\left(x_{3}\right)$ is either auvm or buvr. In both cases we get the same contradiction as in Case-1 exchanging the roles of $a m$ and $b r$. This concludes the proof.

3.1.1 Wheels and Fans

Theorem 15 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C},
(i) If $m_{2}=1, \mathcal{C}$ is W_{t}-free, for $t \geq 7$;
(ii) If furthermore $m_{1}=2, \mathcal{C}$ is also W_{5} and W_{6}-free.

Proof: Assume for the sake of contradiction an induced W_{t} exists with $t \geq 5$ and let x be the center vertex with $\gamma(x)=a b c d$. Let $x_{1} x_{2} \ldots x_{t} x_{1}$ be the induced C_{t} of the wheel W_{t} in the conflict graph. By Fact 1 every $\gamma\left(x_{i}\right), 1 \leq i \leq t$ must include at least one of a or b. By Corollary 13 (the cycle C_{t} has an induced P_{4}), it is not possible for all of these $c_{4} \mathrm{~s}$ to share a, nor can they all share b. This implies that there must exist a pair of conflicting $c_{4} \mathrm{~s}, \gamma\left(x_{i}\right), i=1, \ldots, t$, such that their corresponding vertices in \mathcal{C} are neighbors in C_{t}, one including a and the other including b and one of them does not contain both a and b. Without loss of generality, let the former be $\gamma\left(x_{t}\right)=a k l m$ with $k \in V_{1} \backslash\{a, b\}$ and the latter be $\gamma\left(x_{t-1}\right)=b p q r$.
(i) Assume first $t \geq 7$. Then apply Lemma 14 with $y_{1}=x_{t}$ and $y_{2}=x_{t-1}$ gives a contradiction.
(ii) Now we show directly that there is also a contradiction if $m_{1}=2$ and $t=5,6$.

We consider two cases $\gamma\left(x_{t-1}\right)=a b r d$, and $\gamma\left(x_{t-1}\right)=b k l^{\prime} r, l^{\prime} \neq l$ ensuring the conflict between $\gamma\left(x_{t-1}\right)$ and $\gamma\left(x_{t}\right)$. In both cases $r \neq c$ ensures the conflict between $\gamma\left(x_{t-1}\right)$ and $\gamma(x)$.

Case-1: $\gamma\left(x_{t-1}\right)=$ abrd. Since $\gamma\left(x_{2}\right), \gamma\left(x_{1}\right)$ have no conflict with $\gamma\left(x_{t-1}\right)$ but with $\gamma(x)$, they both include $b r$ and not $a m$. Moreover, since $\gamma\left(x_{2}\right)$ does not conflict $\gamma\left(x_{t}\right)$, it cannot include a and thus $\gamma\left(x_{2}\right)=$ buvr, $u \neq a$. Since $\gamma\left(x_{1}\right)$ conflicts with both $\gamma\left(x_{t}\right)$ and $\gamma\left(x_{2}\right)$ we have $u=k, v=l$ and $\gamma\left(x_{1}\right)=b k l^{\prime} r, l^{\prime} \neq l, \gamma\left(x_{2}\right)=b k l r$. Then, since $\gamma\left(x_{3}\right)$ conflicts with $\gamma\left(x_{2}\right)$ but not with $\gamma\left(x_{1}\right)$, it must include the edge $k l^{\prime}$. To conflict with $\gamma(x)$ it should include $a m$ or $b r$, a contradiction since $x_{3} \neq x_{t}, x_{3} \neq x_{1}$.

Case-2: $\gamma\left(x_{t-1}\right)=b k l^{\prime} r, l^{\prime} \neq l$.
Since $\gamma\left(x_{1}\right)$ conflicts with $\gamma\left(x_{t}\right)$ and with $\gamma(x)$ and since $x_{1} \neq x_{t-1}, \gamma\left(x_{1}\right)$ cannot include $b r$ and thus includes $a m$ and $\gamma\left(x_{1}\right)=a k l^{\prime} m$.
$\gamma\left(x_{t-2}\right)$ conflicts with $\gamma\left(x_{t-1}\right)$ but not with $\gamma\left(x_{t}\right)$ and includes $a m$ or $b r$. Since $x_{t-2} \neq x_{t}$ the only possibility is $\gamma\left(x_{t-2}\right)=b k l r$. Then, $\gamma\left(x_{2}\right)$ conflicts with $\gamma\left(x_{1}\right)$ but not with $\gamma\left(x_{t}\right)$ and includes am or $b r$; the two only candidates are $a k l m$ and $b k l m$, both impossible since $x_{2} \neq x_{t}, x_{2} \neq x_{t-2}$ (note that $t-2 \geq 3$). It concludes the proof.

Note that for $m_{1}>2$, it is still possible to have a W_{5} and W_{6} in a conflict graph as illustrated in Figure 3 Note also that W_{4} and $w_{3}=K_{4}$ can still exist in \mathcal{C} even if $m_{1}=2$. Figure 4 gives a sample construction with a W_{4} while Figure 6 gives an example with a K_{4}. It means that, in terms of induced wheels, Theorem 15]leaves no gap.

The following lemma gives an example how considering the different kind of conflicts, for $m_{2}=1$ and $m_{1}=2$, (see Figure 1) helps understanding the structure of the conflict graph.
Lemma 16 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C}, suppose $m_{2}=1$ and $m_{1}=2$ and consider a vertex x in \mathcal{C} and the set S_{x}^{1} of $c_{4} s$ that conflict $\gamma(x)$ with a $\operatorname{Con} f_{1 a}$ or Con $f_{1 b}$ configuration. Then, $\mathcal{C}\left[S_{x}^{1}\right]$ is an independent collection of $C_{4} s, P_{3} s, P_{2} s$ and isolated vertices.

Fig. 3: Sample configurations for \mathcal{C}_{U} s inducing W_{5} (left) and W_{6} (right) in their respective conflict graphs for the case where $m_{1}=3$. The central vertices of the wheels in each case correspond to the $c_{4} \mathrm{~S}$ indicated with $a b c d$.

Proof: Since $m_{1}=2$, in $c_{4} \in S_{x}^{1}$, at most two $c_{4} \mathrm{~s}$ can conflict a fixed c_{4} and consequently the graph $\mathcal{C}\left[S_{x}^{1}\right]$ has degree at most 2 , which means it is an independent collection of cycles and paths. For any $t \geq 1$, consider a connected component of $\mathcal{C}\left[S_{x}^{1}\right]$ of size t.

Assume we have u_{1}, u_{2}, u_{3} in $\mathcal{C}\left[S_{x}^{1}\right]$ with edges $u_{1} u_{2}$ and $u_{2} u_{3}$. Since $m_{1}=2 \gamma\left(u_{1}\right), \gamma\left(u_{2}\right)$ and $\gamma\left(u_{3}\right)$ cannot all include a and neither can they all include b. Suppose without loss of generality that two of them include a and one b and in this case, the structure of conflicts $C o n f_{1 a}$ and $C o n f_{1 b}$ imposes that $\gamma\left(u_{2}\right)$ includes a, say $\gamma\left(u_{2}\right)=a k l m$ with $k, l, m \notin\{b, c, d\}$. Suppose then without loss of generality that $\gamma\left(u_{1}\right)$ includes a and $\gamma\left(u_{3}\right)$ includes b : $\gamma\left(u_{1}\right)=a k l^{\prime} m, l^{\prime} \neq l$ and necessarily $\gamma\left(u_{3}\right)=b r l^{\prime} k$ to create a conflict with $\gamma\left(u_{2}\right)$. Moreover, since $m_{2}=1, r \notin\left\{c, d, m, l, l^{\prime}\right\}$.

Note then that we cannot have any conflict between $\gamma\left(u_{3}\right)$ and $\gamma\left(u_{1}\right)$, which means that $\mathcal{C}\left[S_{x}^{1}\right]$ is triangle-free. Moreover suppose a fourth $c_{4}, \gamma\left(u_{4}\right)$ conflicting $\gamma\left(u_{3}\right)$ in $\mathcal{C}\left[S_{x}^{1}\right]$. It necessarily includes $k l$ and thus conflicts $\gamma\left(u_{1}\right)$, which means that $\mathcal{C}\left[S_{x}^{1}\right]$ is P_{4}-free, which completes the proof. Figure 4 (Right) describes the structure of $\mathcal{C}\left[S_{x}^{1}\right]$, where $N_{t}, t=1,2,3,4$, is the union of components of $\mathcal{C}\left[S_{x}^{1}\right]$ of size t.

Corollary 17 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C}, if $m_{1}=2$ and $m_{2}=1$, then for every $x \in V_{\mathcal{C}}$, removing at most two vertices to \mathcal{C}_{x} makes it an independent collection of $C_{4} s, P_{3} s, P_{2} s$ and isolated vertices.

Proof: If $m_{1}=2$, at most one c_{4} conflicts $\gamma(x)$ with a $\operatorname{Conf}_{3 a}$ configuration, and at most one with $\operatorname{Con} f_{3 b}$ configuration. Let us remove these vertices. There can be at most one c_{4} conflicting $\gamma(x)$ with a $C o n f_{2}$ configuration and moreover such a c_{4} necessarily corresponds to an isolated vertex in $\mathcal{C}\left[S_{x}^{1}\right]$. Since all the other neighbors of x correspond to $\operatorname{Con} f_{1 a}$ or $\operatorname{Con} f_{1 b}$ configurations, Lemma 16 immediately concludes the proof.

Corollary 18 If $m_{1}=2$ and $m_{2}=1$ we are ensured to find in polynomial time a legal alignment with at least $(\Delta(\mathcal{C})-2) / 2$ conserved edges.

Proof: It is an immediate consequence of Corollary 17 applied to a vertex x of maximum degree in \mathcal{C}.
An exhaustive search or just the detection of $\operatorname{Con} f_{3 a}$ and $\operatorname{Con} f_{3 b}$ configurations involving $\gamma(x)$ allows to identify the vertices to be removed to make \mathcal{C}_{x} an independent collection of $C_{4} \mathrm{~s}, P_{3} \mathrm{~s}, P_{2} \mathrm{~s}$ and isolated vertices. Picking in this collection an independent set of two vertices in each $C_{4} \mathrm{~s}$ and P_{3}, one vertex in

Fig. 4: Left: Sample construction for a W_{4} in \mathcal{C}. The central vertex of the wheel corresponds to the $c_{4} a b c d$. The upper partition corresponds to vertices of G_{1} and the lower partition to those of G_{2}. Similarity edges are drawn between the partitions. Right: Depiction of the construction defined in Lemma 16. The vertex x is shown in the center and vertices in S_{x}^{1} are shown at the peripheral. N_{t} corresponds to all vertices in components of $\mathcal{C}\left[S_{x}^{1}\right]$ of size t. The black vertices constitute a maximum independent set of $\mathcal{C}\left[S_{x}^{1}\right]$.
each P_{2} and all the isolated vertices gives a independent set of size at least $(\Delta(\mathcal{C})-2) / 2$ in \mathcal{C}. Using Proposition 1 and the fact that the function γ can be computed in polynomial time (see Corollary 2) allows to conclude.

The following result concerns the existence of induced fans F_{t} in the conflict graph. Note that for $2 \leq t \leq t^{\prime}, F_{t}$ is an induced subgraph of $F_{t^{\prime}}$ and consequently an F_{t}-free graph is also $F_{t^{\prime}}$-free.

Theorem 19 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C} such that $m_{2}=1$, then:
(i) For $m_{1} \geq 3, \mathcal{C}$ is F_{8}-free;
(ii) For $m_{1}=2, \mathcal{C}$ is F_{6}-free.

Proof: Consider an induced F_{t} and let $\gamma(x)=a b c d$ be the center vertex.
(i) Assume for the sake of contradiction that $t=8$ and denote by $z_{1} z_{2} \cdots z_{8}$ be the induced P_{8} in the neighborhood of x. By Fact 1 every $c_{4} \gamma\left(z_{i}\right), i=1, \ldots, 8$ must include at least one of a or b in \mathcal{C}_{U}.

Suppose first $\gamma\left(z_{1}\right) \cap\{a, b\}=\gamma\left(z_{8}\right) \cap\{a, b\}$. Without loss of generality we assume they both include b and either both include a as well or none of them. Consider then the subgraph induced by $z_{1}, z_{2}, z_{3}, z_{8}$, inducing a $P_{3}+K_{1}$. By Corollary 13, the $c_{4} \mathrm{~s} \gamma\left(z_{1}\right), \gamma\left(z_{2}\right), \gamma\left(z_{3}\right)$ and $\gamma\left(z_{8}\right)$ cannot all include b and let $i \in\{2,3\}$ such that $\gamma\left(z_{i}\right)$ does not include b. Then, Lemma 14 with $y_{1}=z_{1}$ and $y_{2}=z_{i}$ and $z_{4}, \ldots z_{8}$ corresponding to $x_{1}, \ldots x_{5}$ leads to a contradiction.

Fig. 5: Left: Sample configuration for \mathcal{C}_{U} inducing F_{5} for the case where $m_{1}=2$. Right: Sample configuration for \mathcal{C}_{U} inducing F_{7} for the case where $m_{1}=3$. In each case the central vertex corresponds to the c_{4} indicated with $a b c d$. Each G_{2} edge is marked with the related c_{4} in $P_{5}=12345$ (left) or $P_{7}=1234567$ (right).

Suppose now $\gamma\left(z_{1}\right) \cap\{a, b\} \neq \gamma\left(z_{8}\right) \cap\{a, b\}$, then one only includes b and we get a contradiction as well by applying Lemma 14 with $y_{1}=z_{1}$ and $y_{2}=z_{8}$ and $z_{2}, \ldots z_{6}$ corresponding to $x_{1}, \ldots x_{5}$, which concludes the proof of (i).
(ii) Assume now $m_{1}=2$. Corollary 17 immediately shows that it is possible to remove at most two neighbors of x so that x cannot be the center of a F_{4}. It excludes the possibility of a F_{6} in this case.

Figure 5 -Left shows an example of F_{5} in a conflict graph with $m_{1}=2$ and $m_{2}=1$ and Figure 5 -Right shows an F_{7} in a conflict graph with $m_{1}=3$ and $m_{2}=1$.

Theorems 15 and 19 as well as Corollary 17 give us information about the structure of the subgraphs $\mathcal{C}_{x}, x \in V_{\mathcal{C}}$, induced by $N[x]$: as already mentioned a graph G is W_{t}-free (resp. F_{t}-free) if for all vertex x, G_{x} is C_{t}-free (resp. P_{t}-free), two classes of graphs that raised a lot of interest from researchers (see, eg., de Ridder et al. (2010); Brandstädt et al. (1999)).

We give now an example how to use the structure of neighborhoods to approximate the maximum independent set problem. It will give us algorithmic applications of Corollaries 17 and 13 .

A very classical approximation algorithm for maximum independent set in a graph $G=(V, E)$ is the algorithm 2-opt determining an independent set \tilde{S} such that $\forall u \in \tilde{S}, \forall v, w \in V \backslash \tilde{S},(\tilde{S} \backslash\{u\}) \cup\{v, w\}$ is not and independent set (there is no 2-improvement). Let us revisit the very usual analysis of 2-opt (see, e.g., Demange and Paschos (2005)) which consists in considering the bipartite graph B induced by $\tilde{S} \cup S^{*}$, where S^{*} is an optimum independent set. Denote by $\lambda(G)=|\tilde{S}|$ the value of the solution provided by the algorithm on G and $\alpha(G)=\left|S^{*}\right|$ the independent number of G. Then the number of edges of B is at least $2 \alpha(G)-\lambda(G)$ since 2-optimality ensures that, for every two edges $\tilde{v} u, \tilde{v} w$ in B incident to the same vertex $\tilde{v} \in \tilde{S}$, there is an additional edge incident to u or v. On the other hand this number is at most $\Delta_{\alpha} \lambda(G)$, where Δ_{α} is the minimum among all optimal independent sets S of the maximum number of vertices in S a vertex can be adjacent to:

$$
\Delta_{\alpha}=\min _{\substack{|S|=\alpha(G) \\ S \text { independent }}} \max _{v \in V}|N(v) \cap S|
$$

This implies:

$$
\begin{equation*}
\frac{\alpha(G)}{\lambda(G)} \leq \frac{\left(\Delta_{\alpha}+1\right)}{2} \tag{2}
\end{equation*}
$$

This remark emphasises that the usual maximum degree can actually be replaced by Δ_{α}. We propose below a strategy that can be used where large independent sets can be found in polynomial time in the neighborhood of each vertex. It leads to a new kind of approximation ratios depending on the independence number.
Theorem 20 Consider a class of graphs \mathcal{G} for which there is a polynomial time algorithm A approximating the maximum independent set problem within the ratio ρ for every graph G_{x}, where $G=(V, E) \in \mathcal{G}$ and $x \in V$.
Then the maximum independent set problem can be approximated within $\sqrt{3 \rho(G) \alpha(G) / 4}$.
Proof: The strategy, for an input graph $G=(V, E)$ in \mathcal{G} is as follows:
Apply A in all subgraphs $G_{x}, x \in V$;
Compute also a 2 -opt-solution;
Take the best solution among the $|V|+1$ different solutions obtained.
Note first that, if $\alpha(G) \leq 2$, then 2-opt finds an optimal solution, so we assume $\alpha(G) \geq 3$.
Suppose first that $\Delta_{\alpha}>\sqrt{4 \rho(G) \alpha(G) / 3}$. Then, when applied to a graph G_{x} such that $\alpha\left(G_{x}\right)=\Delta_{\alpha}$, the algorithm A computes a solution of value at least $\sqrt{4 \alpha(G) /(3 \rho(G))}$ leading to the approximation ratio $\sqrt{3 \rho(G) \alpha(G) / 4}$.

Suppose now $\Delta_{\alpha} \leq \sqrt{4 \rho(G) \alpha(G) / 3}$, then Relation (2) gives the ratio:

$$
\frac{\sqrt{\frac{4}{3} \rho(G) \alpha(G)}+1}{2} \leq \sqrt{\rho(G) \alpha(G)} \frac{\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}}{2}=\sqrt{\rho(G) \alpha(G)} \frac{\sqrt{3}}{2}
$$

where the inequality uses $\rho(G) \alpha(G) \geq \alpha(G) \geq 3$. In all cases, the ratio is at most $\sqrt{3 \rho(G) \alpha(G) / 4}$, which concludes the proof.

Given an instance $I=\prec G_{1}, G_{2}, S \succ$, we denote by $\beta(I)$ the optimal value of the constrained alignment problem on I.
Proposition 21 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C} and $m_{2}=1$,
(i) The constrained alignment problem can be approximated within $\sqrt{3 \beta(I) / 2}$,
(ii) If furthermore $m_{1}=2$, this is improved to $\sqrt{\beta(I)}$.

Proof:

This is a direct application of Theorem 20
(i) Consider a vertex x in the conflict graph \mathcal{C} and the graph \mathcal{C}_{x}. We denote $\gamma(x)=a b c d$. Using Fact 1 . the $c_{4} \mathrm{~s}$ in the neighborhood of x in \mathcal{C} can be partitioned into $N_{x, a}$ and $N_{x, b}$, where all $c_{4} \mathrm{~s}$ in $N_{x, a}$ include a while the others include b but not a. This partition can be determined in polynomial time. Corollary 13 ensures that $\mathcal{C}\left[N_{x, a}\right]$ and $\mathcal{C}\left[N_{x, b}\right]$ are P_{4}-free. It is well known that the maximum independent set problem can be solved in linear time in P_{4}-free graphs (also called cographs) (see, e.g., Golumbic (2004)). Determining a maximum independent set in $\mathcal{C}\left[N_{x, a}\right]$ and $\mathcal{C}\left[N_{x, b}\right]$ and choosing the best one
clearly solves the maximum independent set problem in \mathcal{C}_{x} within an approximation ratio of 2 . We apply Theorem 20 with constant $\rho(G)=2$.
(ii) If $m_{1}=2$, then Corollary 17 ensures that a maximum independent set can be found in polynomial time in graph $\mathcal{C}\left[N_{x}\right]$ and we apply Theorem 20 with constant $\rho(G)=1$.

Note that we obtain a ratio depending on the optimal value, which is not usual. Roughly speaking this result means that the logarithmic version of the problem - where the objective is to maximise the logarithm of the number of similarities in a legal alignment - is $\frac{3}{2}$-approximable. For instance, such a ratio for the maximum independent set in conflict graphs cannot be achieved in general graphs: the usual $n^{1-\varepsilon}$-hardness result (Håstad (1999)) states that, under some complexity hypothesis, the logarithm of the independence number cannot be approximated within a constant ratio.

Combining Proposition 21 with Corollary 5 leads to the following ratio:
Proposition 22 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C} and $m_{2}=1$,
(i) The constrained alignment problem can be approximated within the ratio:

$$
\min \left(\sqrt{3 / 2} \sqrt{\left|E_{1}\right|}, \sqrt{3 / 2} \sqrt{\left|E_{2}\right|},(1 / 2) \sqrt{3\left|V_{1}\right| \Delta_{2}},(1 / 2) \sqrt{3\left|V_{2}\right| \Delta_{1}}\right)
$$

(ii) If furthermore $m_{1}=2$, this ratio becomes:

$$
\min \left(\sqrt{\left|E_{1}\right|}, \sqrt{\left|E_{2}\right|}, \frac{\sqrt{2}}{2} \sqrt{\left|V_{1}\right| \Delta_{2}}, \frac{\sqrt{2}}{2} \sqrt{\left|V_{2}\right| \Delta_{1}}\right)
$$

Proof: Using the definition of the approximation ratio guaranteed by an algorithm for a maximization problem, any upper bound of a guaranteed approximation ratio is still a guaranteed approximation ratio. Using Proposition 1 -(iii), the optimal value $\beta(I)$ of the instance $I=\prec G_{1}, G_{2}, S \succ$ of the constrained alignment problem equals the independence number $\alpha(\mathcal{C})$ of the related conflict graph. By Corollary 5 , we deduce

$$
\beta(I) \leq \min \left(\left|E_{1}\right|,\left|E_{2}\right|, \frac{1}{2}\left|V_{1}\right| \Delta_{2}, \frac{1}{2}\left|V_{2}\right| \Delta_{1}\right)
$$

Since the function $\sqrt{ }$. is increasing, we conclude the proof using Proposition 21
Proposition 11 states the ratio $O\left(\Delta_{1} \log \log \left(\Delta_{1}\right) / \log \left(\Delta_{1}\right)\right)$ in the case $m_{2}=1$ and m_{1} is constant. When $\left|E_{1}\right| \in o\left(\left|\Delta_{1}\right|^{2}\right)$ or $\left|E_{2}\right| \in o\left(\left|\Delta_{1}\right|^{2}\right)$, the ratio obtained in Proposition 22 (i) can be better than the ratios we achieved as functions of the maximum degree. In addition, Proposition 22 (i) does not require any assumption about m_{1}.
Given the known results for the maximum independent set, a natural question is whether the constrained alignment problem is $O\left(\left|V_{1}\right| / \log ^{2}\left(\left|V_{1}\right|\right)\right)$-approximable or even whether any approximation in $o\left(\left|V_{1}\right| \log \log \left(\left|V_{1}\right|\right) / \log \left(\left|V_{1}\right|\right)\right.$ can be guaranteed. We give a first answer to this question in Theorem 25 below. The ratio $O\left(\sqrt{\left|E_{1}\right|}\right)$ gives also a first answer for some classes of graphs satisfying $\left|E_{1}\right| \in o\left(\left|V_{1}\right|^{2}\right)$ (but Δ_{1} still large). In particular, if G_{1} is acyclic, we have $\left|E_{1}\right| \leq\left|V_{1}\right|$ and consequently:

Corollary 23 Instances of the constrained alignment problem satisfying $m_{2}=1$ and G_{1} acyclic can be approximated within the ratio $O\left(\sqrt{\left|V_{1}\right|}\right)$.

Let now $I=\prec G_{1}, G_{2}, S \succ$ be an instance of the constrained alignment problem with conflict graph \mathcal{C} and $m_{2}=1$; suppose we are given a subset $F \subset V_{1}$ and a maximal matching M of $S\left[F \cup V_{2}\right]$, the subgraph of S corresponding to similarity edges incident to F. We denote by $V_{\mathcal{C}, F, M}$ the set of $c_{4} \mathrm{~s}$ in $V_{\mathcal{C}}$ including at least one vertex of F and no similarity edge $u v$ with $u \in F, v \in V_{2}, u v \notin M$; in other words,
these c_{4} s include vertices in F but only with similarity edges in M. Then, considering the subgraph $\mathcal{C}\left[V_{\mathcal{C}, F, M}\right]$ of \mathcal{C} induced by these $c_{4} \mathrm{~s}$, we have:

Lemma 24 For any induced $P_{3}, x_{1} x_{2} x_{3}$, in $\mathcal{C}\left[V_{\mathcal{C}, F, M}\right], x_{1}$ and x_{3} have the same neighborhood in $\mathcal{C}\left[V_{\mathcal{C}, F, M}\right]$. In particular $\mathcal{C}\left[V_{\mathcal{C}, F, M}\right]$ is P_{4}-free.

Proof: Since $m_{2}=1$ and by definition of $V_{\mathcal{C}, F, M}$, for every two conflicting $c_{4} \mathrm{~s}$ in $V_{\mathcal{C}, F, M}$, there must be a vertex $u \in V_{1} \backslash F$ and two disjoint vertices $v, v^{\prime} \in V_{2}$ such that $u v$ is an edge of the former and $u v^{\prime}$ an edge of the latter; moreover the other similarity edges of these $c_{4} \mathrm{~s}$ are in M. Suppose we are given an induce $P_{3}, x_{1} x_{2} x_{3}$, in $\mathcal{C}\left[V_{\mathcal{C}, F, M}\right]$. There are such vertices u, v, v^{\prime}, where $\gamma\left(x_{1}\right)$ and $\gamma\left(x_{3}\right)$ both include the edge $u v$ while $\gamma\left(x_{2}\right)$ includes $u v^{\prime}$. Moreover, every c_{4} in $V_{\mathcal{C}, F, M}$ that conflicts with $\gamma\left(x_{3}\right)$ (resp. $\gamma\left(x_{1}\right)$) must include a similarity edge $u w, w \neq v$ and thus it conflicts with $\gamma\left(x_{1}\right)$ (resp. $\gamma\left(x_{3}\right)$), which concludes the proof.

We deduce the following theorem that gives a first step towards non trivial $o\left(\left|V_{1}\right|\right)$ approximation ratios. It corresponds to a sequence of approximation algorithms parametrized by K, called approximation chain in Demange and Paschos (1997).
Theorem 25 Consider instances of the constrained alignment problem satisfying $m_{2}=1$ and m_{1} constant and let K be a positive constant. One can find in polynomial time a legal alignment guaranteeing the approximation ratio of $\left\lceil\frac{\left|V_{1}\right|}{K \log \left(\left|V_{1}\right|\right)}\right\rceil$.

Proof: Consider an instance $I=\prec G_{1}, G_{2}, S \succ$ verifying the assumptions and denote by \mathcal{C} the related conflict graph. We recall that $\left|V_{1}\right| \geq 2$. Denote by $\beta(I)=\alpha(\mathcal{C})$ the optimal value for the instance I. Let S^{*} be a maximum independent set of $\mathcal{C},\left|S^{*}\right|=\alpha(\mathcal{C})$. Our strategy is to subdivide the vertex set of the conflict graph, $V_{\mathcal{C}}$, into $O\left(\frac{\left|V_{1}\right|}{\log \left(\left|V_{1}\right|\right)}\right)$ subsets such that the maximum independent set can be solved in polynomial time on the subgraph induced by each part. This subdivision is not necessarily a partition.
Fix a constant K and partition vertices of V_{1} into $B_{K}=\left\lceil\frac{\left|V_{1}\right|}{K \log \left(\left|V_{1}\right|\right)}\right\rceil$ sets of vertices $F_{j}, j=1, \ldots B_{K}$ with $\left|F_{j}\right| \leq K \log \left(\left|V_{1}\right|\right)$. For each of them we denote by U_{j} the set of all c_{4} s in $V_{\mathcal{C}}$ including at least one vertex of F_{j} and by W_{j} the graph $W_{j}=\mathcal{C}\left[U_{j}\right]$. Note that:

$$
\begin{equation*}
\bigcup_{j=1, \ldots, B_{K}} U_{j}=V_{\mathcal{C}} \tag{3}
\end{equation*}
$$

We claim that there is a polynomial-time algorithm that computes, for every $j=1, \ldots, B_{K}$, a maximum independent set of W_{j}. Note first that the similarity edges involved in c_{4} s contributing to any independent set of W_{j} form a matching of the graph $S\left[F_{j} \cup V_{2}\right]$ and consequently, is part of a maximal matching of this graph. Denoting by \mathcal{M}_{j} the set of maximal matchings of $S\left[F_{j} \cup V_{2}\right]$, we deduce:

$$
\begin{equation*}
\alpha\left(W_{j}\right)=\max _{M \in \mathcal{M}_{j}} \alpha\left(\mathcal{C}\left[V_{\mathcal{C}, F_{j}, M}\right]\right) \tag{4}
\end{equation*}
$$

Lemma 24 ensures that, for any fixed maximal matching $M \in \mathcal{M}_{j}, \mathcal{C}\left[V_{\mathcal{C}, F_{j}, M}\right]$ is P_{4}-free. In this case a maximum independent set can be computed in polynomial (linear) time (Golumbic (2004). The related complexity is $O\left(\left|V_{\mathcal{C}, F_{j}, M}\right|\right) \leq O\left(m_{1}\left|F_{j}\right|\left|V_{1}\right|\right)$ since $c_{4} \mathrm{~s}$ in $V_{\mathcal{C}, F_{j}, M}$ include at least one edge of
M and $|M| \leq\left|F_{j}\right|$. But m_{1} is a fixed constant and $\left|F_{j}\right| \leq K \log \left(\left|V_{1}\right|\right)$. Thus, we can exhaustively list all maximal matchings of $S\left[F_{j} \cup V_{2}\right]$ in $O\left(m_{1}^{K \log \left(\left|V_{1}\right|\right)}\right)=O\left(\left|V_{1}\right|^{K \log \left(m_{1}\right)}\right)$, a polynomial function.

Our algorithm runs as follows:
For all $j=1, \ldots, B_{K}$ and all maximal matching M of $S\left[F_{j} \cup V_{2}\right]$, compute $\mathcal{C}\left[V_{\mathcal{C}, F_{j}, M}\right]$ and a maximum independent set-keep the best such solution.

Computing each $\mathcal{C}\left[V_{\mathcal{C}, F_{j}, M}\right]$ and a maximum independent set takes, for bounded $m_{1}, O\left(\left|V_{1}\right| \log \left(\left|V_{1}\right|\right)\right)$; the whole complexity is then $O\left(\log \left(\left|V_{1}\right|\right)\left|V_{1}\right|^{1+K \log \left(m_{1}\right)}\right)$, a polynomial function.

To complete the proof we need to justify it guarantees the required ratio. Equation (3) ensures that the value $\lambda(I)$ of the computed solution satisfies:

$$
\lambda(I)=\max _{j=1, \ldots, B_{K}} \alpha\left(W_{j}\right) \geq \max _{j=1, \ldots, B_{K}}\left|S^{*} \cap U_{j}\right| \geq \frac{\beta(I)}{B_{K}}
$$

which shows that the related approximation ratio is $B_{k}=\left\lceil\frac{\left|V_{1}\right|}{K \log \left(\left|V_{1}\right|\right)}\right\rceil$.

3.1.2 Cliques and Claws

Next we present results regarding the existence of cliques as subgraphs of conflict graphs for any m_{1}. Assume that there is a clique $K_{t}, t \geq 1$, in \mathcal{C} and let a corresponding c_{4} associated with a vertex x from this K_{t} be $\gamma(x)=a b c d$. We partition all the corresponding c_{4} s in K_{t} into three disjoint reference sets with respect to $\gamma(x)$. Let S_{1}, S_{2} consist of all the c_{4} s respectively conflicting $\gamma(x)$ with a $\operatorname{Con} f_{1 a}$ and $\operatorname{Con} f_{1 b}$ configuration. Let S_{3} be the set of all c_{4} s with other kinds of conflicts ($\operatorname{Con} f_{2}, C o n f_{3 a}$ or $\operatorname{Conf}_{3 b}$) with $\gamma(x)$ and $\gamma(x)$ itself.

Lemma 26 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C} and the reference sets defined as above, then any pair of $c_{4} s$ from different reference sets do not share a similarity edge.

Proof: Note that since the pair of $c_{4} \mathrm{~s}$ correspond, in \mathcal{C}, to different vertices of the same clique K_{t}, they should conflict by sharing at least one vertex from G_{1}. We consider two cases. For the first case assume one of the c_{4} s is in S_{1} or S_{2}, and the other is in S_{3}. Without loss of generality assume the former c_{4} is in S_{1} including vertices s and a from G_{1}, where $s \neq b$. Since the latter c_{4} from S_{3} includes both a, b from G_{1}, the pair of $c_{4} \mathrm{~s}$ can only share the vertex a from G_{1} giving rise to a $\operatorname{Con} f_{1 a}$ or a $\operatorname{Conf} f_{1 b}$ conflict between them. For the second case assume one of the $c_{4} \mathrm{~s}$ is in S_{1} and the other is in S_{2}. In this case the former must have a $\operatorname{Con} f_{1 a}$ conflict whereas the latter must have a $\operatorname{Con} f_{1 b}$ conflict with the reference $\gamma(x)=a b c d$. Since $a \neq b$ the c_{4} s from S_{1} and S_{2} can only share one vertex from G_{1}, thus giving rise to a $\operatorname{Con} f_{1 a}$ or a $\operatorname{Con} f_{1 b}$ conflict between the pair. In both cases we show that both $c_{4} \mathrm{~s}$ are in $\operatorname{Con} f_{1 a}$ or $\operatorname{Con} f_{1 b}$ conflict with each other. The fact that any pair of c_{4} s with a $C o n f_{1 a}$ or a $C o n f_{1 b}$ conflict do not share a similarity edge completes the proof.

Theorem 27 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C} and $m_{2}=1$, the maximum size of any clique in \mathcal{C} is $m_{1}{ }^{2}$, or equivalently \mathcal{C} is $K_{1+m_{1}{ }^{2}}$-free.

Fig. 6: Sample $\mathcal{C}_{U} \mathbf{S}$ giving rise to $K_{m_{1}}{ }^{2} \mathbf{S}$ in their respective conflict graphs. The reference c_{4} is $\gamma(x)=a b c d$. The first two show sample constructions for $m_{1}=2$ and the last for $m_{1}=3$. The employed reference sets as described in the proof of Theorem 27 are as follows: (Left) All $c_{4} \mathrm{~S}$ are in S_{3}, (Middle) $c_{4} \mathrm{~S}$ in S_{3} are those induced by black vertices and $b, c_{4} \mathrm{~s}$ in S_{2} are those induced by white vertices and b, (Right) $c_{4} \mathrm{~s}$ in S_{3} are those induced by black vertices and $a, c_{4} \mathrm{~s}$ in S_{1} are those induced by white vertices and a.

Proof: We consider two cases.

Case-1: We first handle the case where at least one of S_{1}, S_{2} is empty. Assume without loss of generality S_{1} is empty. Let p be the number of similarity edges incident to b in the c_{4} s of S_{3}. Since each pair of similarity edges, one incident to a and one incident to b, gives rise to at most one c_{4}, the number of $c_{4} \mathrm{~s}$ in S_{3} is at most $m_{1} p$. By Lemma 26, $c_{4} \mathrm{~S}$ in S_{3} cannot share an edge from S with the $c_{4} \mathrm{~S}$ in S_{2}. This implies that the number of similarity edges incident to b in the $c_{4} \mathrm{~S}$ of S_{2} is at most $m_{1}-p$. Let $b c^{\prime}$ be such an edge and let $S_{b c^{\prime}}$ denote the set of $c_{4} \mathrm{~s}$ in S_{2} sharing $b c^{\prime}$. Since any pair of $c_{4} \mathrm{~s}$ from $S_{b c^{\prime}}$ share a similarity edge, they must be in a $\operatorname{Conf}_{3 a}$ or $\operatorname{Conf} f_{3 b}$ conflict with each other and thus must share one more vertex from G_{1} in addition to the vertex b. This implies that $\left|S_{b c^{\prime}}\right| \leq m_{1}$ which further implies a total of at most $\left(m_{1}-p\right) m_{1} c_{4} s$ in S_{2}. The clique consisting of $c_{4} s$ from S_{2}, S_{3} has at most $m_{1}{ }^{2}$ vertices.

Case-2: Now we handle the case where S_{1} and S_{2} are both not empty. It must be the case that all c_{4} s in $S_{1} \cup S_{2}$ must share a vertex e from G_{1} such that $e \neq a, e \neq b$. This is due to the fact that any pair of $c_{4} \mathrm{~s}$, one from S_{1} the other from S_{2}, can only have a $\operatorname{Con} f_{1 a}$ or $\operatorname{Conf} f_{1 b}$ conflict and the shared node in this conflict cannot be neither a nor b. Let p, q be the number of edges from S incident respectively to a and b in the c_{4} s of S_{3}.

The number of $c_{4} \mathrm{~s}$ in S_{3} is at most $p q$. By Lemma 26 the number of similarity edges edges incident to a in the c_{4} s of S_{1} are at most $m_{1}-p$ and the number of similarity edges incident to b in the c_{4} s of S_{2} are at most $m_{1}-q$. Let r be the number of similarity edges incident to e in the c_{4} s of S_{1}. Again by Lemma 26 , the number of similarity incident to e in the $c_{4} \mathrm{~S}$ of S_{2} are at most $m_{1}-r$. This implies that the maximum number of $c_{4} \mathrm{~S}$ in S_{1} and S_{2} are respectively $\left(m_{1}-p\right) r$ and $\left(m_{1}-q\right)\left(m_{1}-r\right)$. The size of the clique consisting of c_{4} f from all three reference sets is at most $p q+\left(m_{1}-p\right) r+\left(m_{1}-q\right)\left(m_{1}-r\right)$, where $1 \leq p, q, r \leq m_{1}$. Without loss of generality let $p \leq q$. Then we have $p q+\left(m_{1}-p\right) r+\left(m_{1}-q\right)\left(m_{1}-r\right) \leq$ $p q+\left(m_{1}-p\right) m_{1} \leq m_{1}{ }^{2}$.

We note that $K_{m_{1}}{ }^{2}$ is possible in a conflict graph \mathcal{C} for any positive integer m_{1}. Indeed Case- 1 of the above proof provides an actual construction method; see Figure 6.
Note that under the setting of $m_{2}=1$, the size of $V_{\mathcal{C}}$ is bounded by $\left|E_{2}\right|$ (Lemma 4). It is known that the maximum independent set problem is fixed-parameter tractable, parameterized by the size of the output, in the class of K_{r}-free graphs for constant integer r (Raman and Saurabh (2006); Dabrowski et al. (2012)). Combining this result with Theorem 27 leads to the following result:

Proposition 28 The constrained alignment problem is fixed-parameter tractable when m_{1} is any fixed positive integer constant and $m_{2}=1$.

Note that the analogous result in Fertin et al. (2009) is more restrictive since it applies only to the bounded degree graphs.

We conclude this part by considering induced claws in conflict graphs. A d-claw is an induced subgraph of an undirected graph, that consists of an independent set of d vertices, called talons, and the center vertex that is adjacent to all vertices in this set. Let $\Delta_{\min }=\min \left(\Delta_{1}, \Delta_{2}\right)$.

Theorem 29 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C} and $m_{2}=1$, then \mathcal{C} is $\left(2 \Delta_{\text {min }}+2\right)$-claw-free.

Proof: Let $a b c d$ be the corresponding c_{4} associated with the center vertex of a claw. Let $a b k l$ be the c_{4} corresponding to a talon that has a $\operatorname{Con} f_{2}, \operatorname{Con} f_{3 a}$ or $\operatorname{Conf} f_{3 b}$ conflict with $a b c d$. Since any other c_{4} corresponding to a talon with a $\operatorname{Conf} f_{2}, \operatorname{Con} f_{3 a}$ or $C o n f_{3 b}$ conflict with $a b c d$ would also have to share the vertices a, b, by Fact 2, it would conflict with $a b k l$, which is not possible. Thus, the total number of talons the c_{4} s of which create a $\operatorname{Con} f_{2}, \operatorname{Conf} f_{3 a}$ or $\operatorname{Con} f_{3 b}$ conflict with $a b c d$ is at most 1 . With regards to the number of talons corresponding, in \mathcal{C}_{U}, to a $\operatorname{Con} f_{1 a}$ or $\operatorname{Con} f_{1 b}$ conflict with $a b c d$, we first count the maximum number of possible $C o n f_{1 a}$ conflicts. Let $a p q r$ be the c_{4} of a talon with a $C o n f_{1 a}$ conflict with $a b c d$. Any talon the c_{4} of which conflicts with $a b c d$ through a $C o n f_{1 a}$ conflicting configuration must share the edge $a r$, since otherwise it would conflict with $a p q r$. Any G_{1} edge incident to vertex a can belong only to a single c_{4} since otherwise by Fact 2 there would be a conflict between a pair of $c_{4} \mathrm{~S}$ corresponding to talons. In addition, since $m_{2}=1$, every G_{2} edge can belong only to a single c_{4}. Thus the number of talons inducing in $\mathcal{C} \operatorname{Con} f_{1 a}$ conflicts is bounded by $\Delta_{m i n}$. The same holds for $\operatorname{Con} f_{1 b}$ conflicts giving rise to at most $\left(2 \Delta_{\min }+1\right)$ talons that are independent.

The above theorem in conjunction with the result of Berman 2000 which states that a $d / 2$ approximation for maximum independent sets can be found in polynomial-time for d-claw free graphs gives rise to a polynomial-time approximation for the constrained alignment problem.

Proposition 30 If $m_{2}=1$, the constrained alignment problem can be $\left(\Delta_{\min }+1\right)$-approximated in polynomial time.

This results improves (by at least a factor $5 / 6$) the approximation ratio of $2\left\lceil 3 \Delta_{1} / 5\right\rceil$ for even Δ_{1} and $2\left\lceil\left(3 \Delta_{1}+2\right) / 5\right\rceil$ for odd Δ_{1} proposed in (Fertin et al. (2009)). As already mentioned, the $o\left(\Delta_{1}\right)-$ approximation stated in Proposition 11 already improved it. If $\Delta_{2} \in O\left(\Delta_{1}\right)$, then the ratio in Proposition 11 is better but if $\Delta_{2} \in o\left(\Delta_{1}\right)$, then the ratio established in Proposition 30 can be better than the one in Proposition 11 .

We conclude Subsection 3.1 by emphasizing that some of our structural results lead to a new hardness result for the maximum independent set problem. Indeed, the combination of Lemma 6, Theorem 15 , Theorem 19 and Theorem 19 states that, for any instance of the constrained alignment problem with $m_{1}=2, m_{2}=1$ and G_{1}, G_{2} are of bounded degree, the related conflict graph is ($\left.W_{t}(t \geq 5), F_{6}, K_{5}\right)$ free and of bounded degree.

On the other hand, the constrained alignment problem is shown to be APX-complete even for the case where $m_{2}=1, m_{1}=2$, both G_{1}, G_{2} are bipartite and of bounded degree (Fertin et al. (2009)). As a consequence, we derive the following new hardness result for the maximum independent set problem:

Proposition 31 The maximum independent set problem is APX-complete in the class of bounded degree, $\left(W_{t}(t \geq 5), F_{6}, K_{5}\right)$-free graphs.

3.2 Acyclic G_{1} and $m_{2}=1$

We conclude by investigating the case where G_{1} is acyclic and $m_{2}=1$ for which the constrained alignment problem is shown to be polynomial-time solvable in Abaka et al. (2013) without a precise complexity analysis. We refine this previous analysis by showing that in this case the conflict graph has a very particular structure. More precisely it is weakly triangulated (C_{t}-free and $\overline{C_{t}}$-free, for $t \geq 5$). Weakly triangulated graphs are known to be perfect (Hayward (1985)) and moreover the maximum independent set problem can be solved in $O(|V||E|)$ in a graph $G=(V, E)$ (Hayward et al. (2007)). It allows us to deduce a new polynomial-time algorithm for this case with its complexity analysis. This illustrates again how the structure of the conflict graph can be used to achieve algorithmic results.

We need two technical lemmas; remind that, given an instance $\prec G_{1}, G_{2}, S \succ$ the graph \mathcal{C}_{U} is defined in Subsection 2.2.

Lemma 32 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C} where G_{1} is acyclic. Suppose a P_{k}, denoted by p, is an induced subgraph of the conflict graph \mathcal{C}. For $k \geq 4$, the c_{4} s of \mathcal{C}_{U} corresponding to the end vertices of p neither share a vertex nor an edge in \mathcal{C}_{U}.

Proof: Suppose first that p_{k} is an induced $P_{k}, k \geq 4$ in the conflict graph and consider the two c_{4} s in \mathcal{C}_{U} associated with the extremities of p_{k}. They can neither share an edge from G_{2} nor a vertex from G_{2} without sharing a similarity edge incident to it ($m_{2}=1$). They also cannot share an edge from G_{1} nor a vertex from G_{1} without sharing a similarity edge incident to it since otherwise they would conflict. Thus we simply need to show that they do not share a similarity edge.

The proof is by strong induction on k. For the base case $k=4$, suppose there is a $P_{4} x_{1} x_{2} x_{3} x_{4}$ in the conflict graph and that the $c_{4} \mathrm{~s} \gamma\left(x_{1}\right)$ and $\gamma\left(x_{4}\right)$ share a similarity edge. Let $\gamma\left(x_{1}\right)=a b c d$ and let $\gamma\left(x_{4}\right)=b e f c$ with the edge $b c \in S$ in common. There are two cases for $\gamma\left(x_{2}\right)$. Since it does not conflict with $\gamma\left(x_{4}\right)$, it must either be of the form $g a h i$, where $h, i \notin\{d, c, f\}\left(\operatorname{Con} f_{1 a}\right.$ conflict with $\left.\gamma\left(x_{1}\right)\right)$ or of the form $a b c h$ where $h \notin\{d, c, f\}\left(\operatorname{Conf}_{3 a}\right.$ conflict with $\left.\gamma\left(x_{1}\right)\right)$. Now considering $\gamma\left(x_{3}\right)$, to create a conflict with $\gamma\left(x_{4}\right)$, one edge of $\gamma\left(x_{3}\right)$ must be $e j$ where $j \notin\{d, c, f, h, i\}$. Placing the other edge of $\gamma\left(x_{3}\right)$ from E_{S} such that it creates a conflict with $\gamma\left(x_{2}\right)$ is now impossible, since it either gives rise to a cycle in G_{1} (cycle $a b e$ or $a b e g, g \notin\{a, b, e\}$) or creates a conflict with $\gamma\left(x_{1}\right)$.

For the inductive part, assume that the lemma holds for all k^{\prime} where $4 \leq k^{\prime}<k$. Consider the $c_{4} \mathrm{~S}$ of \mathcal{C}_{U} corresponding to the vertices of a $P_{k}, x_{1} \cdot x_{k-1} x_{k}$ in the conflict graph. Let $\gamma\left(x_{1}\right)=a b c d$ and $\gamma\left(x_{k-1}\right)=$ efgh. By the inductive hypothesis, these two c_{4} s are disjoint. Consider in \mathcal{C}_{U} the subset H of edges from E_{1} that belong to the c_{4} s associated with vertices in the $P_{k-1}, x_{1} \cdots x_{k-1}$. H contains in particular $a b$ and $e f$. Edges in H form a connected subgraph of G_{1} and without loss of generality we assume that the shortest path between b and e contains neither a nor f. This path has at least one edge; let its last edge be $e^{\prime} e \in G_{1}$ which is part of $\gamma\left(x_{j}\right)$ for some $j, 1 \leq j \leq(k-2)$. Let $\gamma\left(x_{j}\right)=e^{\prime}$ exy and $\gamma\left(x_{k}\right)=$ pqrs. If at least one of p, q is on the path, say p, and $p \neq e^{\prime}, p \neq e$, then q must be one of e or f, since pqrs must conflict with efgh, which implies a cycle in G_{1}. If $p=e^{\prime}$ then $q=e$ to create a conflict with efgh without creating a cycle in G_{1}. This implies a conflict between pqrs and $e^{\prime} e x y$, which is impossible since $x_{1} \cdots x_{k}$ is an induced path. Finally, if $p=e, q \neq e^{\prime}, a b c d$ and pqrs do not share a similarity edge, which concludes the proof.

Fig. 7: Chain configuration of a k-path in \mathcal{C}_{U}.

The subgraph of \mathcal{C}_{U} that corresponds to an induced $P_{k}, x_{1} \cdots x_{k-1} x_{k}$ in the conflict graph \mathcal{C} is said to be in chain configuration if each $c_{4}, \gamma\left(x_{i}\right), i=1, \ldots k$, shares only a distinct G_{1}-vertex with the next $c_{4}, \gamma\left(x_{i+1}\right)$, if $i<k$ and one with the previous one, $\gamma\left(x_{i-1}\right)$, if $i>1$ and does not share any G_{1} - or G_{2}-vertices with any other of these c_{4} s; see Figure 7 for a sample chain configuration. Note that a chain configuration imposes a certain order of the involved $c_{4} \mathrm{~s}$ in \mathcal{C}.

Lemma 33 Let $\prec G_{1}, G_{2}, S \succ$ be an instance of the constrained alignment problem with conflict graph \mathcal{C} and acyclic G_{1}. Let x_{1}, x_{2}, x_{3} be three vertices of \mathcal{C} such that $\gamma\left(x_{1}\right)$ and $\gamma\left(x_{3}\right)$ do not share a vertex nor an edge in \mathcal{C}_{U} and $\gamma\left(x_{2}\right)$ conflicts with both $\gamma\left(x_{1}\right)$ and $\gamma\left(x_{3}\right)$. Then $\gamma\left(x_{1}\right), \gamma\left(x_{2}\right)$ and $\gamma\left(x_{3}\right)$ must be in chain configuration where $\gamma\left(x_{2}\right)$ is in the middle in any left to right order.

Proof: If the conflict configuration of $\gamma\left(x_{1}\right)$ and $\gamma\left(x_{2}\right)$ were of $\operatorname{Conf}_{2}, \operatorname{Conf}_{3 a}$ or $\operatorname{Conf} f_{3 b}$, then $\gamma\left(x_{3}\right)$ could conflict with $\gamma\left(x_{2}\right)$ only if it shared a vertex in \mathcal{C}_{U} (more specifically a vertex from G_{1}, since $m_{2}=1$) with $\gamma\left(x_{1}\right)$, which is not possible. It follows that the only possible conflict configuration for $\gamma\left(x_{1}\right)$ and $\gamma\left(x_{2}\right)$ is $\operatorname{Con} f_{1 a}$ or $\operatorname{Con} f_{1 b}$. Applying the same reasoning to the conflict between $\gamma\left(x_{2}\right)$ and $\gamma\left(x_{3}\right)$, it follows that all three must be in chain configuration, where $\gamma\left(x_{2}\right)$ is in the middle of the chain in any left to right order.

We are now ready to prove the main result of this subsection.
Theorem 34 Given an instance $\prec G_{1}, G_{2}, S \succ$ with conflict graph \mathcal{C} such that G_{1} is acyclic and $m_{2}=1$ then \mathcal{C} is weakly triangulated.

Proof: Assume first for the sake of contradiction that C_{k} is an induced subgraph of a conflict graph for $k \geq 5$. The cycle $C_{k}=x_{1} \cdots x_{k-1} x_{k} x_{1}$ can be divided into $(k-2) P_{3} \mathrm{~s}: x_{1} x_{2} x_{3}, x_{2} x_{3} x_{4}, \ldots$, $x_{k-2} x_{k-1} x_{k}$. We show that for each $P_{3} \mathrm{~s}, x_{i} x_{i+1} x_{i+2}, 1 \leq i \leq k-2, \gamma\left(x_{i}\right), \gamma\left(x_{i+1}\right.$ and $\gamma\left(x_{i+2}\right)$ must be in chain configuration in \mathcal{C}_{U}. There exists indeed a $(k-1)$-path starting at vertex x_{i} and ending at vertex $\left(x_{i+2}\right)$ as an induced subgraph of C_{k}, thus of \mathcal{C} as well. Since $k \geq 5$, by Lemma 32 the $c_{4} \mathrm{~s} \gamma\left(x_{i}\right)$ and $\gamma\left(x_{i+2}\right)$, neither share a vertex nor an edge in \mathcal{C}_{U}. By definition of C_{k}, they do not conflict. Since $\gamma\left(x_{i+1}\right)$ conflicts with both $\gamma\left(x_{i}\right)$ and $\gamma\left(x_{i+2}\right)$, by Lemma 33, all three must be in chain configuration, where $\gamma\left(x_{i+1}\right)$ is in the middle of the configuration in any left to right order. Since each of the $k-2$ triples $\left(x_{1}, x_{2}, x_{3}\right),\left(x_{2}, x_{3}, x_{4}\right), \ldots,\left(x_{k-2}, x_{k-1}, x_{k}\right)$ is in chain configuration similarly, the c_{4} s corresponding to the whole path $x_{1} x_{2} \cdots x_{k-1} x_{k}, \gamma\left(x_{1}\right), \gamma\left(x_{2}\right) \ldots \gamma\left(x_{k-1} \gamma\left(x_{k}\right)\right.$ are in chain configuration in this order. This implies there cannot be a conflict between $\gamma\left(x_{1}\right)$ and $\gamma\left(x_{k}\right)$, since in the opposite case it would correspond to a cycle in graph G_{1}. This contradicts the fact vertices x_{1} and x_{k} are adjacent in \mathcal{C}.
To prove that $\overline{C_{k}}$ is not an induced subgraph in any conflict graph, we first note that since $\overline{C_{5}}$ is isomorphic to $C_{5}, \overline{C_{5}}$ cannot be an induced subgraph of any conflict graph. For $k>5$, we prove it by contradiction as well. Suppose $\overline{C_{k}}$, with $k>5$ is an induced subgraph of \mathcal{C}. Consider the path $x_{k-1} x_{1} x_{k-2} x_{k}$. This is an induced 4-path in $\overline{C_{k}}$, thus also in \mathcal{C}. By Lemma 32, $\gamma\left(x_{k}\right)$ and $\gamma\left(x_{k-1}\right)$ do not share any
vertex and neither an edge in \mathcal{C}_{U}. By definition of $\overline{C_{k}}$ they do not conflict. Since $\gamma\left(x_{2}\right)$ conflicts with both $\gamma\left(x_{k-1}\right)$ and $\gamma\left(x_{k}\right)$ (vertex x_{2} is adjacent to x_{k-1} and x_{k} in $\overline{C_{k}}$), by Lemma $33, \gamma\left(x_{k-1}\right), \gamma\left(x_{2}\right)$, and $\gamma\left(x_{k}\right)$ must be in chain configuration in that order. By the same reasoning $\gamma\left(x_{k-1}\right), \gamma\left(x_{3}\right)$, and $\gamma\left(x_{k}\right)$ must be in chain configuration again in the same order. However this is only possible if $\gamma\left(x_{2}\right)$ and $\gamma\left(x_{3}\right)$ are identical, which constitutes a contradiction.

In Abaka et al. (2013), the constrained alignment problem is shown to be polynomial-time solvable if G_{1} is acyclic and $m_{2}=1$, using a dynamic programming approach. Theorem 34 gives an alternative proof using the $O(|V||E|)$ algorithm for maximum independent set in weakly triangulated graphs (Hayward et al. (2007)). In this case, Lemma 7 and Theorem 8 (i) give $\left|E_{\mathcal{C}}\right| \leq \frac{1}{2} m_{1}^{3}\left(m_{1}-1\right)\left|V_{1}\right|\left(\Delta_{1}+3\right)$ while Lemma 4 gives $\left|V_{\mathcal{C}}\right| \leq m_{1}{ }^{2}\left|V_{1}\right|$. The related complexity is $O\left(\Delta_{1}\left|V_{1}\right|^{2}\right)$ if m_{1} is a fixed constant.

4 Concluding remarks

We consider the constrained alignment of a pair of input graphs. We heavily investigate the combinatorial properties of a conflict graph which was introduced in Fertin et al. (2009) but not studied in detail as far as graph theoretical properties are concerned. The constrained alignment problem appears as being closely related to the maximum independent set problem in conflict graphs. Known results on the maximum independent set problem associated with several structural properties of conflict graphs lead to algorithmic results for the constrained alignment problem: a polynomial-time case, polynomial-time approximations, and fixed-parameter tractability results.

Our contribution is twofold. First, we improve known approximation results for the constrained alignment problem in several ways. In terms of the maximum degrees of G_{1} and G_{2}, we propose the first $o\left(\Delta_{1}+\Delta_{2}\right)$-approximation using basic properties of conflict graphs. This ratio is similar to the known approximation ratios, function of the maximum degree, for the maximum independent set problem in G_{1} and G_{2}. This is due to the fact that the maximum degree of the conflict graph is of the same order as $\Delta_{1}+\Delta_{2}$. On the contrary, the number of vertices of the conflict graph does not allow to derive interesting results from known maximum independent set approximation ratios expressed as functions of the number of vertices. We design the first non trivial approximation result with a ratio function of $\left|V_{1}\right|$ for the constrained alignment problem. The related ratio, $O\left(\frac{\left|V_{1}\right|}{\log \left(\left|V_{1}\right|\right)}\right)$, is better than $O\left(\frac{\left|V_{1}\right| \log \log \left(\left|V_{1}\right|\right)}{\log \left(\left|V_{1}\right|\right)}\right)$ directly obtained from ratios function of the degree but it is still large compared to the $O\left(\frac{\left|V_{1}\right|}{\log ^{2}\left(\left|V_{1}\right|\right)}\right)$-approximation of the maximum independent set in G_{1}.

A first open question raised by these results is to strengthen hardness approximation results for the constrained alignment problem and in particular to investigate whether a ratio of $O\left(\left|V_{1}\right|^{1-\varepsilon}\right)$ or even a constant approximation can be achieved in polynomial time. It is indeed well-known that such ratios cannot be achieved for the maximum independent set problem.
We also derive a ratio of $O(\sqrt{\beta(I)})$ for the constrained alignment problem with $m_{2}=1$, while a similar result is not possible for the maximum independent set in general graphs unless $\mathrm{P}=\mathrm{NP}$. This kind of unusual result (Theorem 20 and Proposition 21) seems interesting to investigate.

Studying more in detail in which extend similar $\rho(\alpha(G))$-approximation results, parametrised by the size of the optimal solution, can be obtained for the maximum independent set problem or other problems is an interesting line of research raised by this work.

Our second contribution is about structural results on the conflict graph. After general considerations (Subsection 2.3) valid for any m_{1}, m_{2}, we focus on the case $m_{2}=1$ (any m_{1}) that has been considered in Fagnot et al. (2008); Fertin et al. (2009). For this case, we investigate graph classes that all can be characterised by forbidden subgraphs H in the neighborhood of any vertex: the case where H is a large clique or a large independent set is pretty usual, it just corresponds, in the whole graph, to exclude large cliques and/or large claws. The case where H is an induced path or cycle - thus excluding wheels or fans - is less current even thought the classes of H-free graphs themselves have raised great interest in the recent years: for instance many researches deal with maximum independent set problem in graphs excluding C_{t} or P_{t} for some t. In particular, it is known that the maximum independent set problem is polynomial for P_{5}-free graphs (Lokshantov et al. (2014)) and the case of larger t is still unknown. For instance, if the maximum independent set problem was polynomial in P_{8}-free graphs, then combining Theorems 19 and 20 would lead to a $\sqrt{\beta(I)}$-approximation for the constrained alignment problem. Note also that P_{4}-free subgraphs of \mathcal{C} play a crucial role for several results in this work; it would be interesting to study whether this approach can be applied in a more general setting using P_{5}-free subgraphs instead of P_{4}-free ones.

So far, this work motivates the study of maximum independent set in graphs excluding fans and/or wheels and more generally in classes of graphs with forbidden subgraphs in the neighborhood of any vertex.
Theorem 20 gives a first step in this direction with a strategy to efficiently solve the maximum independent set in a graph $G=(V, E)$ when a good solution can be found in all subgraphs $G_{v}, v \in V$.

As a first attempt to investigate properties of the conflict graph to derive efficient algorithms, the case $m_{2}=1$ revealed to be very rich and promising as it allows to derive interesting properties of the conflict graph, even for large values of m_{1}. Even if, as outlined in Fagnot et al. (2008), the underlying biological application motivates the case where both m_{1} and m_{2} are small, it is worth to note that reduction of the constrained alignment problem to a maximum independent set problem in the conflict graph is valid for any values of m_{1}, m_{2}. As mentioned in Subsection 2.1, the largest possible values for m_{1}, m_{2} ($m_{1}=$ $\left.\left|V_{2}\right|, m_{2}=\left|V_{1}\right|\right)$ leads to another well studied problem, the maximum common edge subgraph problem that includes many well-known problems like the maximum clique problem. If m_{1}, m_{2} are large, the size of the conflict graph increases very fast and it becomes dense. As a consequence, this approach is likely to lead to good computational results if at least one of m_{1}, m_{2} is small.

The last research direction we want to outline is to investigate properties of conflict graphs for larger values of m_{2} for, at least, some classes of graphs G_{1} and G_{2}.

Acknowledgements

We are grateful to the anonymous reviewers for their helpful comments and suggestions.

References

G. Abaka, T. Bıyıkoğlu, and C. Erten. Campways: constrained alignment framework for the comparative analysis of a pair of metabolic pathways. Bioinformatics, 29(13):145-153, 2013.
A. E. Aladag and C. Erten. Spinal: scalable protein interaction network alignment. Bioinformatics, 29(7): 917-924, 2013.
F. Alkan and C. Erten. Beams: backbone extraction and merge strategy for the global many-to-many alignment of multiple ppi networks. Bioinformatics, 30(4):531-539, 2014.
G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V. Kann. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1999.
P. Berman. A $d / 2$ approximation for maximum weight independent set in d-claw free graphs. In Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, SWAT '00, pages 214-219, 2000.
R. Boppana and M. M. Halldórsson. Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2):180-196, 1992.
A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.
K. Dabrowski, V. V. Lozin, H. Müller, and D. Rautenbach. Parameterized complexity of the weighted independent set problem beyond graphs of bounded clique number. Journal of Discrete Algorithms, 14:207-213, 2012.
H. N. de Ridder et al. Information System on Graph Classes and their Inclusions (ISGCI). http: //www.graphclasses.org, 2010.
M. Demange and V. T. Paschos. Improved approximations for maximum independent set via approximation chains. Applied Mathematics Letters, 10(3):105-110, 1997.
M. Demange and V. T. Paschos. Polynomial approximation algorithms with performance guarantees: An introduction-by-example. European Journal of Operational Research, 165(3):555-568, 2005.
R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
I. Fagnot, G. Lelandais, and S. Vialette. Bounded list injective homomorphism for comparative analysis of protein-protein interaction graphs. Journal of Discrete Algorithms, 6(2):178-191, 2008.
F. E. Faisal, L. Meng, J. Crawford, and T. Milenković. The post-genomic era of biological network alignment. EURASIP J Bioinform Syst Biol, 2015:3, Dec 2015.
G. Fath-Tabar. Old and new zagreb indices of graphs. MATCH Communications in Mathematical and in Computer Chemistry, 65:79-84, 2011.
G. Fertin, R. Rizzi, and S. Vialette. Finding occurrences of protein complexes in protein-protein interaction graphs. Journal of Discrete Algorithms, 7(1):90 - 101, 2009.
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, USA, 1979.
D. Goldman, S. Istrail, and C. H. Papadimitriou. Algorithmic aspects of protein structure similarity. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS '99, pages 512-521, Washington, DC, USA, 1999. IEEE Computer Society.
M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The Netherlands, 2004.
M. M. Halldórsson. Approximations of weighted independent set and hereditary subset problems. Journal of Graph Algorithms and Applications, 4(1):1-16, 2000.
J. Håstad. Clique is hard to approximate within $n^{1-\varepsilon}$. Acta Mathematica, 182(1):105-142, 1999.
R. B. Hayward. Weakly triangulated graphs. Journal of Combinatorial Theory, Series B, 39(3):200-208, 1985.
R. B. Hayward, J. P. Spinrad, and R. Sritharan. Improved algorithms for weakly chordal graphs. ACM Transactions on Algorithms, 3(2), 2007.
M. Liu and B. Liu. New sharp upper bounds for the first zagreb index. MATCH Communications in Mathematical and in Computer Chemistry, 62:689-698, 2009.
D. Lokshantov, M. Vatshelle, and Y. Villanger. Independent set in p5-free graphs in polynomial time. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '14, pages 570-581, Philadelphia, PA, USA, 2014. Society for Industrial and Applied Mathematics.
S. Nikolić, G. Kovacević, A. Milicević, and N. Trinajstić. The zagreb indices 30 years after. Croatica Chemica Acta, 76(2):113-124, 2003.
V. Raman and S. Saurabh. Triangles, 4-cycles and parameterized (in-)tractability. In Proceedings of the 10th Scandinavian Conference on Algorithm Theory, SWAT'06, pages 304-315, 2006.
J. W. Raymond and P. Willett. Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computer-Aided Molecular Design, 16(7):521-533, 2002.
R. Sharan and T. Ideker. Modeling cellular machinery through biological network comparison. Nature Biotechnology, 24(4):427-433, 2006.
M. Zaslavskiy, F. R. Bach, and J.-P. Vert. Global alignment of protein-protein interaction networks by graph matching methods. Bioinformatics, 25(12):259-267, 2009.

[^0]: *This work was partially supported by TUBITAK grant 112E137.
 \dagger Author is also partially supported by TUBA GEBiP/2009 and ESF EUROCORES TUBITAK Grant 210T173.
 ${ }^{\ddagger}$ Corresponding author. Part of this work was done while the author was visiting CIPF, Valencia. The author is also partially supported by TUBITAK-BIDEB Grant 1059B191501053.

