
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 21:4, 2019, #10

Structure of conflict graphs in constrained
alignment problems and algorithms∗
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We consider the constrained graph alignment problem which has applications in biological network analysis. Given
two input graphs G1 = (V1, E1), G2 = (V2, E2), two vertices u1, v1 of G1 paired respectively to two vertices u2, v2

of G2 induce an edge conservation if u1, v1 and u2, v2 are adjacent in their respective graphs. The goal is to provide
a one-to-one mapping between some vertices of the input graphs in order to maximize edge conservation. However
the allowed mappings are restricted since each vertex from V1 (resp. V2) is allowed to be mapped to at most m1 (resp.
m2) specified vertices in V2 (resp. V1). Most of the results in this paper deal with the case m2 = 1 which attracted
most attention in the related literature. We formulate the problem as a maximum independent set problem in a related
conflict graph and investigate structural properties of this graph in terms of forbidden subgraphs. We are interested,
in particular, in excluding certain wheels, fans, cliques or claws (all terms are defined in the paper), which in turn
corresponds to excluding certain cycles, paths, cliques or independent sets in the neighborhood of each vertex. Then,
we investigate algorithmic consequences of some of these properties, which illustrates the potential of this approach
and raises new horizons for further works. In particular this approach allows us to reinterpret a known polynomial
case in terms of conflict graph and to improve known approximation and fixed-parameter tractability results through
efficiently solving the maximum independent set problem in conflict graphs. Some of our new approximation results
involve approximation ratios that are functions of the optimal value, in particular its square root; this kind of results
cannot be achieved for maximum independent set in general graphs.
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1 Introduction
The graph alignment problem has important applications in biological network alignment, in particular
in the alignments of protein-protein interaction (PPI) networks (Abaka et al. (2013); Aladag and Erten
(2013); Sharan and Ideker (2006); Zaslavskiy et al. (2009); Alkan and Erten (2014)). Undirected graphs
G1 = (V1, E1), G2 = (V2, E2) (not necessarily connected) correspond to PPI networks for a pair of
species, where the vertex sets V1, V2 represent the sets of proteins, and E1, E2 represent the sets of known
protein interactions pertaining to the networks of species under consideration. The informal goal is to find
similar patterns between two PPI networks by identifying a one-to-one mapping between some vertices
of V1 and V2 that maximizes the ”similarity” of the mapped proteins, usually scored with respect to the
aminoacid sequence similarity and the conservation of interactions between mapped proteins. Functional
orthology is an important application that serves as the main motivation to study the alignment problems
as part of a comparative analysis of PPI networks. A successful protein interaction network alignment
across multiple species could provide a basis for deciding the proteins with similar functions, which may
further be used in predicting functions of proteins with unknown functions or in verifying those with
known functions, in detecting common orthologous pathways between species, or in reconstructing the
evolutionary dynamics (Faisal et al. (2015)).

A graph theory problem related to the biological network alignment problem is that of finding the
maximum common edge subgraph (MCES) of a pair of graphs, a problem commonly employed in the
matchings of 2D/3D chemical structures (Raymond and Willett (2002)). The MCES of two undirected
graphs G1, G2 is a common subgraph (not necessarily induced) that contains the largest number of edges
common to both G1 and G2. The NP-hardness of the MCES problem proposed in Garey and Johnson
(1979) trivially implies that the biological network alignment problem is also NP-hard.

A specific version of the problem reduces its size by restricting the output alignment mappings to those
chosen among certain subsets of protein mappings. The subsets of allowed mappings are assumed to be
predetermined via some measure of similarity, usually that of sequence similarity (Abaka et al. (2013);
Zaslavskiy et al. (2009)). The constrained alignment problem we consider herein can be considered as
a graph theoretical generalization of this biological network alignment problem version. Formally, an
instance ≺ G1, G2, S � is defined by a pair of undirected graphs G1 = (V1, E1), G2 = (V2, E2) and a
bipartite graph S = (V1 ∪ V2, ES) with parts V1 and V2 representing possible matching between vertices
of G1 and vertices of G2. For i = 1, 2, we denote by mi, the maximum degree in S of vertices from
part Vi. A legal alignment A is a matching of S, i.e., a set of independent edges (pairwise non adjacent).
An edge ab ∈ E1 is said to be conserved, if there is an edge cd ∈ E2 such that bc and ad are in A, or
ac and bd are in A. Then, the edge cd is equivalently called conserved and, by definition of a matching,
the number of conserved edges of G1 is equal to the number of conserved edges of G2. The constrained
alignment problem is that of finding a legal alignment that maximizes the number of conserved edges in
G1 (or equivalently in G2).

Several related problems have been studied previously like, for instance, the contact map overlap prob-
lem introduced in Goldman et al. (1999). The goal is to maximize the number of conserved edges; however
contrary to the constrained alignment problem, no constraint is given in terms of the bipartite graph S.
Furthermore their problem definition assumes a linear order of the vertices of both G1, G2 which should
be preserved by the output mapping. The problem of (µG1 , µG2)- matching with orthologies, was in-
troduced in Fagnot et al. (2008). Similar to the constrained alignment problem, it is to find a mapping
respecting a set of constraints represented by a bipartite graph S but all edges of G1 are requested to be
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conserved. Assuming mi = µGi
, i = 1, 2 and denoting by ∆i = ∆(Gi), i = 1, 2 for an instance of the

problem, where ∆(G) denotes the maximum degree of graph G, the problem of (µG1
, µG2

)-matching
with orthologies is shown NP-complete even whenm1 = 3,m2 = 2 andG1 andG2 are bipartite, ∆1 ≤ 1
and ∆2 ≤ 2, or if m1 = 3,m2 = 1 and ∆1 ≤ 3,∆2 ≤ 4. It is linear-time solvable if m1 = 2 and
m2∈O(1) (see also Fertin et al. (2009)). Finally, the problem MAX(µG1

, µG2
) considered in Fertin et al.

(2009) is the optimization version of (µG1
, µG2

)-matching with orthologies with the objective to maxi-
mize the number of conserved edges. It is almost the same as the constrained alignment problem with
mi = µGi , i = 1, 2 with the additional requirement that every vertex of G1 is mapped to a vertex in G2.
We discuss more precisely the relations between these problems in Section 2. In Fertin et al. (2009), only
the casem2 = µG2

= 1 is considered. It is shown APX-hard even ifm1 = 2 andm2 = 1 (APX-complete
if G1 has bounded degree) and both graphs are bipartite. They also propose several approximability and
fixed-parameter tractability results (see Ausiello et al. (1999) and Downey and Fellows (1999) for defini-
tions about approximation and parameterized complexity, respectively). In particular, they show that the
problem can be approximated within ratio 2d3∆1/5e for even ∆1 and ratio 2d(3∆1 + 2)/5e for odd ∆1.
They also show that the problem is fixed-parameter tractable on the size of the output assuming m2 = 1,
m1 is constant and G1 has a bounded degree.

In this paper, we consider the maximum constrained alignment problem as a maximum independent set
problem in a related conflict graph, constructed from G1, G2, and S. Our aim is to investigate structural
properties of this conflict graph in order to derive efficient algorithms for the alignment problem. Although
a conflict graph is also proposed in Fertin et al. (2009) for m2 = 1, with in particular a fixed-parameter
tractability result based on a degree argument, no further structural property is provided. Here, we deepen
this approach and strengthen algorithmic results. Our main results and comparison with known results are
given in Tables 1, 2 and 3 at the end of this section.

Table 1 shows our main structural results: the basic metrics of the graph - size and maximum degree
- in the most general case as well as forbidden subgraphs for the case m2 = 1. Some of these results
have direct algorithmic consequences but even those without algorithmic applications are interesting, in
particular since they motivate some graph classes for further studies. This is in particular the case for
classes of graphs excluding some wheels or fans (related definitions are given in Section 2).

Table 2 describes our approximation results that extend the results in Fertin et al. (2009) in several
ways; it also illustrates the potential of our approach. For instance, an analysis of the degree of the
conflict graph, generalizing the one in Fertin et al. (2009), immediately leads to an approximation ratio
for the general case with a ratio o(∆1 + ∆2) when m1,m2 are constant; it is improved to o(∆1) if
m2 = 1 and m1 is constant. For the case m2 = 1 and m1 constant, we propose as well a O

(
|V1|

log(|V1|)

)
-

approximation as well as a O(
√
β(I))-approximation, where β(I) is the optimal value of instance I . To

our knowledge such kinds of ratios are totally new for this problem. Finally, one of our structural results
gives a (min(∆1,∆2) + 1) approximation if m2 = 1, improving also the previous known ratios.

Table 3 presents two fixed parameter tractability results with respect to the size of the output. Both ex-
tend the results of Fertin et al. (2009) to more general cases and both are direct consequences of structural
results and known maximum independent set results.

Finally, a last illustration of the potential of the maximum independent set approach is the case where
m2 = 1 andG1 is acyclic. This case was already shown polynomial in Abaka et al. (2013), using a specific
dynamic programming method. A structural analysis of the conflict graphs allows to prove the same result
and to interpret it as a maximum stable set polynomial case. Moreover it allows us to derive an explicit
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expression of the related complexity. Table 4 sums-up all known complexity results for the maximum
constrained alignment problem. Despite being obtained for MAX(µG1

, µG2
) the hardness results also

apply to the constrained alignment problem as noticed at the end of Section 2.
The paper is organized as follows. Section 2 gives the main definitions, introduces the conflict graph and

investigates its first characteristics (size and degree), leading to first approximation and fixed parameter
tractability results. Section 3 is dedicated to the case m2 = 1 that raised the main attention in the
literature. We first investigate in Subsection 3.1 some structural properties of the conflict graph in terms of
forbidden subgraphs (wheels and fans and cliques and claws) with their algorithmic consequences. This
part constitutes our main contribution. Then, in Subsection 3.2, we revisit the case where m2 = 1 and G1

is acyclic. Finally Section 4 discusses further research directions.

m2 ≥ 2 m2 = 1
m1 ≥ 3 m1 = 2

G1 and G2 G1 acyclic

Structural

|VC | ≤ min
i=1,2

(m2
i |Ei|) Wt-free, t ≥ 7 Wt-free, t ≥ 5

property

(Lem. 4) Weakly triangulated (Th. 15)
(Th. 34) F8-free F6-free

of C
∆(C) ≤

∑
i=1,2

2∆imi(mi − 1) (Th. 19)

(Lem. 6) K1+m1
2 -free

(Th. 27)
Bound of |EC | using the first Zagreb Index (2∆min + 2)-free

(Lem. 7) (Th. 29)

Tab. 1: Main structural Properties of C.

m2 ≥ 2 m2 = 1
m1 ≥ 3 m1 = 2

Approximation ratio

O
(

(∆1+∆2) log log(∆1+∆2)
log(∆1+∆2)

)
6∆1

5
+ cst

(Fertin et al. (2009))

O
(

∆1 log log(∆1)
log(∆1)

)
(m1 constant - Prop. 11)

(mi const., i = 1, 2 - Prop. 9)
√

3β(I)/2
√
β(I)

(Prop. 21)

∀K > 0,
⌈

|V1|
K log(|V1|)

⌉
(m1 constant - Th. 25)

∆min + 1
(Prop. 30)

Tab. 2: Main approximation results (β(I) denotes the optimal value of instance I).
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m2 Bounded ≥ 2 m2 = 1
m1 Bounded ≥ 3

G1 and G2 Bounded degree Any degree

Parameterized tractability FTP FTP FTP
(Prop. 10) (Fertin et al. (2009)) (Prop. 28)

Tab. 3: FTP results parameterized by the size of the output

m2 ≥ 1
m1 ≥ 2

G1 and G2
Even bipartite

G1 acyclicAny degree Bounded degree

Complexity APX-hard APX-complete Polynomial
(Fertin et al. (2009)) (Abaka et al. (2013) and Subs. 3.2)

Tab. 4: Complexity of the constrained alignment problem

2 Definitions and first remarks

2.1 Main definitions and the considered problem

For all graph-theoretical definitions not given here, the reader is referred to Golumbic (2004). A matching
in a graph is a set of independent edges, i.e., pairwise non adjacent. The extremities of the edges in the
matching are called saturated. For any t ≥ 2, Pt denotes a path with t vertices ( t-path), Ct denotes
a cycle with t vertices ( t-cycle) and Kt denotes a clique with t vertices ( t-clique). A Pt or a Ct
will be denoted as list of successive vertices like x1x2 · · ·xt. In the case of a t-path x1 and xt are the
extremities while, in the case of a t-cycle, x1 is any vertex and the order correspond to one of the two
possible orientations of the cycle. Sometimes, when a confusion is possible, the t-cycle will be denoted
x1x2 · · ·xtx1 to distinguish it from a t-path. Denote the complement of G with G. An induced subgraph
of G = (V,E) is a subgraph of G induced by a subset of vertices, X ⊂ V . It will be denoted by G[X].
Given a graph H , G will be called H-free if it does not have any induced subgraph isomorphic to H . A
partial graph of G = (V,E) is a graph G′ = (V,E′) with E′ ⊂ E and a partial induced subgraph is a
partial graph of an induced subgraph. For a vertex v ∈ V we will denote byN(v) its (open) neighborhood
and by N [v] = N(v) ∪ {v} its close neighborhood. For any vertex v we will denote by Gv = G[N [v]]
the subgraph induced by v and its neighborhood. For a vertex v ∈ V , dG(v) is its degree in G. When no
ambiguity may occur, we simply denote ∆ instead of ∆(G) = maxv∈V (dG(v)).

A graph is called weakly triangulated if it is Ct-free and Ct-free, for t ≥ 5.
For t ≥ 3, a wheel Wt is a graph consisting of a t-cycle Ct with an additional vertex, called center,

adjacent to all the vertices of the cycle Ct. A fan graph Ft consists of a path Pt with t vertices and a new
vertex v that is adjacent to all the vertices of the path. As a consequence, a graph G = (V,E) is Wt-free
(resp. Ft-free) if and only if, for every vertex v ∈ V , Gv is Ct-free (resp. Pt-free).

An independent set is a set of pairwise non adjacent vertices, i.e., they induced a graph without any
edge. Given a graph G, α(G) denotes its independent number, i.e., the maximum size of an independent
set in G. Consider a graph class G and a polynomial algorithm determining, for every graph G ∈ G of a
graph class, an independent set of size λ(G), is said to guarantee the approximation ratio of ρ(G), for a
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function ρ ≥ 1, on G if:

∀G ∈ G, α(G)

λ(G)
≤ ρ(G)

Polynomial approximation algorithms are defined similarly for other graph maximization problems. If
an algorithm guarantees a ratio that belongs to the class of functions O(f) (resp. o(f)), then we will
simply say that the algorithm guarantees a ratio of O(f) (resp. o(f)) or constitutes a O(f)- (resp. o(f)-
)approximation. The reader is referred to Ausiello et al. (1999) for all concepts in approximation not
defined here. Throughout the paper we only use natural logarithms, so log stands for loge.

Finally, in Subsection 2.3, we will use the first Zagreb index of a graphG; it is denotedM1(G). M1(G)
is defined as the sum of squares of degrees of the vertices. It has been extensively studied, in particular for
its interest in computational chemistry (see, e.g. Nikolić et al. (2003) for an introduction to this index).

The constrained alignment problem is formally defined as follows:
Input: I =≺ G1, G2, S �, where G1 = (V1, E1), G2 = (V2, E2) are undirected graphs

and S = (V1 ∪ V2, ES) is a bipartite graph with parts V1, V2;
I will be called an instance.

Output: A matching A of S, called legal alignment;
Objective: Maximize the number of conserved edges in G1, or equivalently in G2, i.e.,

the number of pairs (ab, cd) ∈ E1 × E2, where ad, bc ∈ A or ac, bd ∈ A.

For the ease of description, the edges of the bipartite graph S will be called similarity edges. A legal
alignment is called minimal if the removal of any similarity edge in the alignment creates an alignment
that conserves less edges. Any legal alignment includes at least one minimal alignment and consequently,
an optimal minimal alignment is an optimal alignment. Therefore, we can restrict ourselves to minimal
alignments.

We conclude this subsection with few remarks comparing the constrained alignment problem and re-
laqted problems introduced in Section 1. Note that the conserved edges of G1 and G2 as well as their
extremities respectively induce isomorphic partial subgraphs of G1 and G2. So, if S is a complete bi-
partite graph, then the problem corresponds to finding two isomorphic partial subgraphs of G1 and G2

with a maximum number of edges, which is exactly the maximum common edge subgraph. However, in
our case, the bipartite graph S constraints the possible isomorphisms since a vertex of V1 (resp. V2) can
only be mapped to one of its neighbors in S. In an applied context, such constraints represent a priori
knowledge about the system that makes only some matchings meaningful.

The only difference with the problem MAX(µG1 , µG2), with mi = µGi , i = 1, 2 (Fertin et al. (2009)),
is that in this latter problem, the matching A is required to saturate all vertices in G1, thus defining an
injective (one-to-one) mapping from V1 to V2. Contrary to the problems considered in Fagnot et al. (2008);
Fertin et al. (2009), our problem is symmetric inG1, G2. All our results can be equivalently formulated by
swapping indexes 1 and 2. When we will assume that one of G1, G2 has a specific structure, in particular
acyclic like in Subsection 3.2, we can assume without loss of generality that the condition holds for G1.
Roughly speaking, the problems considered in Fagnot et al. (2008); Fertin et al. (2009) correspond to
detecting, in G2 a specific structure as close as possible to the pattern represented by G1. Our version
however, aims to detect similar patterns in the two graphs. We believe that both versions make sense for
the suggested applications.
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With the constraint for the solution to define an injective mapping from V1 to V2, some instances of
MAX(µG1

, µG2
) may have no feasible solution while every instance of the constrained alignment problem

has at least one feasible solution. For this reason, Fertin et al. (2009) restrict their problem to the so called
trim instances for which S has a matching saturating V1, every vertex in V2 has a degree at least 1 in S and
there is no bad edge in G1, i.e., an edge that cannot be conserved for any matching of S. The constrained
alignment problem does not require the first assumption. Removing bad edges as well as isolated vertices
in S can be performed in polynomial time and leads to an equivalent instance. So, we can assume that
there is neither bad edge nor isolated vertex in S.

Note finally that any (m1,m2)-instance of the constrained alignment problem (with m2 > 0) can be
transformed into an instance of MAX(m1 + 1,m2) with the same optimal value by adding to V2 a set VI
of |V1| independent vertices and linking, in S, every vertex in V1 to its copy in VI . This transformation
does not modifym2. In addition, note that, with the restriction that S has no isolated vertex, the alignment
problem withm2 = 1 is equivalent to MAX(µG1

, 1) problem and if there is no bad edge, then all instances
are trim instances for the latter problem. Indeed, if all vertices of V1 have a degree at least 1 in S and
if vertices in V2 have the degree 1 S, then all maximal matchings of the graph S saturate V1. As a
consequence, all known results for MAX(µG1

, 1) also hold for the alignment problem with m2 = 1.

2.2 Conflict graph

2.2.1 The notion of c4s and their conflicting configurations

For the following, we will call c4 some specific 4-cycles abcd, where ab ∈ E1, cd ∈ E2 and ad, bc ∈ ES .
These are partial induced C4’s of the graph (V1∪V2, E1∪E2∪ES), obtained as the union of G1, G2 and
S, for the instance ≺ G1, G2, S �. Throughout the paper, we adopt the following notations to avoid any
confusion between the different graphs we will refer to. When referring to c4s, we will use simple letters
from a to w (without indexes) to denote vertices of V1 ∪ V2. A c4 is then denoted as a list of four vertices,
where the two first ones are in V1 and the two last are in V2. Letters x, y, z (sometimes with indexes) will
denote vertices of the conflict graph defined below.

We say that two c4s conflict, if at least two of their similarity edges are adjacent but distinct (then, they
cannot coexist in any matching of S). Let efgh be a c4 conflicting with the c4 abcd, where ef ∈ E1,
gh ∈ E2, and eh, fg ∈ ES . In the casem2 = 1, we can identify five generic configurations corresponding
to the relative position of efgh with respect to abcd. These possible configurations are shown in Figure 1;
note that if e, f ∈ {a, b} or g, h ∈ {cd}, then only the label in {a, b, c, d} is represented. In Conf1a, we
have a = f , and the rest of the vertices are all distinct; in this case, we say that it is a Conf1a conflict.
Analogously, in Conf1b, we have b = e, and the rest of the vertices are all distinct. In Conf2, we have
a = e, b = f , and the rest of the vertices are all distinct. In Conf3a, we have a = e, b = f, c = g, and
the rest of the vertices d, h are distinct. Analogously, in Conf3b, we have a = e, b = f, d = h, and the
rest of the vertices c, g are distinct. So, the number in the name of the conflicting configuration represents
the number of vertices the two c4s have in common. Similar to Conf1a conflict, we will refer to Conf1b,
Conf2, Conf3a or Conf1b conflicts.

For larger m2, one can also observe all symmetric conflicting configurations obtained by exchanging
V1 and V2 with similarity edges adjacent on V2 vertices plus one configuration with two similarity edges
adjacent on a V1 vertex and two adjacent on a V2 vertex.
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dcd c

a b bae

gh

f

gh

Conf1a Conf1b

d c d c

a a bb

h g

Conf3a Conf3b

d c

a b

gh

Conf2

Fig. 1: Given two conflicting c4s, abcd and efgh, all possible conflicting configurations with re-
spect to abcd, when m2 = 1. For each configuration, the vertices at the top are V1 vertices and
the vertices at the bottom are V2 vertices.

2.2.2 The conflict graph and its independent sets
With a given instance ≺ G1, G2, S �, we associate a conflict graph, C = (VC , EC), as follows. For
each c4, create a vertex in VC and for each pair of conflicting c4s, create an edge between their respective
vertices in EC .

We will denote by γ the one-to-one correspondence mapping vertices of the conflict graph C to c4s in
(V1 ∪ V2, E1 ∪ E2 ∪ ES). Thus, for any vertex x ∈ VC of the conflict graph, γ(x) is the corresponding
c4; for instance, if the related c4 is abcd with a, b ∈ V1, ab ∈ E1 and c, d ∈ V2, cd ∈ E2, we will
write γ(x) = abcd. We call γ(x) “the c4 associated with x”. In Theorem 19, we will need the notation
γ(x) ∩ {a, b} to denote the set of vertices in {a, b} and visited by the c4 γ(x).

With this construction of the conflict graph, the constrained alignment problem reduces to the maximum
independent set problem as stated in the following proposition. This will be illustrated in the example
detailed in Paragraph 2.2.4.

Proposition 1
(i) There is a one-to-one correspondence (bijective mapping) between independent sets in the conflict
graph and minimal alignments in the instance ≺ G1, G2, S �. An independent set of p vertices maps to
an alignment that conserves p edges.
(ii) A maximum independent set of C maps to to an optimal alignment for ≺ G1, G2, S �.
(iii) The maximum possible number of conserved edges is α(C).

Proof: (i) Let {x1, . . . , xp} be an independent set in the conflict graph C; by definition of the conflict
graph, the c4s γ(xi), i = 1, . . . , p are pairwise not conflicting in the graph (V1 ∪ V2, E1 ∪ E2 ∪ ES) and
consequently their similarity edges constitute a legal alignment A. An edge ab ∈ E1 is conserved for this
alignment if and only if there are two edges ad, bc in A and cd ∈ E2; in this case abcd = γ(xi) for some
i ∈ {1, . . . , p}. Since two distinct non conflicting c4s cannot share an edge of G1 (neither of G2), exactly
p edges of G1 are conserved by this alignment. This also implies that the alignment A is minimal.

Conversely, for any minimal legal alignment that conserves p edges of G1, the conserved edges are in
one-to-one correspondence with non-conflicting c4s in the graph (V1 ∪V2, E1 ∪E2 ∪ES). Through γ−1,
these c4s correspond to an independent set {x1, . . . , xp} in C.

(ii) Since the one-to-one correspondence transforms an independent of cardinality p set into an align-
ment conserving p edges, a maximum independent set maps to an alignment maximising the number of
conserved edges.

(iii) It follows immediately that the maximum possible number of conserved edges is α(C).
2
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Corollary 2 Any polynomial approximation algorithm for the maximum independent set in a graph G
guaranteeing the ratio ρ(G) can be turned into a polynomial approximation algorithm for the constrained
alignment problem guaranteeing the ratio ρ(C), where C is the conflict graph associated with the instance
≺ G1, G2, S �.

Proof: The conflict graph as well as the mapping γ can be computed in polynomial time with respect to
the size |V1|+ |V2| of the instance ≺ G1, G2, S � since it only requires identifying all c4s and testing the
compatibility of every two c4s. The conflict graph is of polynomial size (details about its size are given in
Subsection 2.3) and it follows immediately from the proof of Proposition 1-(i) that, given an independent
set of size p in C, computing the corresponding minimal alignment that conserves p edges can be done
in polynomial. We conclude by using the fact that the maximum possible number of conserved edges is
α(C). 2

Approximation ratios for the maximum independent set problem are usually expressed as functions of
the number of vertices and/or maximum degree of the graph instance. To derive an approximation ratio for
the constrained alignment expressed as a function of the instance ≺ G1, G2, S � will require evaluating
the main parameters of the conflict graph. This is the purpose of the Subsection 2.3.

Remark 3 Several minimal alignments (thus, several independent sets of the conflict graph) may corre-
spond to the same set of conserved edges.

Consider for instance as the graph G1 a path abc of length 2 and as the graph G2 a path def . If
similarity edges are ad, be, cf, af and cd, then, the two minimal alignments {ad, be, cf} and {af, be, cd}
conserve the same edges ab and bc of G1. We give in paragraph 2.2.4 another possible situation, where
two different alignments correspond to the same conserved edges in G1 but not in G2.

2.2.3 The underlying graph
A direct consequence of Proposition 1 is that removing from the instance ≺ G1, G2, S � all G1-edges,
G2-edges or similarity edges that do not belong to any c4 does not change the problem in the sense that
minimal alignments remain the same. For this reason, we consider the graph CU = (VU , EU ) obtained
from the union of G1, G2, and S by excluding all the vertices and edges that are not part of any c4s.
In particular, this includes removing all bad edges (Fertin et al. (2009)) of G1 and G2. We call CU the
underlying graph associated with the instance ≺ G1, G2, S �. It can be seen as a simplified equivalent
instance and consequently, we can always assume that we work on CU instead of (V1∪V2, E1∪E2∪ES)
or, equivalently, that each edge in E1 ∪E2 ∪ES belongs to at least one c4. In particular, in all our results,
mi can be seen as the maximum number of similarity edges in EU incident to vertices of Vi ∩ VU .

2.2.4 An example
Figure 2 gives an example that illustrates the notions of conflict graph, of underlying graph, the function γ
and the correspondence between minimal alignments in the original instance and independent sets in the
conflict graph. The left chart represents the instance I =≺ G1, G2, S � and the related underlying graph
CU . G1 is represented on the top, with vertices V1 = {a, b, c, d, e} and dashed edges andG2 on the bottom
with vertices V2 = {f, g, h, i, j} and dotted edges. Blue edges/vertices correspond to edges/vertices in
(V1 ∪ V2, E1 ∪ E2 ∪ ES) that are not part of the underlying graph. So, the underlying graph CU appears
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b dc e

Conflict graph C< G1, G2, S > and CU

a

f g h i j x5 : cdih

x1 : abhg
x2 : bcgh
x3 : bchg
x4 : adig

x6 : cdig

List of c4s

x4

x1 x2

x3

x6

x5

Fig. 2: An instance ≺ G1, G2, S � with the underlying graph CU and the conflict graph C. V1 =
{a, b, c, d, e} and V2 = {f, g, h, i, j}. In the left graph, dashed lines correspond to edges in E1

while dotted lines correspond to edges in E2. Blue edges and vertices (left graph) are edges
and vertices in (V1 ∪ V2, E1 ∪ E2 ∪ ES) that are not part of the underlying graph and can be
ignored. The list of c4s also defines the function γ.

in black color. In the original instance m1 = 3 but, in the equivalent simplified instance defined by CU , it
becomes 2.

The list of c4s and the related function γ are represented in the middle part of the figure. Note that adcb
or bhcg are 4-cycles in CU but not c4s.

Finally, the related conflict graph is represented on the right hand side. This instance has four dif-
ferent optimal solutions corresponding to the minimal alignments {ag, bh, di}, {bh, cg, di}, {bg, ch, di}
and {ag, di, ch}. They correspond respectively to the independent sets {x1, x4}, {x2, x6}, {x3, x5} and
{x4, x5} in the conflict graph. Each optimal solution corresponds to two conserved edges inE1: {ab, ad},
{bc, cd}, {bc, cd} and {ad, cd}, respectively. In this example, these conserved edges correspond to an
induced P3 in the graph G1 but, in the graph G2, the related conserved edges which are respectively
{gh, gi}, {gh, hi}, {gh, gi} and {gi, hi}, are not induced subgraphs of G2 but only partial induced sub-
graphs. Note finally that the two alignments {bh, cg, di} and {bg, ch, di} correspond to the same con-
served edges in G1 but not in G2. This is another illustration of Remark 3.

In what follows we provide several graph-theoretic properties of conflict graphs arising from possible
constrained alignment instances under various restrictions. Such properties are then employed in applying
relevant independent set results.

Throughout the paper we will assume |V1| ≥ 2 and |V2| ≥ 2 since, in the opposite case, the conflict
graph is empty and the maximum alignment problem would be trivial (the only minimal alignment is
empty). For a vertex x ∈ Vi of Gi, i = 1, 2, we will denote by di(x) its degree in Gi.

2.3 General properties of the conflict graph and applications

In this subsection we first investigate the first basic properties of the conflict graph and deduce first approx-
imation results using some standard results on the maximum independent set problem. For an instance
≺ G1, G2, S �, we denote by C = (VC , EC) the related conflict graph.

Lemma 4 Given an instance ≺ G1, G2, S � with conflict graph C, the number |VC | of vertices of C
satisfies:

|VC | ≤ min
(
m1

2|E1|,m2
2|E2|, 1

2m1m2|V1|∆2,
1
2m1m2|V2|∆1

)
.
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Proof: Consider a similarity edge xy ∈ ES , x ∈ V1, y ∈ V2. The edge xy can belong to at most
min(m1d1(x),m2d2(y)) different c4s. Consequently the number of possible c4s satisfies:

|VC | ≤
1

2

∑
xy∈ES

min(m1d1(x),m2d2(y)).

Since x has at most m1 incident edges in S and d2(y) ≤ ∆2 we deduce:

|VC | ≤
m1

2

∑
x∈V1

min(m1d1(x),m2∆2) ≤ min(m1
2|E1|,

1

2
m2m1|V1|∆2).

Similarly we have:

|VC | ≤ min(m2|E2|,
1

2
m2m1|V2|∆1),

which concludes the proof. 2

Given an independent set in C, Proposition 1 states that all similarity edges involved in the related c4s
constitute a matching. Consequently,

the optimal value α(C) can be bounded using Lemma 4 with m1 = 1 and m2 = 1. This leads
immediately to the following bound:

Corollary 5 Given an instance ≺ G1, G2, S � with conflict graph C, the independence number of C
satisfies:

α(C) ≤ min
(
|E1|, |E2|, 1

2 |V1|∆2,
1
2 |V2|∆1

)
.

The following lemma generalises the bound for degrees provided in Fertin et al. (2009) for the case
where m2 = 1.

Lemma 6 Given an instance ≺ G1, G2, S � with conflict graph C, let γ(x) = abcd be a c4 correspond-
ing to a vertex x in C, then the degrees in C satisfy:

(i) dC(x) ≤ m1(m1 − 1)(d1(a) + d1(b))− (m1 − 1)2 +m2(m2 − 1)(d2(c) + d2(d))− (m2 − 1)2;
(ii) ∆(C) ≤ 2∆1m1

2 + 2∆2m2
2 − 2∆1m1 − 2∆2m2 −m1

2 −m2
2 + 2m1 + 2m2 − 2.

Proof: (i) Denote the set of c4s in C conflicting with γ(x) with S1 ∪ S2, where S1 is the set of c4s
in conflict with γ(x) that include ad or bc, and S2 consists of all other c4s conflicting with γ(x). It is
clear that, if a c4 from S1 shares the edge ad (bc) with γ(x), it must also include either b (a) or c (d) in
order to create a conflict with γ(x). In any case, since the total number of valid similarity edges (edges
that can create the conflict with γ(x)) incident to b and c (a and d) is bounded by m1 + m2 − 2, this
implies that |S1| is upper-bounded by 2m1 + 2m2 − 4. For the second set S2, we first note that a pair of
similarity edges can create only one c4. This implies that any edge in G1 different from ab can be part
of at most m1

2 − m1 different c4s in S2 and any edge in G2 different from cd can be part of at most
m2

2 − m2 different c4s in S2. Since the number of G1 edges incident to a or b, and different from ab
is d1(a) + d1(b) − 2, and respectively the number of G2 edges incident to c or d, and different from
cd is at most d2(c) + d2(d) − 2, the number of c4s in S2 that do not include ab or cd is bounded by
(d1(a) + d1(b)− 2)(m1

2−m1) + (d2(c) + d2(d)− 2)(m2
2−m2). The edges ab and cd themselves can

be part of at most (m1− 1)2 and (m2− 1)2 different c4s in S2 respectively, which concludes the proof of
(i). (ii) is immediately deduced since d1(a), d1(b) ≤ ∆1 and d2(c), d2(d) ≤ ∆2. 2
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When evaluating the number of edges of the conflict graph, the first Zagreb index of the graphs G1 and
G2 appear naturally, as stated in the following lemma. Note that if m1 = 1 (resp., m2 = 1), then the
bound only depends on G2 (resp., G1).

Lemma 7 Given an instance ≺ G1, G2, S � with conflict graph C, the number |EC | of edges of C is
bounded by:

|EC | ≤
1

2

(
m1

2(m1 − 1) (m1M1(G1)− (m1 − 1)|E1|) +m2
2(m2 − 1) (m2M1(G2)− (m2 − 1)|E2|)

)
.

Proof: We have |EC | = 1
2

∑
x∈VC

dC(x). Using Lemma 6 and the fact that ab (resp., cd) participates to
at most m1

2 (resp., m2
2) c4s we get:

2|EC | ≤ m1
2(m1 − 1)

∑
ab∈E1

[m1(d1(a) + d1(b))− (m1 − 1)]

+ m2
2(m2 − 1)

∑
cd∈E2

[m2(d2(c) + d2(b))− (m2 − 1)]

≤ m3
1(m1 − 1)

∑
ab∈E1

(d1(a) + d1(b))−m1
2(m1 − 1)2|E1|

+ m3
2(m2 − 1)

∑
cd∈E2

(d2(c) + d2(d))−m2
2(m2 − 1)2|E2|

(1)

We conclude by noting that
∑
ab∈E1

(d1(a) + d1(b)) = M1(G1) and similarly for cd in the graph G2. 2

If we want a bound for |EC | only dependent on the degree, number of vertices and edges of G1, G2,
then several upper bounds exist for the first Zagreb index. We mention here two of these bounds.

Theorem 8 Given a connected graph G = (V,E) with maximum degree ∆ and minimum degree δ,
(i) (Liu and Liu (2009)) M1(G) ≤ |E|

2(∆+δ)2

n∆δ ;

(ii) (Fath-Tabar (2011)) M1(G) ≤ 4 |E|
2

|V | + |V |
4 (∆− δ)2.

Note that the bound M1(G) ≤ 2∆|E| is trivial for all graph G = (V,E) and with maximum degree ∆.
This bound meets the two bounds in Theorem 8 for regular graphs. In Subsection 3.2, we will consider
the class of acyclic graphs. For this class (δ = 1 and |E| ≤ |V |), the bound (i) immediately gives
M1(G) ≤ |E| (∆+1)2

∆ ≤ |E|(∆ + 3), thus twice better than the trivial bound. Note also that in the case
where one of these graphs has much less edges, |E1|∈o(|E2|) or |E2|∈o(|E1|), then a direct application
of Lemma 4, using |EC | ≤ |VC |2, can give better bounds.

Lemma 7 and Theorem 8 will be used in Subsection 3.2. Below we provide direct consequences of
Lemmas 4 and 6 leading to the design of polynomial-time approximation algorithms for the constrained
alignment problem.

The best known approximation ratios guaranteed by polynomial algorithms for the maximum inde-
pendent set problem are O(∆ log log ∆/ log ∆) (Halldórsson (2000)) and O(n/ log2 n) (Boppana and
Halldórsson (1992)), where ∆ and n denote respectively the maximum degree and the number of vertices
of the input graph. Combining it with Lemmas 4 and 6 leads to the following approximation for the
general setting.

Proposition 9
(i) For any positive constant m1, m2, the constrained alignment problem can be approximated in polyno-
mial time with an approximation ratio of O((∆1 + ∆2) log log(∆1 + ∆2)/ log(∆1 + ∆2));



Structure of conflict graphs in constrained alignment problems and algorithms 13

(ii) If only m2 (resp. m1) is constant, then the constrained alignment problem can be approximated in
polynomial time with an approximation ratio of O(|E1|/ log2 |E1|) (resp. O(|E2|/ log2 |E2|)).

It is known that using bounded search techniques (Downey and Fellows (1999)), one can find an inde-
pendent set of size k in a graphG inO(n(∆(G)+1)k) time, or return that no such subset exists. In Fertin
et al. (2009), this result is used to show that the constrained alignment problem is fixed-parameter tractable
for bounded degree graphs with m2 = 1. Lemma 6 immediately provides a generalisation for the general
setting.

Proposition 10 Provided thatG1 andG2 are bounded degree graphs, for any positive constantsm1, m2,
the constrained alignment problem is fixed-parameter tractable for parameter k and solvable in
O(min(|E1|, |E2|)(D+1)k) time, where k is the number of final conserved edges andD = O(∆1 +∆2).

In what follows we consider the case m2 = 1 - which, to our knowledge, is the most studied case -
and investigate specific properties of the conflict graph. This case, by itself already very hard, simplifies
the possible conflicts and then perfectly illustrates the use of the conflict graph. As explained in the
conclusion, the following results motivate the further study of conflict graphs and their independent sets
for a more general set-up.

3 The case m2 = 1

The case with m2 = 1 is the main case considered in Fertin et al. (2009). We remind that, in this case, the
possible conflicting configurations are listed in Figure 1. Some improved results deal with the particular
case m1 = 2. It is known that the problem is APX-hard even for the case where m1 = 2 and both G1, G2

are bipartite (Fertin et al. (2009)).

3.1 Structure of C and approximation
In this subsection we present graph theoretic properties of conflict graphs in terms of forbidden subgraphs
when m1 = 2. In addition to providing valuable information regarding structural properties of conflict
graphs, it has also algorithmic applications, mainly approximation results.

Note first that, if m2 = 1, Lemma 6 states that the maximum degree of the conflict graph is at most
2(m1

2 −m1)∆1 +m1(2−m1)− 1 and consequently Proposition 9 can be immediately replaced by:

Proposition 11 For m2 = 1 and any positive constant m1, the constrained alignment problem can be
approximated in polynomial time with an approximation ratio of O(∆1 log log(∆1)/ log(∆1)).

This approximation ratio in o(∆1) improves the result of Fertin et al. (2009) - 2d3∆1/5e for even ∆1

and 2d(3∆1 + 2)/5e for odd ∆1 - also obtained for m2 = 1. We will give later another improvement in
the case where ∆2 is less than this ratio.

We first establish some properties of conflict graphs when m2 = 1 - Facts 1 and 2, Lemmas 12 and 14
and Corollary 13 - that will be useful for the main structural and algorithmic results. Then, in para-
graphs 3.1.1 and 3.1.2, we derive structural results and their algorithmic consequences.

Fact 1 Any pair of conflicting c4s in CU must share at least one vertex from G1.

Fact 2 Any pair of distinct c4s in CU sharing two vertices from G1 has a conflict.
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Lemma 12 Given an instance ≺ G1, G2, S � with conflict graph C, suppose m2 = 1 and consider an
induced subgraph H of C such that H is connected and H has an induced P3. Then the c4s in H cannot
all share a vertex from G1.

Proof: Let x1x2x3 be an induced P3 in H and let γ(x1) = abcd. Assume for the sake of contradiction
that a ∈ G1 is a vertex common to all the c4s associated with vertices of H . For every two vertices y, z in
H not linked by an edge, γ(y) and γ(z) must share the similarity edge including a to avoid any conflict.
As a consequence and since H is connected, all the c4s associated with vertices of H must share the edge
ad. This implies that any conflict between any pair of these c4s can only be either a Conf3a or a Conf3b

conflict, which further implies that all the c4s γ(xi), i = 1, 2, 3 include b. By Fact 2 and since x1 6= x3,
this implies a conflict between γ(x1) and γ(x3), a contradiction. 2

For instance, a P4 or P3 + K1 - the independent union of a P3 and an isolated vertex - clearly both
satisfy the conditions onH: they both have an induced P3 and moreover, P4 is a P4 as well while P3 +K1

is a triangle with a pendent vertex, both connected. So, we immediately deduce:

Corollary 13 Given an instance ≺ G1, G2, S � with conflict graph C, if m2 = 1, the four c4s of an
induced P4 or an induced P3 +K1 of C cannot all share a vertex from G1.

The following lemma will be useful for studying the structure of C.

Lemma 14 Given an instance≺ G1, G2, S � with conflict graph C, supposem2 = 1 and that we have in
C an induced P5 x1x2x3x4x5 as well as two vertices y1, y2 not linked to xi, i = 2, 3, 4 and an additional
vertex x linked to the seven vertices y1, y2, x1, x2, x3, x4, x5. Denote γ(x) = abcd. Then if γ(y1) does
not include b, neither does γ(y2).

Proof: Since y1, y2, x1, x2, x3, x4, x5 are all linked to x, Fact 1 ensures the related c4s include a or
b. Assume for the sake of contradiction that γ(y1) does not include b while γ(y2) does. Since γ(y1)
conflicts with γ(x), we have γ(y1) = aklm with k ∈ V1 \ {a, b} and m 6= d. Let γ(y2) = bpqr, r 6= c.
Since m2 = 1, m, d, c, r are all paire wise distinct.

As mentioned above γ(xj), j = 1, . . . 5 must include a or b. Since γ(xj), j = 2, 3, 4 do not conflict
with γ(y1) nor with γ(y2), if it includes a it must include the edge am and if it includes b it must include
the edge br. Moreover, none of them can include both a and b. Indeed, in this case γ(xj) = abrm for
some j = 2, 3, 4 and since any γ(xj′), j′ ∈ {2, 3, 4} \ {j}, can neither include an edge am′, m′ 6= m nor
br′, r′ 6= r, it cannot conflict with γ(xj), a contradiction.

On the other hand, since γ(x3) has a conflict with both γ(x2) and γ(x4) and since γ(x2) and γ(x4) are
not conflicting, there must be two similarity edges uv, uv′, u ∈ V1 \ {a, b}, v, v′ ∈ V2, v 6= v′, where
uv is an edge of γ(x3) and uv′ is an edge of both γ(x2) and γ(x4). Since γ(x2) 6= γ(x4), one of them
includes the edge am and the other includes the edge br.

We consider below the possible cases that all lead to a contradiction.
Case-1: Suppose γ(x2) = auv′m and γ(x4) = buv′r, thus γ(x3) is either auvm or buvr.
Case-1.1: If γ(x3) = auvm, then since γ(x1) conflicts with γ(x2) but not with γ(x3) it must include

the edge uv but in this case it would conflict with γ(x4).
Case-1.2: Similarly if γ(x3) = buvr, then since γ(x5) conflicts with γ(x4) but not with γ(x3) it must

include the edge uv but in this case it would conflict with γ(x2).
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Case-2: Suppose now γ(x2) = buv′r and γ(x4) = auv′m, thus γ(x3) is either auvm or buvr. In both
cases we get the same contradiction as in Case-1 exchanging the roles of am and br. This concludes the
proof. 2

3.1.1 Wheels and Fans
Theorem 15 Given an instance ≺ G1, G2, S � with conflict graph C,
(i) If m2 = 1, C is Wt-free, for t ≥ 7;
(ii) If furthermore m1 = 2, C is also W5 and W6-free.

Proof: Assume for the sake of contradiction an induced Wt exists with t ≥ 5 and let x be the center
vertex with γ(x) = abcd. Let x1x2 . . . xtx1 be the induced Ct of the wheel Wt in the conflict graph. By
Fact 1 every γ(xi), 1 ≤ i ≤ t must include at least one of a or b. By Corollary 13 (the cycle Ct has an
induced P4), it is not possible for all of these c4s to share a, nor can they all share b. This implies that
there must exist a pair of conflicting c4s, γ(xi), i = 1, . . . , t, such that their corresponding vertices in C
are neighbors in Ct, one including a and the other including b and one of them does not contain both a
and b. Without loss of generality, let the former be γ(xt) = aklm with k ∈ V1 \ {a, b} and the latter be
γ(xt−1) = bpqr.

(i) Assume first t ≥ 7. Then apply Lemma 14 with y1 = xt and y2 = xt−1 gives a contradiction.
(ii) Now we show directly that there is also a contradiction if m1 = 2 and t = 5, 6.
We consider two cases γ(xt−1) = abrd, and γ(xt−1) = bkl′r, l′ 6= l ensuring the conflict between

γ(xt−1) and γ(xt). In both cases r 6= c ensures the conflict between γ(xt−1) and γ(x).
Case-1: γ(xt−1) = abrd. Since γ(x2), γ(x1) have no conflict with γ(xt−1) but with γ(x), they

both include br and not am. Moreover, since γ(x2) does not conflict γ(xt), it cannot include a and
thus γ(x2) = buvr, u 6= a. Since γ(x1) conflicts with both γ(xt) and γ(x2) we have u = k, v = l
and γ(x1) = bkl′r, l′ 6= l, γ(x2) = bklr. Then, since γ(x3) conflicts with γ(x2) but not with γ(x1),
it must include the edge kl′. To conflict with γ(x) it should include am or br, a contradiction since
x3 6= xt, x3 6= x1.

Case-2: γ(xt−1) = bkl′r, l′ 6= l.
Since γ(x1) conflicts with γ(xt) and with γ(x) and since x1 6= xt−1, γ(x1) cannot include br and thus

includes am and γ(x1) = akl′m.
γ(xt−2) conflicts with γ(xt−1) but not with γ(xt) and includes am or br. Since xt−2 6= xt the only

possibility is γ(xt−2) = bklr. Then, γ(x2) conflicts with γ(x1) but not with γ(xt) and includes am or
br; the two only candidates are aklm and bklm, both impossible since x2 6= xt, x2 6= xt−2 (note that
t− 2 ≥ 3). It concludes the proof. 2

Note that for m1 > 2, it is still possible to have a W5 and W6 in a conflict graph as illustrated in
Figure 3. Note also that W4 and w3 = K4 can still exist in C even if m1 = 2. Figure 4 gives a sample
construction with a W4 while Figure 6 gives an example with a K4. It means that, in terms of induced
wheels, Theorem 15 leaves no gap.

The following lemma gives an example how considering the different kind of conflicts, for m2 = 1 and
m1 = 2, (see Figure 1) helps understanding the structure of the conflict graph.

Lemma 16 Given an instance ≺ G1, G2, S � with conflict graph C, suppose m2 = 1 and m1 = 2 and
consider a vertex x in C and the set S1

x of c4s that conflict γ(x) with a Conf1a or Conf1b configuration.
Then, C[S1

x] is an independent collection of C4s, P3s, P2s and isolated vertices.
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Fig. 3: Sample configurations for CUs inducing W5 (left) and W6 (right) in their respective conflict
graphs for the case where m1 = 3. The central vertices of the wheels in each case correspond
to the c4s indicated with abcd.

Proof: Since m1 = 2, in c4 ∈ S1
x, at most two c4s can conflict a fixed c4 and consequently the graph

C[S1
x] has degree at most 2, which means it is an independent collection of cycles and paths. For any

t ≥ 1, consider a connected component of C[S1
x] of size t.

Assume we have u1, u2, u3 in C[S1
x] with edges u1u2 and u2u3. Since m1 = 2 γ(u1), γ(u2) and γ(u3)

cannot all include a and neither can they all include b. Suppose without loss of generality that two of them
include a and one b and in this case, the structure of conflicts Conf1a and Conf1b imposes that γ(u2)
includes a, say γ(u2) = aklm with k, l,m /∈ {b, c, d}. Suppose then without loss of generality that γ(u1)
includes a and γ(u3) includes b: γ(u1) = akl′m, l′ 6= l and necessarily γ(u3) = brl′k to create a conflict
with γ(u2). Moreover, since m2 = 1, r /∈ {c, d,m, l, l′}.

Note then that we cannot have any conflict between γ(u3) and γ(u1), which means that C[S1
x] is

triangle-free. Moreover suppose a fourth c4, γ(u4) conflicting γ(u3) in C[S1
x]. It necessarily includes

kl and thus conflicts γ(u1), which means that C[S1
x] is P4-free, which completes the proof. Figure 4

(Right) describes the structure of C[S1
x], where Nt, t = 1, 2, 3, 4, is the union of components of C[S1

x] of
size t. 2

Corollary 17 Given an instance ≺ G1, G2, S � with conflict graph C, if m1 = 2 and m2 = 1, then for
every x ∈ VC , removing at most two vertices to Cx makes it an independent collection of C4s, P3s, P2s
and isolated vertices.

Proof: If m1 = 2, at most one c4 conflicts γ(x) with a Conf3a configuration, and at most one with
Conf3b configuration. Let us remove these vertices. There can be at most one c4 conflicting γ(x) with a
Conf2 configuration and moreover such a c4 necessarily corresponds to an isolated vertex in C[S1

x]. Since
all the other neighbors of x correspond to Conf1a or Conf1b configurations, Lemma 16 immediately
concludes the proof. 2

Corollary 18 If m1 = 2 and m2 = 1 we are ensured to find in polynomial time a legal alignment with at
least (∆(C)− 2)/2 conserved edges.

Proof: It is an immediate consequence of Corollary 17 applied to a vertex x of maximum degree in C.

An exhaustive search or just the detection of Conf3a and Conf3b configurations involving γ(x) allows
to identify the vertices to be removed to make Cx an independent collection of C4s, P3s, P2s and isolated
vertices. Picking in this collection an independent set of two vertices in each C4s and P3, one vertex in
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Fig. 4: Left: Sample construction for a W4 in C. The central vertex of the wheel corresponds to
the c4 abcd. The upper partition corresponds to vertices of G1 and the lower partition to those
of G2. Similarity edges are drawn between the partitions. Right: Depiction of the construction
defined in Lemma 16. The vertex x is shown in the center and vertices in S1

x are shown at the
peripheral. Nt corresponds to all vertices in components of C[S1

x] of size t. The black vertices
constitute a maximum independent set of C[S1

x].

each P2 and all the isolated vertices gives a independent set of size at least (∆(C) − 2)/2 in C. Using
Proposition 1 and the fact that the function γ can be computed in polynomial time (see Corollary 2) allows
to conclude. 2

The following result concerns the existence of induced fans Ft in the conflict graph. Note that for
2 ≤ t ≤ t′, Ft is an induced subgraph of Ft′ and consequently an Ft-free graph is also Ft′ -free.

Theorem 19 Given an instance ≺ G1, G2, S � with conflict graph C such that m2 = 1, then:
(i) For m1 ≥ 3, C is F8-free;
(ii) For m1 = 2, C is F6-free.

Proof: Consider an induced Ft and let γ(x) = abcd be the center vertex.
(i) Assume for the sake of contradiction that t = 8 and denote by z1z2 · · · z8 be the induced P8 in the

neighborhood of x. By Fact 1 every c4 γ(zi), i = 1, . . . , 8 must include at least one of a or b in CU .
Suppose first γ(z1) ∩ {a, b} = γ(z8) ∩ {a, b}. Without loss of generality we assume they both include

b and either both include a as well or none of them. Consider then the subgraph induced by z1, z2, z3, z8,
inducing a P3 + K1. By Corollary 13, the c4s γ(z1), γ(z2), γ(z3) and γ(z8) cannot all include b and let
i ∈ {2, 3} such that γ(zi) does not include b. Then, Lemma 14 with y1 = z1 and y2 = zi and z4, . . . z8

corresponding to x1, . . . x5 leads to a contradiction.
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Fig. 5: Left: Sample configuration for CU inducing F5 for the case where m1 = 2. Right:
Sample configuration for CU inducing F7 for the case where m1 = 3. In each case the central
vertex corresponds to the c4 indicated with abcd. Each G2 edge is marked with the related c4 in
P5 = 12345 (left) or P7 = 1234567 (right).

Suppose now γ(z1) ∩ {a, b} 6= γ(z8) ∩ {a, b}, then one only includes b and we get a contradiction as
well by applying Lemma 14 with y1 = z1 and y2 = z8 and z2, . . . z6 corresponding to x1, . . . x5, which
concludes the proof of (i).

(ii) Assume now m1 = 2. Corollary 17 immediately shows that it is possible to remove at most two
neighbors of x so that x cannot be the center of a F4. It excludes the possibility of a F6 in this case. 2

Figure 5-Left shows an example of F5 in a conflict graph with m1 = 2 and m2 = 1 and Figure 5-Right
shows an F7 in a conflict graph with m1 = 3 and m2 = 1.

Theorems 15 and 19 as well as Corollary 17 give us information about the structure of the subgraphs
Cx, x ∈ VC , induced by N [x]: as already mentioned a graph G is Wt-free (resp. Ft-free) if for all vertex
x, Gx is Ct-free (resp. Pt-free), two classes of graphs that raised a lot of interest from researchers (see,
eg., de Ridder et al. (2010); Brandstädt et al. (1999)).

We give now an example how to use the structure of neighborhoods to approximate the maximum
independent set problem. It will give us algorithmic applications of Corollaries 17 and 13.

A very classical approximation algorithm for maximum independent set in a graph G = (V,E) is the
algorithm 2-opt determining an independent set S̃ such that ∀u ∈ S̃,∀v, w ∈ V \ S̃, (S̃ \ {u})∪{v, w}
is not and independent set (there is no 2-improvement). Let us revisit the very usual analysis of 2-opt
(see, e.g., Demange and Paschos (2005)) which consists in considering the bipartite graph B induced by
S̃∪S∗, where S∗ is an optimum independent set. Denote by λ(G) = |S̃| the value of the solution provided
by the algorithm on G and α(G) = |S∗| the independent number of G. Then the number of edges of B
is at least 2α(G)− λ(G) since 2-optimality ensures that, for every two edges ṽu, ṽw in B incident to the
same vertex ṽ ∈ S̃, there is an additional edge incident to u or v. On the other hand this number is at most
∆αλ(G), where ∆α is the minimum among all optimal independent sets S of the maximum number of
vertices in S a vertex can be adjacent to:

∆α = min
|S|=α(G)

S independent

max
v∈V
|N(v) ∩ S|.
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This implies:
α(G)

λ(G)
≤ (∆α + 1)

2
. (2)

This remark emphasises that the usual maximum degree can actually be replaced by ∆α. We propose
below a strategy that can be used where large independent sets can be found in polynomial time in the
neighborhood of each vertex. It leads to a new kind of approximation ratios depending on the indepen-
dence number.

Theorem 20 Consider a class of graphs G for which there is a polynomial time algorithm A approximat-
ing the maximum independent set problem within the ratio ρ for every graph Gx, where G = (V,E) ∈ G
and x ∈ V .
Then the maximum independent set problem can be approximated within

√
3ρ(G)α(G)/4.

Proof: The strategy, for an input graph G = (V,E) in G is as follows:

Apply A in all subgraphs Gx, x ∈ V ;
Compute also a 2-opt-solution;
Take the best solution among the |V |+ 1 different solutions obtained.

Note first that, if α(G) ≤ 2, then 2-opt finds an optimal solution, so we assume α(G) ≥ 3.
Suppose first that ∆α >

√
4ρ(G)α(G)/3. Then, when applied to a graph Gx such that α(Gx) = ∆α,

the algorithm A computes a solution of value at least
√

4α(G)/(3ρ(G)) leading to the approximation
ratio

√
3ρ(G)α(G)/4.

Suppose now ∆α ≤
√

4ρ(G)α(G)/3, then Relation (2) gives the ratio:√
4
3ρ(G)α(G) + 1

2
≤
√
ρ(G)α(G)

2√
3

+ 1√
3

2
=
√
ρ(G)α(G)

√
3

2

where the inequality uses ρ(G)α(G) ≥ α(G) ≥ 3. In all cases, the ratio is at most
√

3ρ(G)α(G)/4,
which concludes the proof. 2

Given an instance I =≺ G1, G2, S �, we denote by β(I) the optimal value of the constrained align-
ment problem on I .

Proposition 21 Given an instance ≺ G1, G2, S � with conflict graph C and m2 = 1,
(i) The constrained alignment problem can be approximated within

√
3β(I)/2;

(ii) If furthermore m1 = 2, this is improved to
√
β(I).

Proof:
This is a direct application of Theorem 20.

(i) Consider a vertex x in the conflict graph C and the graph Cx. We denote γ(x) = abcd. Using Fact 1,
the c4s in the neighborhood of x in C can be partitioned into Nx,a and Nx,b, where all c4s in Nx,a
include a while the others include b but not a. This partition can be determined in polynomial time.
Corollary 13 ensures that C[Nx,a] and C[Nx,b] are P4-free. It is well known that the maximum independent
set problem can be solved in linear time in P4-free graphs (also called cographs) (see, e.g., Golumbic
(2004)). Determining a maximum independent set in C[Nx,a] and C[Nx,b] and choosing the best one
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clearly solves the maximum independent set problem in Cx within an approximation ratio of 2. We apply
Theorem 20 with constant ρ(G) = 2.
(ii) If m1 = 2, then Corollary 17 ensures that a maximum independent set can be found in polynomial
time in graph C[Nx] and we apply Theorem 20 with constant ρ(G) = 1. 2

Note that we obtain a ratio depending on the optimal value, which is not usual. Roughly speaking
this result means that the logarithmic version of the problem - where the objective is to maximise the
logarithm of the number of similarities in a legal alignment - is 3

2 -approximable. For instance, such a
ratio for the maximum independent set in conflict graphs cannot be achieved in general graphs: the usual
n1−ε-hardness result (Håstad (1999)) states that, under some complexity hypothesis, the logarithm of the
independence number cannot be approximated within a constant ratio.

Combining Proposition 21 with Corollary 5 leads to the following ratio:

Proposition 22 Given an instance ≺ G1, G2, S � with conflict graph C and m2 = 1,
(i) The constrained alignment problem can be approximated within the ratio:

min
(√

3/2
√
|E1|,

√
3/2
√
|E2|, (1/2)

√
3|V1|∆2, (1/2)

√
3|V2|∆1

)
;

(ii) If furthermore m1 = 2, this ratio becomes:
min

(√
|E1|,

√
|E2|,

√
2

2

√
|V1|∆2,

√
2

2

√
|V2|∆1

)
;

Proof: Using the definition of the approximation ratio guaranteed by an algorithm for a maximization
problem, any upper bound of a guaranteed approximation ratio is still a guaranteed approximation ratio.
Using Proposition 1-(iii), the optimal value β(I) of the instance I =≺ G1, G2, S � of the constrained
alignment problem equals the independence number α(C) of the related conflict graph. By Corollary 5,
we deduce

β(I) ≤ min

(
|E1|, |E2|,

1

2
|V1|∆2,

1

2
|V2|∆1

)
.

Since the function
√· is increasing, we conclude the proof using Proposition 21. 2

Proposition 11 states the ratio O(∆1 log log(∆1)/ log(∆1)) in the case m2 = 1 and m1 is constant.
When |E1|∈o(|∆1|2) or |E2|∈o(|∆1|2), the ratio obtained in Proposition 22-(i) can be better than the
ratios we achieved as functions of the maximum degree. In addition, Proposition 22-(i) does not require
any assumption about m1.

Given the known results for the maximum independent set, a natural question is whether the con-
strained alignment problem is O(|V1|/ log2(|V1|))-approximable or even whether any approximation in
o(|V1| log log(|V1|)/ log(|V1|) can be guaranteed. We give a first answer to this question in Theorem 25
below. The ratio O(

√
|E1|) gives also a first answer for some classes of graphs satisfying |E1|∈o(|V1|2)

(but ∆1 still large). In particular, if G1 is acyclic, we have |E1| ≤ |V1| and consequently:

Corollary 23 Instances of the constrained alignment problem satisfying m2 = 1 and G1 acyclic can be
approximated within the ratio O(

√
|V1|).

Let now I =≺ G1, G2, S � be an instance of the constrained alignment problem with conflict graph
C and m2 = 1; suppose we are given a subset F ⊂ V1 and a maximal matching M of S[F ∪ V2], the
subgraph of S corresponding to similarity edges incident to F . We denote by VC,F,M the set of c4s in VC
including at least one vertex of F and no similarity edge uv with u ∈ F, v ∈ V2, uv /∈M ; in other words,
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these c4s include vertices in F but only with similarity edges in M . Then, considering the subgraph
C[VC,F,M ] of C induced by these c4s, we have:

Lemma 24 For any induced P3, x1x2x3, in C[VC,F,M ], x1 and x3 have the same neighborhood in
C[VC,F,M ]. In particular C[VC,F,M ] is P4-free.

Proof: Since m2 = 1 and by definition of VC,F,M , for every two conflicting c4s in VC,F,M , there must be
a vertex u ∈ V1 \ F and two disjoint vertices v, v′ ∈ V2 such that uv is an edge of the former and uv′

an edge of the latter; moreover the other similarity edges of these c4s are in M . Suppose we are given an
induce P3, x1x2x3, in C[VC,F,M ]. There are such vertices u, v, v′, where γ(x1) and γ(x3) both include the
edge uv while γ(x2) includes uv′. Moreover, every c4 in VC,F,M that conflicts with γ(x3) (resp. γ(x1))
must include a similarity edge uw,w 6= v and thus it conflicts with γ(x1) (resp. γ(x3)), which concludes
the proof. 2

We deduce the following theorem that gives a first step towards non trivial o(|V1|) approximation ratios.
It corresponds to a sequence of approximation algorithms parametrized byK, called approximation chain
in Demange and Paschos (1997).

Theorem 25 Consider instances of the constrained alignment problem satisfying m2 = 1 and m1 con-
stant and let K be a positive constant. One can find in polynomial time a legal alignment guaranteeing
the approximation ratio of

⌈
|V1|

K log(|V1|)

⌉
.

Proof: Consider an instance I =≺ G1, G2, S � verifying the assumptions and denote by C the related
conflict graph. We recall that |V1| ≥ 2. Denote by β(I) = α(C) the optimal value for the instance I .
Let S∗ be a maximum independent set of C, |S∗| = α(C). Our strategy is to subdivide the vertex set of
the conflict graph, VC , into O

(
|V1|

log(|V1|)

)
subsets such that the maximum independent set can be solved in

polynomial time on the subgraph induced by each part. This subdivision is not necessarily a partition.
Fix a constantK and partition vertices of V1 intoBK =

⌈
|V1|

K log(|V1|)

⌉
sets of vertices Fj , j = 1, . . . BK

with |Fj | ≤ K log(|V1|). For each of them we denote by Uj the set of all c4s in VC including at least one
vertex of Fj and by Wj the graph Wj = C[Uj ]. Note that:⋃

j=1,...,BK

Uj = VC (3)

We claim that there is a polynomial-time algorithm that computes, for every j = 1, . . . , BK , a max-
imum independent set of Wj . Note first that the similarity edges involved in c4s contributing to any
independent set of Wj form a matching of the graph S[Fj ∪ V2] and consequently, is part of a maximal
matching of this graph. Denoting byMj the set of maximal matchings of S[Fj ∪ V2], we deduce:

α(Wj) = max
M∈Mj

α(C[VC,Fj ,M ]) (4)

Lemma 24 ensures that, for any fixed maximal matching M ∈ Mj , C[VC,Fj ,M ] is P4-free. In this
case a maximum independent set can be computed in polynomial (linear) time (Golumbic (2004)). The
related complexity is O(|VC,Fj ,M |) ≤ O(m1|Fj ||V1|) since c4s in VC,Fj ,M include at least one edge of
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M and |M | ≤ |Fj |. But m1 is a fixed constant and |Fj | ≤ K log(|V1|). Thus, we can exhaustively list all

maximal matchings of S[Fj ∪ V2] in O
(
m
K log(|V1|)
1

)
= O

(
|V1|K log(m1)

)
, a polynomial function.

Our algorithm runs as follows:

For all j = 1, . . . , BK and all maximal matching M of S[Fj ∪ V2], compute C[VC,Fj ,M ] and
a maximum independent set - keep the best such solution.

Computing each C[VC,Fj ,M ] and a maximum independent set takes, for bounded m1, O (|V1| log(|V1|));
the whole complexity is then O

(
log(|V1|)|V1|1+K log(m1)

)
, a polynomial function.

To complete the proof we need to justify it guarantees the required ratio. Equation (3) ensures that the
value λ(I) of the computed solution satisfies:

λ(I) = max
j=1,...,BK

α(Wj) ≥ max
j=1,...,BK

|S∗ ∩ Uj | ≥
β(I)

BK

which shows that the related approximation ratio is Bk =
⌈

|V1|
K log(|V1|)

⌉
. 2

3.1.2 Cliques and Claws
Next we present results regarding the existence of cliques as subgraphs of conflict graphs for any m1.
Assume that there is a clique Kt, t ≥ 1, in C and let a corresponding c4 associated with a vertex x from
this Kt be γ(x) = abcd. We partition all the corresponding c4s in Kt into three disjoint reference sets
with respect to γ(x). Let S1, S2 consist of all the c4s respectively conflicting γ(x) with a Conf1a and
Conf1b configuration. Let S3 be the set of all c4s with other kinds of conflicts ( Conf2, Conf3a or
Conf3b) with γ(x) and γ(x) itself.

Lemma 26 Given an instance ≺ G1, G2, S � with conflict graph C and the reference sets defined as
above, then any pair of c4s from different reference sets do not share a similarity edge.

Proof: Note that since the pair of c4s correspond, in C, to different vertices of the same clique Kt, they
should conflict by sharing at least one vertex from G1. We consider two cases. For the first case assume
one of the c4s is in S1 or S2, and the other is in S3. Without loss of generality assume the former c4 is
in S1 including vertices s and a from G1, where s 6= b. Since the latter c4 from S3 includes both a, b
from G1, the pair of c4s can only share the vertex a from G1 giving rise to a Conf1a or a Conf1b conflict
between them. For the second case assume one of the c4s is in S1 and the other is in S2. In this case the
former must have a Conf1a conflict whereas the latter must have a Conf1b conflict with the reference
γ(x) = abcd. Since a 6= b the c4s from S1 and S2 can only share one vertex from G1, thus giving rise to
a Conf1a or a Conf1b conflict between the pair. In both cases we show that both c4s are in Conf1a or
Conf1b conflict with each other. The fact that any pair of c4s with a Conf1a or a Conf1b conflict do not
share a similarity edge completes the proof. 2

Theorem 27 Given an instance ≺ G1, G2, S � with conflict graph C and m2 = 1, the maximum size of
any clique in C is m1

2, or equivalently C is K1+m1
2 -free.
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Fig. 6: Sample CUs giving rise to Km1
2s in their respective conflict graphs. The reference c4

is γ(x) = abcd. The first two show sample constructions for m1 = 2 and the last for m1 = 3.
The employed reference sets as described in the proof of Theorem 27 are as follows: (Left) All
c4s are in S3, (Middle) c4s in S3 are those induced by black vertices and b, c4s in S2 are those
induced by white vertices and b, (Right) c4s in S3 are those induced by black vertices and a, c4s
in S1 are those induced by white vertices and a.

Proof: We consider two cases.
Case-1: We first handle the case where at least one of S1, S2 is empty. Assume without loss of

generality S1 is empty. Let p be the number of similarity edges incident to b in the c4s of S3. Since each
pair of similarity edges, one incident to a and one incident to b, gives rise to at most one c4, the number
of c4s in S3 is at most m1p. By Lemma 26, c4s in S3 cannot share an edge from S with the c4s in S2.
This implies that the number of similarity edges incident to b in the c4s of S2 is at most m1 − p. Let bc′

be such an edge and let Sbc′ denote the set of c4s in S2 sharing bc′. Since any pair of c4s from Sbc′ share
a similarity edge, they must be in a Conf3a or Conf3b conflict with each other and thus must share one
more vertex from G1 in addition to the vertex b. This implies that |Sbc′ | ≤ m1 which further implies a
total of at most (m1− p)m1 c4s in S2. The clique consisting of c4s from S2, S3 has at most m1

2 vertices.
Case-2: Now we handle the case where S1 and S2 are both not empty. It must be the case that all c4s

in S1 ∪ S2 must share a vertex e from G1 such that e 6= a, e 6= b. This is due to the fact that any pair of
c4s, one from S1 the other from S2, can only have a Conf1a or Conf1b conflict and the shared node in
this conflict cannot be neither a nor b. Let p, q be the number of edges from S incident respectively to a
and b in the c4s of S3.

The number of c4s in S3 is at most pq. By Lemma 26, the number of similarity edges edges incident to
a in the c4s of S1 are at mostm1−p and the number of similarity edges incident to b in the c4s of S2 are at
most m1 − q. Let r be the number of similarity edges incident to e in the c4s of S1. Again by Lemma 26,
the number of similarity incident to e in the c4s of S2 are at most m1− r. This implies that the maximum
number of c4s in S1 and S2 are respectively (m1 − p)r and (m1 − q)(m1 − r). The size of the clique
consisting of c4s from all three reference sets is at most pq + (m1 − p)r + (m1 − q)(m1 − r), where
1 ≤ p, q, r ≤ m1. Without loss of generality let p ≤ q. Then we have pq+(m1−p)r+(m1−q)(m1−r) ≤
pq + (m1 − p)m1 ≤ m1

2. 2

We note that Km1
2 is possible in a conflict graph C for any positive integer m1. Indeed Case-1 of the

above proof provides an actual construction method; see Figure 6.
Note that under the setting of m2 = 1, the size of VC is bounded by |E2| (Lemma 4). It is known

that the maximum independent set problem is fixed-parameter tractable, parameterized by the size of the
output, in the class of Kr-free graphs for constant integer r (Raman and Saurabh (2006); Dabrowski et al.
(2012)). Combining this result with Theorem 27, leads to the following result:
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Proposition 28 The constrained alignment problem is fixed-parameter tractable when m1 is any fixed
positive integer constant and m2 = 1.

Note that the analogous result in Fertin et al. (2009) is more restrictive since it applies only to the
bounded degree graphs.

We conclude this part by considering induced claws in conflict graphs. A d-claw is an induced subgraph
of an undirected graph, that consists of an independent set of d vertices, called talons, and the center
vertex that is adjacent to all vertices in this set. Let ∆min = min(∆1,∆2).

Theorem 29 Given an instance ≺ G1, G2, S � with conflict graph C and m2 = 1, then
C is (2∆min + 2)-claw-free.

Proof: Let abcd be the corresponding c4 associated with the center vertex of a claw. Let abkl be the c4
corresponding to a talon that has a Conf2, Conf3a or Conf3b conflict with abcd. Since any other c4
corresponding to a talon with a Conf2, Conf3a or Conf3b conflict with abcd would also have to share
the vertices a, b, by Fact 2, it would conflict with abkl, which is not possible. Thus, the total number of
talons the c4s of which create a Conf2, Conf3a or Conf3b conflict with abcd is at most 1. With regards
to the number of talons corresponding, in CU , to a Conf1a or Conf1b conflict with abcd, we first count
the maximum number of possible Conf1a conflicts. Let apqr be the c4 of a talon with a Conf1a conflict
with abcd. Any talon the c4 of which conflicts with abcd through a Conf1a conflicting configuration
must share the edge ar, since otherwise it would conflict with apqr. Any G1 edge incident to vertex a
can belong only to a single c4 since otherwise by Fact 2 there would be a conflict between a pair of c4s
corresponding to talons. In addition, since m2 = 1, every G2 edge can belong only to a single c4. Thus
the number of talons inducing in C Conf1a conflicts is bounded by ∆min. The same holds for Conf1b

conflicts giving rise to at most (2∆min + 1) talons that are independent. 2

The above theorem in conjunction with the result of Berman (2000) which states that a d/2 approxima-
tion for maximum independent sets can be found in polynomial-time for d-claw free graphs gives rise to
a polynomial-time approximation for the constrained alignment problem.

Proposition 30 If m2 = 1, the constrained alignment problem can be (∆min + 1)-approximated in
polynomial time.

This results improves (by at least a factor 5/6) the approximation ratio of 2d3∆1/5e for even ∆1

and 2d(3∆1 + 2)/5e for odd ∆1 proposed in (Fertin et al. (2009)). As already mentioned, the o(∆1)-
approximation stated in Proposition 11 already improved it. If ∆2 ∈ O(∆1), then the ratio in Proposi-
tion 11 is better but if ∆2 ∈ o(∆1), then the ratio established in Proposition 30 can be better than the one
in Proposition 11.

We conclude Subsection 3.1 by emphasizing that some of our structural results lead to a new hardness
result for the maximum independent set problem. Indeed, the combination of Lemma 6, Theorem 15,
Theorem 19 and Theorem 19 states that, for any instance of the constrained alignment problem with
m1 = 2,m2 = 1 and G1, G2 are of bounded degree, the related conflict graph is (Wt (t ≥ 5), F6,K5)-
free and of bounded degree.

On the other hand, the constrained alignment problem is shown to be APX-complete even for the case
where m2 = 1,m1 = 2, both G1, G2 are bipartite and of bounded degree (Fertin et al. (2009)). As a
consequence, we derive the following new hardness result for the maximum independent set problem:
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Proposition 31 The maximum independent set problem is APX-complete in the class of bounded degree,
(Wt (t ≥ 5), F6,K5)-free graphs.

3.2 Acyclic G1 and m2 = 1

We conclude by investigating the case where G1 is acyclic and m2 = 1 for which the constrained align-
ment problem is shown to be polynomial-time solvable in Abaka et al. (2013) without a precise complex-
ity analysis. We refine this previous analysis by showing that in this case the conflict graph has a very
particular structure. More precisely it is weakly triangulated (Ct-free and Ct-free, for t ≥ 5). Weakly
triangulated graphs are known to be perfect (Hayward (1985)) and moreover the maximum independent
set problem can be solved in O(|V ||E|) in a graph G = (V,E) (Hayward et al. (2007)). It allows us to
deduce a new polynomial-time algorithm for this case with its complexity analysis. This illustrates again
how the structure of the conflict graph can be used to achieve algorithmic results.

We need two technical lemmas; remind that, given an instance ≺ G1, G2, S � the graph CU is defined
in Subsection 2.2.

Lemma 32 Given an instance ≺ G1, G2, S � with conflict graph C where G1 is acyclic. Suppose a Pk,
denoted by p, is an induced subgraph of the conflict graph C. For k ≥ 4, the c4s of CU corresponding to
the end vertices of p neither share a vertex nor an edge in CU .

Proof: Suppose first that pk is an induced Pk, k ≥ 4 in the conflict graph and consider the two c4s in
CU associated with the extremities of pk. They can neither share an edge from G2 nor a vertex from G2

without sharing a similarity edge incident to it (m2 = 1). They also cannot share an edge from G1 nor a
vertex from G1 without sharing a similarity edge incident to it since otherwise they would conflict. Thus
we simply need to show that they do not share a similarity edge.

The proof is by strong induction on k. For the base case k = 4, suppose there is a P4 x1x2x3x4 in
the conflict graph and that the c4s γ(x1) and γ(x4) share a similarity edge. Let γ(x1) = abcd and let
γ(x4) = befc with the edge bc ∈ S in common. There are two cases for γ(x2). Since it does not conflict
with γ(x4), it must either be of the form gahi, where h, i /∈ {d, c, f} (Conf1a conflict with γ(x1)) or
of the form abch where h /∈ {d, c, f} (Conf3a conflict with γ(x1)). Now considering γ(x3), to create
a conflict with γ(x4), one edge of γ(x3) must be ej where j /∈ {d, c, f, h, i}. Placing the other edge of
γ(x3) from ES such that it creates a conflict with γ(x2) is now impossible, since it either gives rise to a
cycle in G1 (cycle abe or abeg, g /∈ {a, b, e}) or creates a conflict with γ(x1).

For the inductive part, assume that the lemma holds for all k′ where 4 ≤ k′ < k. Consider the c4s
of CU corresponding to the vertices of a Pk, x1 · xk−1xk in the conflict graph. Let γ(x1) = abcd and
γ(xk−1) = efgh. By the inductive hypothesis, these two c4s are disjoint. Consider in CU the subset H
of edges from E1 that belong to the c4s associated with vertices in the Pk−1, x1 · · ·xk−1. H contains
in particular ab and ef . Edges in H form a connected subgraph of G1 and without loss of generality we
assume that the shortest path between b and e contains neither a nor f . This path has at least one edge;
let its last edge be e′e ∈ G1 which is part of γ(xj) for some j, 1 ≤ j ≤ (k − 2). Let γ(xj) = e′exy and
γ(xk) = pqrs. If at least one of p, q is on the path, say p, and p 6= e′, p 6= e, then q must be one of e
or f , since pqrs must conflict with efgh, which implies a cycle in G1. If p = e′ then q = e to create a
conflict with efgh without creating a cycle in G1. This implies a conflict between pqrs and e′exy, which
is impossible since x1 · · ·xk is an induced path. Finally, if p = e, q 6= e′, abcd and pqrs do not share a
similarity edge, which concludes the proof. 2
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1 2 k

Fig. 7: Chain configuration of a k-path in CU .

The subgraph of CU that corresponds to an induced Pk, x1 · · ·xk−1xk in the conflict graph C is said to
be in chain configuration if each c4, γ(xi), i = 1, . . . k, shares only a distinct G1-vertex with the next
c4, γ(xi+1), if i < k and one with the previous one, γ(xi−1), if i > 1 and does not share any G1- or
G2-vertices with any other of these c4s; see Figure 7 for a sample chain configuration. Note that a chain
configuration imposes a certain order of the involved c4s in C.

Lemma 33 Let ≺ G1, G2, S � be an instance of the constrained alignment problem with conflict graph
C and acyclic G1. Let x1, x2, x3 be three vertices of C such that γ(x1) and γ(x3) do not share a vertex
nor an edge in CU and γ(x2) conflicts with both γ(x1) and γ(x3). Then γ(x1), γ(x2) and γ(x3) must be
in chain configuration where γ(x2) is in the middle in any left to right order.

Proof: If the conflict configuration of γ(x1) and γ(x2) were of Conf2, Conf3a or Conf3b, then γ(x3)
could conflict with γ(x2) only if it shared a vertex in CU (more specifically a vertex from G1, since
m2 = 1) with γ(x1), which is not possible. It follows that the only possible conflict configuration for
γ(x1) and γ(x2) is Conf1a or Conf1b. Applying the same reasoning to the conflict between γ(x2) and
γ(x3), it follows that all three must be in chain configuration, where γ(x2) is in the middle of the chain
in any left to right order. 2

We are now ready to prove the main result of this subsection.

Theorem 34 Given an instance≺ G1, G2, S � with conflict graph C such thatG1 is acyclic andm2 = 1
then C is weakly triangulated.

Proof: Assume first for the sake of contradiction that Ck is an induced subgraph of a conflict graph
for k ≥ 5. The cycle Ck = x1 · · ·xk−1xkx1 can be divided into (k − 2) P3s: x1x2x3, x2x3x4, . . .,
xk−2xk−1xk. We show that for each P3s, xixi+1xi+2, 1 ≤ i ≤ k − 2, γ(xi), γ(xi+1 and γ(xi+2) must
be in chain configuration in CU . There exists indeed a (k − 1)-path starting at vertex xi and ending at
vertex (xi+2) as an induced subgraph of Ck, thus of C as well. Since k ≥ 5, by Lemma 32, the c4s γ(xi)
and γ(xi+2), neither share a vertex nor an edge in CU . By definition of Ck, they do not conflict. Since
γ(xi+1) conflicts with both γ(xi) and γ(xi+2), by Lemma 33, all three must be in chain configuration,
where γ(xi+1) is in the middle of the configuration in any left to right order. Since each of the k−2 triples
(x1, x2, x3), (x2, x3, x4), . . ., (xk−2, xk−1, xk) is in chain configuration similarly, the c4s corresponding
to the whole path x1x2 · · ·xk−1xk, γ(x1), γ(x2) . . . γ(xk−1γ(xk) are in chain configuration in this order.
This implies there cannot be a conflict between γ(x1) and γ(xk), since in the opposite case it would
correspond to a cycle in graph G1. This contradicts the fact vertices x1 and xk are adjacent in C.

To prove that Ck is not an induced subgraph in any conflict graph, we first note that since C5 is isomor-
phic to C5, C5 cannot be an induced subgraph of any conflict graph. For k > 5, we prove it by contra-
diction as well. Suppose Ck, with k > 5 is an induced subgraph of C. Consider the path xk−1x1xk−2xk.
This is an induced 4-path in Ck, thus also in C. By Lemma 32, γ(xk) and γ(xk−1) do not share any
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vertex and neither an edge in CU . By definition of Ck they do not conflict. Since γ(x2) conflicts with
both γ(xk−1) and γ(xk) (vertex x2 is adjacent to xk−1 and xk in Ck), by Lemma 33, γ(xk−1), γ(x2),
and γ(xk) must be in chain configuration in that order. By the same reasoning γ(xk−1), γ(x3), and γ(xk)
must be in chain configuration again in the same order. However this is only possible if γ(x2) and γ(x3)
are identical, which constitutes a contradiction. 2

In Abaka et al. (2013), the constrained alignment problem is shown to be polynomial-time solvable if
G1 is acyclic andm2 = 1, using a dynamic programming approach. Theorem 34 gives an alternative proof
using the O(|V ||E|) algorithm for maximum independent set in weakly triangulated graphs (Hayward
et al. (2007)). In this case, Lemma 7 and Theorem 8. (i) give |EC | ≤ 1

2m
3
1(m1 − 1)|V1|(∆1 + 3) while

Lemma 4 gives |VC | ≤ m1
2|V1|. The related complexity is O(∆1|V1|2) if m1 is a fixed constant.

4 Concluding remarks
We consider the constrained alignment of a pair of input graphs. We heavily investigate the combinatorial
properties of a conflict graph which was introduced in Fertin et al. (2009) but not studied in detail as far as
graph theoretical properties are concerned. The constrained alignment problem appears as being closely
related to the maximum independent set problem in conflict graphs. Known results on the maximum
independent set problem associated with several structural properties of conflict graphs lead to algorithmic
results for the constrained alignment problem: a polynomial-time case, polynomial-time approximations,
and fixed-parameter tractability results.

Our contribution is twofold. First, we improve known approximation results for the constrained align-
ment problem in several ways. In terms of the maximum degrees of G1 and G2, we propose the first
o(∆1 + ∆2)-approximation using basic properties of conflict graphs. This ratio is similar to the known
approximation ratios, function of the maximum degree, for the maximum independent set problem in G1

and G2. This is due to the fact that the maximum degree of the conflict graph is of the same order as
∆1 +∆2. On the contrary, the number of vertices of the conflict graph does not allow to derive interesting
results from known maximum independent set approximation ratios expressed as functions of the num-
ber of vertices. We design the first non trivial approximation result with a ratio function of |V1| for the
constrained alignment problem. The related ratio, O( |V1|

log(|V1|) ), is better than O
(
|V1| log log(|V1|)

log(|V1|)

)
directly

obtained from ratios function of the degree but it is still large compared to theO( |V1|
log2(|V1|) )-approximation

of the maximum independent set in G1.

A first open question raised by these results is to strengthen hardness approximation re-
sults for the constrained alignment problem and in particular to investigate whether a ratio
of O(|V1|1−ε) or even a constant approximation can be achieved in polynomial time. It is
indeed well-known that such ratios cannot be achieved for the maximum independent set
problem.

We also derive a ratio of O(
√
β(I)) for the constrained alignment problem with m2 = 1, while a similar

result is not possible for the maximum independent set in general graphs unless P=NP. This kind of
unusual result (Theorem 20 and Proposition 21) seems interesting to investigate.

Studying more in detail in which extend similar ρ(α(G))-approximation results, parametrised
by the size of the optimal solution, can be obtained for the maximum independent set problem
or other problems is an interesting line of research raised by this work.
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Our second contribution is about structural results on the conflict graph. After general considerations
(Subsection 2.3) valid for any m1,m2, we focus on the case m2 = 1 (any m1) that has been considered
in Fagnot et al. (2008); Fertin et al. (2009). For this case, we investigate graph classes that all can be
characterised by forbidden subgraphs H in the neighborhood of any vertex: the case where H is a large
clique or a large independent set is pretty usual, it just corresponds, in the whole graph, to exclude large
cliques and/or large claws. The case where H is an induced path or cycle - thus excluding wheels or
fans - is less current even thought the classes of H-free graphs themselves have raised great interest in
the recent years: for instance many researches deal with maximum independent set problem in graphs
excluding Ct or Pt for some t. In particular, it is known that the maximum independent set problem is
polynomial for P5-free graphs (Lokshantov et al. (2014)) and the case of larger t is still unknown. For
instance, if the maximum independent set problem was polynomial in P8-free graphs, then combining
Theorems 19 and 20 would lead to a

√
β(I)-approximation for the constrained alignment problem. Note

also that P4-free subgraphs of C play a crucial role for several results in this work; it would be interesting
to study whether this approach can be applied in a more general setting using P5-free subgraphs instead
of P4-free ones.

So far, this work motivates the study of maximum independent set in graphs excluding fans
and/or wheels and more generally in classes of graphs with forbidden subgraphs in the neigh-
borhood of any vertex.

Theorem 20 gives a first step in this direction with a strategy to efficiently solve the maximum independent
set in a graph G = (V,E) when a good solution can be found in all subgraphs Gv, v ∈ V .

As a first attempt to investigate properties of the conflict graph to derive efficient algorithms, the case
m2 = 1 revealed to be very rich and promising as it allows to derive interesting properties of the conflict
graph, even for large values of m1. Even if, as outlined in Fagnot et al. (2008), the underlying biological
application motivates the case where both m1 and m2 are small, it is worth to note that reduction of the
constrained alignment problem to a maximum independent set problem in the conflict graph is valid for
any values of m1,m2. As mentioned in Subsection 2.1, the largest possible values for m1,m2 (m1 =
|V2|,m2 = |V1|) leads to another well studied problem, the maximum common edge subgraph problem
that includes many well-known problems like the maximum clique problem. If m1,m2 are large, the size
of the conflict graph increases very fast and it becomes dense. As a consequence, this approach is likely
to lead to good computational results if at least one of m1,m2 is small.

The last research direction we want to outline is to investigate properties of conflict graphs
for larger values of m2 for, at least, some classes of graphs G1 and G2.
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