287 research outputs found

    Parameterized Complexity of Conflict-Free Matchings and Paths

    Get PDF
    An input to a conflict-free variant of a classical problem Gamma, called Conflict-Free Gamma, consists of an instance I of Gamma coupled with a graph H, called the conflict graph. A solution to Conflict-Free Gamma in (I,H) is a solution to I in Gamma, which is also an independent set in H. In this paper, we study conflict-free variants of Maximum Matching and Shortest Path, which we call Conflict-Free Matching (CF-Matching) and Conflict-Free Shortest Path (CF-SP), respectively. We show that both CF-Matching and CF-SP are W[1]-hard, when parameterized by the solution size. Moreover, W[1]-hardness for CF-Matching holds even when the input graph where we want to find a matching is itself a matching, and W[1]-hardness for CF-SP holds for conflict graph being a unit-interval graph. Next, we study these problems with restriction on the conflict graphs. We give FPT algorithms for CF-Matching when the conflict graph is chordal. Also, we give FPT algorithms for both CF-Matching and CF-SP, when the conflict graph is d-degenerate. Finally, we design FPT algorithms for variants of CF-Matching and CF-SP, where the conflicting conditions are given by a (representable) matroid

    Determinantal Sieving

    Full text link
    We introduce determinantal sieving, a new, remarkably powerful tool in the toolbox of algebraic FPT algorithms. Given a polynomial P(X)P(X) on a set of variables X={x1,,xn}X=\{x_1,\ldots,x_n\} and a linear matroid M=(X,I)M=(X,\mathcal{I}) of rank kk, both over a field F\mathbb{F} of characteristic 2, in 2k2^k evaluations we can sieve for those terms in the monomial expansion of PP which are multilinear and whose support is a basis for MM. Alternatively, using 2k2^k evaluations of PP we can sieve for those monomials whose odd support spans MM. Applying this framework, we improve on a range of algebraic FPT algorithms, such as: 1. Solving qq-Matroid Intersection in time O(2(q2)k)O^*(2^{(q-2)k}) and qq-Matroid Parity in time O(2qk)O^*(2^{qk}), improving on O(4qk)O^*(4^{qk}) (Brand and Pratt, ICALP 2021) 2. TT-Cycle, Colourful (s,t)(s,t)-Path, Colourful (S,T)(S,T)-Linkage in undirected graphs, and the more general Rank kk (S,T)(S,T)-Linkage problem, all in O(2k)O^*(2^k) time, improving on O(2k+S)O^*(2^{k+|S|}) respectively O(2S+O(k2log(k+F)))O^*(2^{|S|+O(k^2 \log(k+|\mathbb{F}|))}) (Fomin et al., SODA 2023) 3. Many instances of the Diverse X paradigm, finding a collection of rr solutions to a problem with a minimum mutual distance of dd in time O(2r(r1)d/2)O^*(2^{r(r-1)d/2}), improving solutions for kk-Distinct Branchings from time 2O(klogk)2^{O(k \log k)} to O(2k)O^*(2^k) (Bang-Jensen et al., ESA 2021), and for Diverse Perfect Matchings from O(22O(rd))O^*(2^{2^{O(rd)}}) to O(2r2d/2)O^*(2^{r^2d/2}) (Fomin et al., STACS 2021) All matroids are assumed to be represented over a field of characteristic 2. Over general fields, we achieve similar results at the cost of using exponential space by working over the exterior algebra. For a class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of running time. However, the odd support sieving result appears to be specific to working over characteristic 2

    Structure of conflict graphs in constraint alignment problems and algorithms

    Get PDF
    We consider the constrained graph alignment problem which has applications in biological network analysis. Given two input graphs G1=(V1,E1),G2=(V2,E2)G_1=(V_1,E_1), G_2=(V_2,E_2), a pair of vertex mappings induces an {\it edge conservation} if the vertex pairs are adjacent in their respective graphs. %In general terms The goal is to provide a one-to-one mapping between the vertices of the input graphs in order to maximize edge conservation. However the allowed mappings are restricted since each vertex from V1V_1 (resp. V2V_2) is allowed to be mapped to at most m1m_1 (resp. m2m_2) specified vertices in V2V_2 (resp. V1V_1). Most of results in this paper deal with the case m2=1m_2=1 which attracted most attention in the related literature. We formulate the problem as a maximum independent set problem in a related {\em conflict graph} and investigate structural properties of this graph in terms of forbidden subgraphs. We are interested, in particular, in excluding certain wheals, fans, cliques or claws (all terms are defined in the paper), which corresponds in excluding certain cycles, paths, cliques or independent sets in the neighborhood of each vertex. Then, we investigate algorithmic consequences of some of these properties, which illustrates the potential of this approach and raises new horizons for further works. In particular this approach allows us to reinterpret a known polynomial case in terms of conflict graph and to improve known approximation and fixed-parameter tractability results through efficiently solving the maximum independent set problem in conflict graphs. Some of our new approximation results involve approximation ratios that are function of the optimal value, in particular its square root; this kind of results cannot be achieved for maximum independent set in general graphs.Comment: 22 pages, 6 figure

    Towards Work-Efficient Parallel Parameterized Algorithms

    Full text link
    Parallel parameterized complexity theory studies how fixed-parameter tractable (fpt) problems can be solved in parallel. Previous theoretical work focused on parallel algorithms that are very fast in principle, but did not take into account that when we only have a small number of processors (between 2 and, say, 1024), it is more important that the parallel algorithms are work-efficient. In the present paper we investigate how work-efficient fpt algorithms can be designed. We review standard methods from fpt theory, like kernelization, search trees, and interleaving, and prove trade-offs for them between work efficiency and runtime improvements. This results in a toolbox for developing work-efficient parallel fpt algorithms.Comment: Prior full version of the paper that will appear in Proceedings of the 13th International Conference and Workshops on Algorithms and Computation (WALCOM 2019), February 27 - March 02, 2019, Guwahati, India. The final authenticated version is available online at https://doi.org/10.1007/978-3-030-10564-8_2

    Homomorphisms are a good basis for counting small subgraphs

    Get PDF
    We introduce graph motif parameters, a class of graph parameters that depend only on the frequencies of constant-size induced subgraphs. Classical works by Lov\'asz show that many interesting quantities have this form, including, for fixed graphs HH, the number of HH-copies (induced or not) in an input graph GG, and the number of homomorphisms from HH to GG. Using the framework of graph motif parameters, we obtain faster algorithms for counting subgraph copies of fixed graphs HH in host graphs GG: For graphs HH on kk edges, we show how to count subgraph copies of HH in time kO(k)n0.174k+o(k)k^{O(k)}\cdot n^{0.174k + o(k)} by a surprisingly simple algorithm. This improves upon previously known running times, such as O(n0.91k+c)O(n^{0.91k + c}) time for kk-edge matchings or O(n0.46k+c)O(n^{0.46k + c}) time for kk-cycles. Furthermore, we prove a general complexity dichotomy for evaluating graph motif parameters: Given a class C\mathcal C of such parameters, we consider the problem of evaluating fCf\in \mathcal C on input graphs GG, parameterized by the number of induced subgraphs that ff depends upon. For every recursively enumerable class C\mathcal C, we prove the above problem to be either FPT or #W[1]-hard, with an explicit dichotomy criterion. This allows us to recover known dichotomies for counting subgraphs, induced subgraphs, and homomorphisms in a uniform and simplified way, together with improved lower bounds. Finally, we extend graph motif parameters to colored subgraphs and prove a complexity trichotomy: For vertex-colored graphs HH and GG, where HH is from a fixed class H\mathcal H, we want to count color-preserving HH-copies in GG. We show that this problem is either polynomial-time solvable or FPT or #W[1]-hard, and that the FPT cases indeed need FPT time under reasonable assumptions.Comment: An extended abstract of this paper appears at STOC 201

    Fixed cardinality stable sets

    Get PDF
    Given an undirected graph G=(V,E) and a positive integer k in {1, ..., |V|}, we initiate the combinatorial study of stable sets of cardinality exactly k in G. Our aim is to instigate the polyhedral investigation of the convex hull of fixed cardinality stable sets, inspired by the rich theory on the classical structure of stable sets. We introduce a large class of valid inequalities to the natural integer programming formulation of the problem. We also present simple combinatorial relaxations based on computing maximum weighted matchings, which yield dual bounds towards finding minimum-weight fixed cardinality stable sets, and particular cases which are solvable in polynomial time.publishedVersio

    Parameterized Verification of Graph Transformation Systems with Whole Neighbourhood Operations

    Full text link
    We introduce a new class of graph transformation systems in which rewrite rules can be guarded by universally quantified conditions on the neighbourhood of nodes. These conditions are defined via special graph patterns which may be transformed by the rule as well. For the new class for graph rewrite rules, we provide a symbolic procedure working on minimal representations of upward closed sets of configurations. We prove correctness and effectiveness of the procedure by a categorical presentation of rewrite rules as well as the involved order, and using results for well-structured transition systems. We apply the resulting procedure to the analysis of the Distributed Dining Philosophers protocol on an arbitrary network structure.Comment: Extended version of a submittion accepted at RP'14 Worksho
    corecore