8,657 research outputs found

    On the proper intervalization of colored caterpillar trees

    Get PDF
    This paper studies the computational complexity of the Proper interval colored graph problem (picg), when the input graph is a colored caterpillar, parameterized by hair length. In order prove our result we establish a close relationship between the picg and a graph layout problem the Proper colored layout problem (pclp). We show a dichotomy: the picg and the pclp are NP-complete for colored caterpillars of hair length ≥ 2, while both problems are in P for colored caterpillars of hair length < 2. For the hardness results we provide a reduction from the Multiprocessor Scheduling problem, while the polynomial time results follow from a characterization in terms of forbidden subgraphs.Preprin

    More Applications of the d-Neighbor Equivalence: Connectivity and Acyclicity Constraints

    Get PDF
    In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. For all these problems, we obtain 2^O(k)* n^O(1), 2^O(k log(k))* n^O(1), 2^O(k^2) * n^O(1) and n^O(k) time algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and maximum induced matching width. Our approach simplifies and unifies the known algorithms for each of the parameters and match asymptotically also the running time of the best algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the d-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance and the generalizing power of this equivalence relation on width measures. We also prove that this equivalence relation could be useful for Max Cut: a W[1]-hard problem parameterized by clique-width. For this latter problem, we obtain n^O(k), n^O(k) and n^(2^O(k)) time algorithm parameterized by clique-width, Q-rank-width and rank-width

    The Firefighter Problem: A Structural Analysis

    Get PDF
    We consider the complexity of the firefighter problem where b>=1 firefighters are available at each time step. This problem is proved NP-complete even on trees of degree at most three and budget one (Finbow et al.,2007) and on trees of bounded degree b+3 for any fixed budget b>=2 (Bazgan et al.,2012). In this paper, we provide further insight into the complexity landscape of the problem by showing that the pathwidth and the maximum degree of the input graph govern its complexity. More precisely, we first prove that the problem is NP-complete even on trees of pathwidth at most three for any fixed budget b>=1. We then show that the problem turns out to be fixed parameter-tractable with respect to the combined parameter "pathwidth" and "maximum degree" of the input graph

    More applications of the d-neighbor equivalence: acyclicity and connectivity constraints

    Full text link
    In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. We design a meta-algorithm that solves all these problems and whose running time is upper bounded by 2O(k)nO(1)2^{O(k)}\cdot n^{O(1)}, 2O(klog(k))nO(1)2^{O(k \log(k))}\cdot n^{O(1)}, 2O(k2)nO(1)2^{O(k^2)}\cdot n^{O(1)} and nO(k)n^{O(k)} where kk is respectively the clique-width, Q\mathbb{Q}-rank-width, rank-width and maximum induced matching width of a given decomposition. Our meta-algorithm simplifies and unifies the known algorithms for each of the parameters and its running time matches asymptotically also the running times of the best known algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the dd-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance of this equivalence relation on the algorithmic applications of width measures. We also prove that our framework could be useful for W[1]W[1]-hard problems parameterized by clique-width such as Max Cut and Maximum Minimal Cut. For these latter problems, we obtain nO(k)n^{O(k)}, nO(k)n^{O(k)} and n2O(k)n^{2^{O(k)}} time algorithms where kk is respectively the clique-width, the Q\mathbb{Q}-rank-width and the rank-width of the input graph

    Fixed parameter tractability of crossing minimization of almost-trees

    Full text link
    We investigate exact crossing minimization for graphs that differ from trees by a small number of additional edges, for several variants of the crossing minimization problem. In particular, we provide fixed parameter tractable algorithms for the 1-page book crossing number, the 2-page book crossing number, and the minimum number of crossed edges in 1-page and 2-page book drawings.Comment: Graph Drawing 201

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de Educación y Ciencia TEC2004-0175

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape
    corecore