2 research outputs found

    QM/MM molecular dynamics studies of metal binding proteins

    Get PDF
    Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM)) simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-\u3b2-lactamases, a-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu) and main group (Mg) metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metalions

    Parameterization of azole-bridged dinuclear platinum anticancer drugs via a QM/MM force matching procedure

    No full text
    Azole-bridged diplatinum compounds are promising new anticancer drugs designed to induce small distortions upon DNA alkylation, able to circumvent resistance problems of existing platinum drugs. Hybrid quantum classical (QM/MM) molecular dynamics (MD) simulations of different azole-bridged platinum drugs have recently revealed the nature of the local deformations at the DNA binding site. However, the description of global slow converging rearrangements cannot be addressed by QM/MM MD due to the short time scale accessible. Extensive classical MD simulations are therefore mandatory to describe accurately the structural distortions in the DNA double helix. This issue is now addressed by developing a new set of accurate force field parameters of the platinated moiety via a recently proposed force matching procedure of the classical forces to ab initio forces obtained from QM/MM trajectories. The accuracy of our force field parameters is validated by comparison of structural properties from classical MD and hybrid QM/MM simulations. The structural characteristics of the Pt-lesion are well reproduced during classical MD compared with QM/MM simulations and available experimental data. The global distortions in the DNA duplex upon binding of dinuclear Pt-compounds are very small and rather opposite to those induced by cisplatin. Thus, the force match approach significantly extends the potentialities of molecular simulations in the study of anticancer drugs and of the interactions with their biological targets
    corecore